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Viral proteases play key roles in viral replication, and they
also facilitate immune escape by proteolyzing diverse target
proteins. Deep profiling of viral protease substrates in host cells
is beneficial for understanding viral pathogenesis and for
antiviral drug discovery. Here, we utilized substrate phage
display coupled with protein network analysis to identify hu-
man proteome substrates of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) viral proteases, including papain-
like protease (PLpro) and 3C-like protease (3CLpro). We first
performed peptide substrates selection of PLpro and 3CLpro,
and we then used the top 24 preferred substrate sequences to
identify a total of 290 putative protein substrates. Protein
network analysis revealed that the top clusters of PLpro and
3CLpro substrate proteins contain ubiquitin-related proteins
and cadherin-related proteins, respectively. We verified that
cadherin-6 and cadherin-12 are novel substrates of 3CLpro,
and CD177 is a novel substrate of PLpro using in vitro cleavage
assays. We thus demonstrated that substrate phage display
coupled with protein network analysis is a simple and high
throughput method to identify human proteome substrates of
SARS-CoV-2 viral proteases for further understanding of
virus—host interactions.

Coronavirus disease 2019 caused by the novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has been an ongoing pandemic since March 2020 (1, 2).
Papain-like protease (PLpro) and 3C-like protease
(3CLpro) are key proteases to process viral polyproteins
for viral replications (3, 4). Studies in SARS-CoV, Middle
East respiratory syndrome-related coronavirus (MERS-
CoV), and feline coronavirus (FCoV) revealed that these
proteases can cleave host proteins involved in innate
immunity and inflammation pathway, facilitating immune
escape and viruses spread (5-7). SARS-CoV-2 PLpro and
3CLpro have also been shown to have similar functions
(8-10).
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To better understand the pathogenesis underlying severe
pneumonia and the SARS-CoV-2 viral-host interactions,
many efforts have been made to identify human protein
substrates of these two viral proteases. A systematic screening
of 71 human innate immune pathway proteins by in vitro
protease cleavage assay revealed that PLpro cleaved inter-
feron regulatory factor 3, while 3CLpro cleaved Nod-like re-
ceptor pyrin containing domain (NLRP) 12 and TAB1 (9).
While the in vitro cleavage assay is efficient in identifying
putative protein substrates, it is essentially low throughput
and cannot identify novel protein substrates beyond the
proteins screened.

Affinity purification—based proteomic approaches are
powerful and are commonly used to identify interacting
proteins; however, they may not be suitable for identifying
protease substrates since the affinity between proteases and
substrates are generally low. For the same reason, only two
putative protein substrates of PLpro and 3CLpro were
identified using affinity purification mass spectrometry,
further illustrating the limitations of this method (11). In
addition, in silico methods combining SARS-CoV-2 poly-
protein cleavage site analysis with cleavage prediction of
putative protein substrates revealed that CTBP1 was cleaved
in vitro by 3CLpro (12); this method could be significantly
improved by replacing limited polyprotein cleavage se-
quences with much expanded phage library profiled sub-
strate sequences.

Substrate phage display is a powerful method for protease
substrates profiling, especially for newly discovered pro-
teases that have been poorly documented (13, 14). Herein,
we propose a novel strategy to identify host protein sub-
strates of SARS-CoV-2 viral proteases by coupling the
substrate phage display selection with protein network
analysis (SPD-PNA). We first constructed a fully random-
ized heptapeptide phage library to profile the substrate
preferences of the SARS-CoV-2 3CLPro and PLpro pro-
teases. We then performed four rounds of substrate phage
display selection and used next-generation sequencing
(NGS) to identify the substrate sequences. The top 24 se-
quences were selected for putative human protein substrates
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Figure 1. PLpro and 3CLpro substrates profiling procedures. A, the format of the substrate phage library. AviTag: GLNDIFEAQKIEWHE. B, selection
procedure. Phage library was biotinylated through AviTag and then bound to streptavidin-coated plates. After PBST washing, substrate phages were
cleaved by PLpro or 3CLpro. The eluted phages were amplified and biotinylated for the next round of selection. 3CLpro, 3C-like protease; PBST, phosphate-

4/ ?’ PLpro / 3CLpro

buffered saline with Tween 20; PLpro, papain-like protease.

identification, followed by protein network analysis in
STRING to identify protein clusters. We found that ubiq-
uitin and cadherin (CDH) families were the top substrate
protein clusters of PLpro and 3CLpro, respectively. We
validated that CDH6 and CDHI12 are novel substrates of
3CLpro, and CD177 is a novel substrate of PLpro by in vitro
cleavage assays.

Results
PLpro and 3CLpro substrates selection using phage display

To profile the substrate preferences of SARS-CoV-2
proteases (PLpro and 3CLpro), we initiated the study by
constructing a fully randomized heptapeptide library on
pIIl protein of M13 phage using the phagemid system
(Figs. 1A and S1) (15). The general procedure of substrate
phage display was shown in Figure 1B. Before the
screening, the input phage (~10'%) was labeled with biotin
at the N-terminal AviTag for the affinity capture (Fig. S2).
The biotinylated phage library was immobilized on the
streptavidin-coated plate, and unbound phages were
washed away with phosphate-buffered saline with Tween
20 buffer. The bound phages were incubated with PLpro or
3CLpro in HEPES buffer for corresponding substrate phage
release. Released phages were then amplified for the next
round of selection. To enrich the preferred substrates, we
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~150 bp

shortened the protease incubation time from 3 h to 15 min
over four rounds. We also performed a blank selection
where protease cleavage elution was replaced with HEPES
buffer washing.

After the selection, we sequenced the selected phages by
NGS (0.1 ~ 0.15 million reads for each sample, Table S1). We
then ranked all the sequences based on the enrichment score
(enriched sequence read count in the PLpro/3CLpro group
divided by the read count of the same sequence in the Hepes
buffer control group). The enriched peptide sequences were
extracted by signature sequence (for PLpro, enrichment
score > 50, “XLXGG”; for 3CLpro, enrichment score > 100,
“XXLQX”") for seqLogo analysis (Fig. 24). To find protein
substrates of SARS-CoV-2 proteases in the human proteome,
we picked putative protein substrates containing the selected
top 8 substrate sequences of PLpro and top 16 substrate
sequences of 3CLpro in UniProt’s human proteome database
(UP000005640). We found a total of 101 and 189 human
proteins as putative substrates of PLpro and 3CLpro,
respectively (Fig. 2B and Table S2).

Protein network analysis of putative protein substrates

Protein network analysis can show the classification of
protein families and reveal the global connection between
the proteins based on their protein—protein interactions. The
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Figure 2. Profiled substrate sequences analysis and putative human protein substrates of PLpro and 3CLpro. A, barcodes (red) were inserted at the
terminal of the heptapeptide gene (orange, blue, and green) by PCR with barcoded forward primers for NGS analysis. Based on the NGS data, the extracted
substrate sequences of PLpro and 3CLpro were analyzed using WebLogo. B, top sequences from seqlogo of PLpro (eight sequences) and 3CLpro (16
sequences) were selected to identify putative protein substrates in UniProt's human proteome. 3CLpro, 3C-like protease; NGS, next-generation sequencing;
PLpro, papain-like protease.
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Figure 3. Protein network analysis of PLpro and 3CLpro putative protein substrates. A, Protein network analysis of PLpro putative protein substrates. B,
Protein network analysis of 3CLpro putative protein substrates. Protein network analysis was performed by STRING analysis and Markov Clustering.
Disconnected nodes were hidden in the network. Line thickness indicated the strength of confidence. After clustering, the top cluster (red balls) was circled.

3CLpro, 3C-like protease; PLpro, papain-like protease.

names of the 101 putative protein substrates (Table S1) of
PLpro were further uploaded into STRING for network
analysis, followed by Markov Clustering. As shown in
Figure 3A, the top cluster contains six ubiquitin-related
proteins (ISG15, RPS27A, UBA52, polyubiquitin-B [UBB],
polyubiquitin-C [UBC], and MYCBP2). Ubiquitin-like pro-
tein ISG15 (ISG15), UBB, and UBC have been validated as
substrates of PLpro (8). As for 3CLpro, 189 putative protein
substrates (Table S1) were analyzed by STRING with the
same procedure. Seven core proteins (CDH10, CDH12,
CDH18, CDH20, CDH6, CDH7, and CDH9) in the top
cluster belong to the CDH family (Fig. 3B). CDH6, CDH20,
and RNF213 have recently been reported to be the substrates
of 3CLpro (16, 17), which corroborates our finding here.

CDH6 AKVVYSILQGQPYFS
CDH7  Riiiiiiiiino.n
CDHY9 e
CDH10 RO
CDH12 Roeooooaaaooo
CDH18 Roeooooaaaooo
CDH20 Roeooooaoooo

These results together demonstrate that SPD-PNA strategy
is efficient in identifying human proteome substrates of
SARS-CoV-2 proteases.

Validation of protein substrates

Multiple sequence alignment analysis of all seven cadherin
proteins showed high sequence similarity and the same pre-
dicted cleavage site sequence “SILQG” (Fig. 4A). We chose the
commercially available CDH6 and CDH12 to test whether they
are indeed the substrates of 3CLpro. We coincubated CDH6 or
CDH12 with 3CLpro for 4 h at 37 °C and found these two
proteins can indeed be cleaved by 3CLpro (Fig. 4B). To further
confirm the cleavage site, we used mass spectrometry to
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Figure 4. 3CLpro cleavage of CDH6 and CDH12. A, sequence alignment of selected cadherin proteins; CDH6 contains five cadherin domains (54-608), “."
indicates the same amino acid compared with CDH6, “]” indicates the cleavage site. B, CDH6 and CDH12 cleavage analysis. Lane M: protein marker, lane 1

3CLpro; lane 2: CDH6; lane 3: 3CLpro + CDH6, incubation at 37 °C for 4 h, “«<" indicates the cleaved CDH6; lane 4: 3CLpro; lane 5: CDH12; lane 6: 3CLpro +
CDH12, incubation at 37 °C for 4 h, “«<" indicates the cleaved CDH12. 3CLpro, 3C-like protease.
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Figure 5. CDH6 and CDH12 cleavage sites confirmation. A, lane M: protein marker, lane 1: CDH®6, lane 2: CDH6 + PNGase F, lane 3: CDH6 + PNGase F +
3CLpro, lane 4: CDH12, lane 5: CDH12 + PNGase F, lane 6: CDH12 + PNGase F + 3CLpro, “«<" indicates the cleaved N-terminal fragments of CDH6 and
CDH12. B and C, mass spectrometry analysis; the calculated mass of CDH6 (G54-Q203) is 16974.8 Da, and the calculated mass of CDH12 (G55-Q204) is
16721.6 Da. 3CLpro, 3C-like protease; CDH6, cadherin-6; PNGase F, peptide PNGase F.

analyze the exact mass of the cleaved and deglycosylated N-
terminal fragment of CDH6 and CDH12 (Fig. 5). The observed
mass matched exactly with the calculated mass of the cleaved
N-terminal fragment of CDH6 and CDH12, which demon-
strated that the cleavage site is consistent with the prediction
(SILQL Q).

Given that ISG15 from the ubiquitin family has been iden-
tified as a substrate of PLpro (8), we sought to identify other
potential substrates for further investigation. Upon examining
different substrate protein structures, we found CD177 pred-
icated cleavage site locates in a flexible loop region; we thus
selected CD177 for in vitro cleavage validation. Twelve hours
of coincubation of CD177 with PLpro at 30 °C revealed that
CD177 was cleaved by PLpro at multiple sites (Fig. 6). One of
the cleavage sites (HLSGG/) was confirmed by the exact mass
of fragment Gzg3-Cie;-
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Figure 6. PLpro cleavage of CD177. Multiple predicted cleavage sites are
shown in the CD177 diagram based on SDS-PAGE analysis. Lane M: protein
marker, lane 1: PLpro; lane 2: CD177; lane 3: PLpro + CD177, incubation at
30 °C for 12 h, “«" indicates the cleaved CD177. Mass spectrometry data
shown here corresponds to one of the cleaved CD177 fragments (Gzgo-Cierr
Calc. 6045.7 Da, Obsd. 6045.5 Da). PLpro, papain-like protease.
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Discussion

To simplify our data analysis, we only used the top-ranked
substrate sequences for protein network analysis, and we were
not able to uncover all previously validated protein substrates
within this analysis (8—10, 18, 19). We wonder if all these
previously validated protein cleavage site sequences can be
found within the whole list of our profiled substrate se-
quences. After searching, we indeed found all these sequences
with distinct enrichment scores (Table 1). We then synthe-
sized some of these substrate peptides with distinct enrich-
ment scores and demonstrated that 3CLpro preferably cleaved
substrate sequences with higher enrichment scores (Fig. S3).
Since we only selected top sequences with high enrichment
scores, several previously known substrates were not identi-
fied in our initial analysis. We then performed a protein
network analysis of our profiled protein substrates with these
previously validated protein substrates included (Fig. S4). The
results revealed that NLRP1 found in our study and previ-
ously validated NLRP6, and NLRP12 belong to the Nod-like
receptor family, which interact with other previously vali-
dated GSDMD, IKBKG, and TABI1 proteins. We also found
previously validated NOTCH1 and F2 interact with the EGF
protein found in our study. In addition, previously validated
interferon regulatory factor 3 was also clustered within the
ubiquitin-related proteins in our analysis. These results

Table 1
Validated human protein substrates of PLpro and 3CLpro
Enrichment
SARS-CoV-2 Substrates in Cleavage score” in the
protease human proteome site fourth round
3CLpro CDH6 SILQG 464
CDH12 SILQG 464
NLRP1 VILQG 268
NOTCH1 SRLQS 164
GSDMD TCLQG 40
NLRP12 VVLQA 19
TAB1 LTLQS/ASLQS 15/7
F2 ASLQA 6
IKBKG AQLQV 2
PLpro CD177 HLSGG 50
UBB RLRGG 29
ISG15 RLRGG 29
IRF3 CLGGG 19

“ Enrichment score = (reads of sample + 1)/(reads of control + 1).
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collectively demonstrate SPD-PNA can efficiently identify
novel PLpro and 3CLpro protein substrates.

Viral proteases are essential for the replication and propa-
gation of viruses, they also employ proteolytic activity to
interact with host cells to disrupt immune responses, thus
facilitating viruses spread. Given many human proteins
potentially can be substrates of viral proteases, it is difficult to
profile these human proteins in depth using traditional syn-
thetic peptide libraries or in silico analysis based on limited
sequence libraries. Substrate phage display is advantageous in
deep profiling protease substrates since it can display a much
larger peptide library and the selected substrate sequences can
be analyzed using NGS, thus allowing complete and sensitive
substrates profiling (20, 21). Herein, we employed substrate
phage display and NGS to identify the peptide substrates of
SARS-CoV-2 PLpro and 3CLpro. We used the top 24 substrate
sequences to identify putative protein substrates in the human
proteome. Limited by the available resources, we only applied
protein network analysis to the key protein substrates for
validation. Notably, we found the previously validated PLpro
substrates, including ISG15, UBB, and UBC in our protein
network analysis. We also validated CDH6 and CDH12 are
new substrates of 3CLpro, and CD177 is a novel substrate of
PLpro. The fact that many previously reported protein sub-
strates could be found in our analysis demonstrates the power
and efficiency of this method. We believe the SPD-PNA
strategy is a valuable method and can efficiently complement
other approaches including affinity purification mass spec-
trometry proteomic for identifying proteome substrates of
proteases.

Experimental procedures
Construction of substrate phage library

Lib 7X was constructed by Kunkel mutagenesis (22). Firstly,
dU-ssDNA was harvested from uridine medium of Escherichia
coli CJ236 harboring the phagemid template. After the
annealing of the phosphorylated primers to dU-ssDNA, a
heteroduplex CCC-dsDNA was synthesized by fill-in reaction
with T7 DNA polymerase and T4 DNA ligase. Then the CCC-
dsDNA was electroporated into electrocompetent TG1
(Lucigen) to produce the phage library.

Substrate phage selection of PLpro and 3CLpro

To label biotin on M13 phages, BirA enzyme (0.06 U/ul) was
used to ligate biotin on AviTag with 3 mM ATP in bio-
tinylation buffer (50 mM Tris, 5 mM MgCl,, and 1 mM biotin,
pH 8.0) at 4 °C overnight. Then the biotinylated phages (~1 x
10"%) were loaded on streptavidin-coated plate with gently
shaking for 2 h at 25 °C. After washing with phosphate-
buffered saline with Tween 20 for 12 times, 50 nM 3CLpro
or PLpro in 20 mM Hepes buffer was added at 37 °C to elute
substrate phages for varied times (3 h, 2 h, 0.5 h, and 15 min).
The cleaved phages were recovered to infect TG1 (Agpo ~ 0.5)
and plated on 2YT/Amp plates (150 mm diameter) to culture
at 37 °C overnight. TG1 cells were then recovered to amplify
phages for the next round panning. A blank selection with
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Hepes buffer washing instead of protease cleavage elution was
also performed to facilitate enrichment score analysis after
NGS.

NGS sample preparation and data analysis

With extracted DNA from each round of selection in hand,
the fragments coding 7X peptide were amplified with primers
containing barcode. The PCR products (~150 bp) were ligated
with dual adapters as a mixed library for NGS by Illumina
150PE (GENEW1IZ).

The sequencing data were processed with custom script to
extract 21 bp DNA sequences coding heptapeptide based on
the inserted barcode in each sample. Then the DNA sequences
were translated into protein sequences according to human
codon table. We calculated the enrichment score for each
protein sequence with offset 1 ([reads of sample + 1]/[reads of
control + 1]). After that, we ranked the protein sequences
based on the enrichment score. The profiled substrate pref-
erences of 3CLpro and PLpro were further analyzed by
WebLogo.

To identify PLpro and 3CLpro human proteome substrates,
we downloaded the human proteome database from UniProt
website  (https://www.uniprot.org/proteomes/UP000005640)
and picked putative protein substrates which contain the
selected top 24 substrate sequences. With putative protein
substrates in hand, we further performed protein network
analysis by STRING. In detail, we uploaded names of all the
putative proteins and searched for protein-protein interaction
network. To simplify the mapping, we hid disconnected nodes
in the network and chose line thickness to indicate the
strength of confidence. Then we further performed Markov
Clustering to classify the protein families with inflation
parameter 3.

Protein substrates verification assay in vitro

CDHS6 (Sino Biological, 10150-H08H), CDH12 (Sino Bio-
logical, 10317-HO8H), and CD177 (Novoprotein, C442)
in vitro cleavage assay was performed in house. In detail, 2 pM
3CLpro was added to cleave 2 pg CDH6 or CDH12 in 50 mM
PBS buffer (pH 7.4) at 37 °C for 4 h. Five micromolar PLpro
was added to cleave 3 pg CD177 in 20 mM Hepes buffer (pH
7.4, 150 mM NaCl, 1 mM DTT, and 0.5 mM EDTA) at 30 °C
for 12 h. Then the cleavage was terminated by boiling with
protein loading buffer, followed by SDS-PAGE analysis.

Cleavage site confirmation assay

The cleavage site of CDH6 and CDH12 could be confirmed
by exact mass of the cleaved N-terminal fragment. Peptide
PNGase F was used to remove the N-linked glycosylation; we
incubated 3 ug CDH6 or CDH12 with 1 ul peptide PNGase F
(NEB, P0704S) and 5 pM 3CLpro in 50 mM sodium phosphate
(pH 7.5) at 37 °C for 12 h. After incubation, 0.1 ug of CDH6 or
CDH12 was injected into high resolution mass spectrometer
(Waters/SYNAPT XS HDMS) for analyzing the cleaved N-
terminal fragment. For CD177, we simply injected the reaction
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solution of the CD177 cleavage assay for mass spectrometry
analysis.

Data availability

All experimental data for this article are available upon
email request to: Bobo Dang (dangbobo@westlake.edu.cn).
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