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Machine learning-guided discovery of ionic
polymer electrolytes for lithium metal
batteries

Kai Li1, Jifeng Wang1, Yuanyuan Song1 & Ying Wang 1

As essential components of ionic polymer electrolytes (IPEs), ionic liquids (ILs)
with high ionic conductivity and wide electrochemical window are promising
candidates to enable safe and high-energy-density lithium metal batteries
(LMBs). Here, we describe a machine learning workflow embedded with
quantum calculation and graph convolutional neural network to discover
potential ILs for IPEs. By selecting subsets of the recommended ILs, combining
with a rigid-rod polyelectrolyte and a lithium salt, we develop a series of thin
(~50 μm) and robust (>200MPa) IPE membranes. The Li|IPEs|Li cells exhibit
ultrahigh critical-current-density (6mA cm−2) at 80 °C. The Li|IPEs|LiFePO4

(10.3mg cm−2) cells deliver outstanding capacity retention in 350 cycles (>96%
at 0.5C; >80% at 2C), fast charge/discharge capability (146 mAh g−1 at 3C) and
excellent efficiency (>99.92%). This performance is rarely reported by other
single-layer polymer electrolytes without any flammable organics for LMBs.

Ionic polymer electrolytes (IPEs) containing the non-flammable ions
embedded with the mechanically supporting polymers with pre-
determined ionic pathway have received considerable attention
toward reviving clean energy storage and conversion devices, such as
batteries1–6, fuel cells7, supercapacitors8, mechanical actuators9 and
reverse osmosis membranes10. As promising candidates for safe and
environmentally friendly electrolyte materials, ionic liquids (ILs) are
room temperature (RT) molten salts with low vapor pressure, high
thermal stability, wide electrochemical window and high ionic
conductivity1,5,11. In recent years, liquid crystalline polymers have
shown the capability to effectively reduce interfacial resistance,
meanwhile raising unique ion conductionmechanisms in lithiummetal
batteries (LMBs)1,12. Lithium (Li) metal anode coupled with high-
energy-density cathodes, for example, Li-air and Li-sulfur batteries,
usually require highly conductive, thermal-stable and electrochemical-
stable electrolytes to suppress inhomogeneous Li dendrites, overcome
the side reactions and break the tradeoffs between conductivity and
modulus in the composite electrolytes13,14. To alleviate these issues
synergistically, IPEs have shown the capability to block dendrites
through the robust polymer matrix, meanwhile guaranteeing extreme
safety by avoiding organic plasticizers in LMBs13,15–17.

As critical components in IPEs, it is desirable to develop an
approach to screen suitable ILs from a large population of IL candi-
dates to develop successful IPEs for LMBs. Machine learning (ML) has
been widely discussed to predict properties and learn the rules
underlying datasets, thus efficiently simplifying thematerial-discovery
process18–23. Here, we describe a ML workflow embedded with the
quantum chemistry calculation and graph convolutional neural net-
work (GCNN) to discover potential ILs with high ionic conductivity and
sufficient electrochemical window. Driven by the structure-property
relationships, previous researchers have developed diverse statistical
methods and regression models to predict physical properties, for
example, melting point24, viscosity25 and ionic conductivity26 based on
the structural descriptors of the ILs27. However, the reported high
accuracy usually originates from the overfitting of the dataset28.
Among the training datasets, the sample size of unique ILs is extremely
limited27,28. The investigated datasets usually contain the datapoints of
the same ILs at varying temperatures; these replicated datapoints will
increase the appeal accuracy of the reported models artificially25,26,29.
Thus, it is still challenging to predict the accurate properties of new ILs
without enough labeled datapoints. To overcome the data scarcity
issue, we comprehensively combine the object-oriented unsupervised
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learning and supervised learning to emphasize the design of statistical
regression and classification workflow instead of predicting the abso-
lute physical properties of the IL pairs independently. In addition, this
work also demonstrates the efficiency of using GCNN for the classifi-
cation task based on the graph-to-property relationship of ILs.

Based on the screening results from ML, we experimentally
investigate a series of IPEs based on the filtered ILs combined with a
liquid crystalline polyelectrolyte Poly 2,2′-disulfonyl-4,4′-benzidine
terephthalamide (PBDT) and a predetermined Li salt. The fabrication
process includes two steps: First, the precursor compositemembranes
of PBDT with selected ILs were obtained by the solvent-evaporation
method reported previously30. Then, the IPEs were finally achieved
through the ion exchange step by immersing the composite mem-
branes in highly concentrated ionic liquid electrolytes (ILEs). In terms
of the polymer matrix, it has been demonstrated that PBDT can serve
as the assembly template not only offering mechanical integrity and
low interfacial resistance, but also endowing nanoscale structuring in
the composite to ensure fast Li+ transport1,31,32. In terms of the ion
exchange medium, Li metal anode shows highly reversible cycling
performance with a stable solid-electrolyte interphase (SEI) formed by
electrochemical reduction of the bis(fluorosulfonyl)imide (FSI−)
anion33,34. In addition, compared to lithium tetrafluoroborate (LiBF4)
and lithium triflate (LiTfO), LiFSI shows excellent solubility in ILs with
anion of FSI−35. (The explanations about the solubility of different Li
salts are summarized in Supplementary Note 1). In addition, N-propyl-
N-methylpyrrolidinium bis(fluorosulfonyl)imide (C3mpyrFSI) has a
wide electrochemical window (5.4 V) and promising ionic conductivity
(9.1 mS cm−1)35. Thus, to ensure high Li+ concentration in the IPEs after
the ion exchange step, we employ LiFSI dissolved in C3mpyrFSI with a
concentration of 3.2mol kg−1 as the ion exchangemedium to loadLi+ in
the IPEs. By incorporating these IPEs into batteries with Li metal as an
anode, we can experimentally confirm the properties of these devel-
oped IPEs, including ionic conductivity, Li+ transference number,
electrochemical window, and Li dendrite suppression.

Results and discussion
Machine learning-guided screening of ionic liquids
This ML workflow requires two main steps: (1) Unsupervised learning,
followed by (2) Supervised learning to target promising ILs. As shown
in Fig. 1, we obtain 74 cations and 30 anions from theweb scrapping of
the IoLiTecwebsite. Thepermutation of cations and anions forms an IL
candidate pool with 2220 unique ILs, but only less than 13% of the ILs
show measured properties, for example, the melting point, viscosity,
conductivity, and electrochemical window. Three open-source plat-
forms, including RDKit, Psi4, and Pytorch Geometrics (PyG) are
employed to generate the molecular descriptors of the raw dataset.
RDKit is a powerful tool to calculate themolecular structure and three-
dimensional (3D) descriptors of themolecules36. Psi4 is anopen-source
ab initio electronic structure program for high-throughput quantum
chemistry37. We employ the self-consistence field (SCF) method with
Hartee-Fork theory coupled with the basic set of 6–311 +G** to opti-
mize the geometric structure and then calculate the energy, the
highest occupied molecular orbital energy (EHOMO), the lowest unoc-
cupied molecular orbital energy (ELUMO) and the molecular dipole
moments for the cations and anions separately. In this work, we
combine 60 molecular structure descriptors from RDKit for cations,
anions, and cation-anion pairs and 14 calculated electronic structural
variables from Psi4 for cations and anions in the final dataset. PyG is a
library based on Pytorch to build and train GCNN for a wide range of
prediction tasks. The unsupervised learning comprehensively utilizes
boxplots, pair plots, and hierarchical clustering to summarize the
fundamental rules underlying the dataset. In terms of supervised
learning, we employ statistical regression and classification to pro-
mote screening efficiency. Among the 2220 ILs, we initially use the
classification method to predict the phase (solid/liquid) of the cation-

anion pairs at RT. The predicted results are based on the ensemble
learning of algorithms including support vector machine (SVM), ran-
dom forest (RF), XGBoosting (XGB), and GCNN. Then we employ both
statistical regression and classification to evaluate the conductivity of
the ILs at 25 °C. These ILs are predicted to be liquid phase at RT in the
previous classification step. To improve the screening efficiency, we
classify the ILs into two categories, based on predetermined and tun-
able thresholdof ionic conductivity value(σ). It is well known that theσ
of solid-state electrolytes should be >1 mS cm−1 to ensure the perfor-
mance of electrolytes in real devices38. To guarantee the high con-
ductivity of IPEs, the utilized ILs usually require a slightly higher
σ > 5mScm−1 1. Therefore, 5 mS cm−1 is the σ threshold used in this
model. The last screening step is determined by the calculated elec-
trochemical window value (ECW) based on the HOMO/LUMO theory
according to Eqs. 1–3 through Psi4. The ECW of an IL is determined by
both the cations and anions. The cathodic limit (VCL) is the maximum
value of the cathodic potential determined by the ELUMO for cations
and anions. Similarly, the anodic limit (VAL) is theminimumvalue of the
anodic potential determinedby the EHOMO for cations and anions39. For
the ECW threshold, the LiFePO4 cathode coupled with Li metal anode
displays a charging platform at 3.5 V (vs VLi + /Li). Based on the
assumption of VCL ≥V Li+/Li, 3.5 Vwill be theminimum threshold for the
ECW. If the ILs need to match other higher voltage cathodes, such as
NMC811, LiCoO2, and LiNiMn2O4, the threshold for the ECW can be
adjusted appropriately. Here we set the threshold to 4V in the work-
flow to ensure ubiquity. According to thisMLworkflow shown in Fig. 1,
we finally obtain 49 ILs in the recommendation list. Wewill expand the
discussion of unsupervised learning and supervised learning in the
following sections.

VCL =max � ELUMO½+ �
e

,� ELUMO½��
e

� �
ð1Þ

VAL =min � EHOMO½+ �
e

,� EHOMO�½��
e

� �
ð2Þ

ECW= VAL � VCL ð3Þ

Unsupervised learning
To investigate the features and the underlying correlations in the
dataset, we employ unsupervised learning based on boxplots, pair
plots and hierarchical clustering. The boxplots shown in Supplemen-
tary Fig. 1a, b display the distribution of the σ of ILs according to the
cation and anion types correspondingly. The ranking is based on the
median value for each cation or anion type. Similarly, Supplementary
Fig. 1c, d display the rankings for the measured ECW from IoLiTec of
the ILs correspondingly.We observe that the ECWboxplots show large
variations, but the ammonium-based cations and imide-based anions
usually display promising ECWs. These boxplots are insightful for the
initial selection of ILs in future investigations. In addition, pair plots are
widely used to display the correlations between variables. Figure 2a
shows the corelation between σ and viscosity of ILs, which can be
elucidated by the Nernst-Einstein equation and Stokes-Einstein equa-
tion included in SupplementaryNote 240. However, as shown in Fig. 2b,
there is no apparent correlation between σ and ECW. Thus, we con-
clude thatσ and ECWof ILs are independent factors;meanwhile, σ and
ECW are both essential properties for electrolytes as applied to LMBs.
To validate the ECW calculated based on the HOMO/LUMO theory.We
directly compare the calculated ECW with the results scrapped from
IoLiTec. The bar plots shown in Fig. 2c, d display the average ECW and
absolute difference between the results for different cation and anion
types correspondingly. The mean absolute errors (MAE) between the
calculated results and the experimental results are <1.1 V. As indicated
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in the literature, it is still challenging to estimate ECW for ILs
accurately39,41. We observe that the derivations for some cation and
anion types are higher. The explanation for the uncertainty in groups
like imidazolium and BF4 is included in Supplementary Note 3. In
addition, the measured ECW values are highly dependent on experi-
mental conditions, thus we believe that the MAE achieved by the cal-
culated ECW is overall satisfactory and of significant reference to the
field. Last, hierarchical clustering has recently been employed to pre-
dict fast inorganic Li ion conductors42. Here, we also utilize this algo-
rithm to detect the clustering of ILs with high conductivity along with
wide ECW. The key features used for the hierarchical clustering include
the computed ECW and the top 15 features of the XGB model (when
classifying the conductivity type, the specific features are included in
Supplementary Note 4). The final hierarchical clustering dendrogram
is displayed in Fig. 2e. Additionally, in order to validate the effective-
ness of the clustering, we also plot the finally screened ILs (49) based
on the supervised learning in Fig. 2f. We can clearly observe that the

results based on the two learning protocols are highly overlapped,
which indicates the high efficiency of the unsupervised learning as
compared to the supervised learning introduced in the following
section for material screening and discovery.

Supervised learning
Building on unsupervised learning, we also propose a multistep
supervised learning to filter ILs with desired σ and ECW at RT. First,
based on the ensemble learning of SVM, RF, XGB, and GCNN, we
predict the phase (liquid or solid) of the ILs in the pool. Supplementary
Fig. 2. displays the heatmap for the phase prediction results in the
permutation table between cations and anions. In Fig. 3a, we divide the
predicted results into four categories, including liquid and solid-x/3,
where x (x = 1, 2, 3) is the number of ML models (SVM, RF, XGB) with
prediction results being in solid phase for the ILs. The larger the
number of x, the higher possibility for the IL being in a solid phase. To
further validate the predicted results, we employ quantum chemistry
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Fig. 1 | Machine learning workflow for the discovery of ILs with high con-
ductivity (σ) and wide electrochemical window (ECW). The permutation of 74
cations and 30 anions forms an IL pool containing 2220 unique ILs. Three open-
source platforms, including RDKit, Psi4, and PyG are employed to generate the
molecular descriptors for the raw dataset. Unsupervised learning contains box-
plots, pair plots, and hierarchical clustering, which are essential analyticalmethods
for investigating the structure and correlations of variables in the dataset.

Supervised learning leverages both regression and classification based on SVM, RF,
XGBoosting and GCNN. The IL pool will initially be classified as a solid or liquid
group. Then the ILs with liquid phase at RT will be further classified based on the
σ ≥ 5mS cm−1 or not. Meanwhile, we also employ regression to predict the absolute
σ valuesof the ILs for reference. Finally, ECW>4 V is thefinal screening criterion for
the final recommendation list of potential ILs.
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calculation to calculate the binding energy (Ebinding) between cations
and anions. The Ebinding is calculated through Eq. 4, where Eopt refers to
the energy of the optimized geometry for specific cations (Eopt[+]),
anions (Eopt[-]) or dimers (Eopt[+][-]). The lower of the Ebinding means
easier for the cations and anions to stay in tightly associated pairs and
pack into solid crystals43. We select 91 ion pairs, including repre-
sentative 7 cations and 13 anions from the main cation and anion
types in the dataset. Among the 91 ion pairs, there are 19 ILs with
known phases from IoLiTec. The corresponding average Ebinding for
the labeled solid and liquid groups are shown in Fig. 3a. The Ebinding
(~ − 400 kJmol−1) of the solid group is indeed lower than the liquid
group. In terms of the predicted results for the remaining 72 ILs, the
liquid group shows the highest Ebinding; meanwhile, we really observe
that the Ebinding decreases as x increases, not only confirms our
demonstration that the solid cation-anion pairs usually show lower
Ebinding, but also validates the efficiency of this ML classification to
separate liquid/solid candidates at RT. Detailed calculation results are
included in Supplementary Tables 1 and 2. To validate statistically, we

perform both one-way ANOVA and T-test to validate the difference
between the liquid group as compared to the other three solid groups.
Both of the hypothesis testing results indicate significant differences
as shown in Supplementary Tables 3 and 4. The T-test results show
more details and indicate significant differences between the liquid
and Solid-2/3, Solid-3/3 except for Solid-1/3. Thus, we can conclude
that there is a significant difference between the liquid group and
groups with more than 2 models showing solid prediction results.
To discover the key features, we start with the features indicated by
the feature importance score of the model one by one, finally, we
observe that the sphericity index of cation and anions are correlated
with the phase of ILs. As shown in Fig. 3b, the phase of ILs is highly
dependent on the geometric structures of the cations and anions.
Thus, we also employ the geometric GCNN model to investigate this
classification. The details about the GCNNmodel used in this work are
included in Supplementary Note 5. Additionally, the ELUMOof the anion
seems like another important feature todetermine thephase of the ILs,
which deserves further investigation.

Fig. 2 | Unsupervised learning of the dataset. a The relationship between σ and
viscosity of the ILs with known properties in the dataset. b The relationship
between the σ and the ECW of the ILs with known properties in the dataset.
c, d Comparison of ECW based on IoLiTec to ECW based on HOMO/LUMO theory
for the cation (c) and anion (d) types, correspondingly. The mean absolute error

(MAE) is also indicated. e Hierarchical clustering dendrogram for the ILs based on
the top 15 features (when classifying the conductivity type of the ILs in the super-
vised learning) and the calculated ECWs. f The blue lines show the screened ILs
based on the supervised, which is highly consistent with the clustering results
achieved by the unsupervised learning shown in (e).
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After we obtain liquid ILs candidates based on the previous solid/
liquid classification, we further classify the conductivity type (σ ≥ 5 or
σ < 5) of the ILs based on the known σ in the dataset. The performance
of the employed models is included in Table 1. To eliminate the
overfitting issue, the reported accuracy for SVM, RF, and XGB algo-
rithms are the average of the 5-fold cross-validation accuracy results.
We observe that the GCNN model offers similar performance only
based on the geometric descriptors of cations and anions without any
additional calculation results, which shows high promise for this
algorithm for future materials genome projects. The GCNN is not
applied for the conductivity classification and prediction tasks to
simplify the complexity of the ML workflow.

Next, we apply the other threemodels to predict the absoluteσ of
the liquid ILs at RT. The boxplots shown in Fig. 3c further indicate the
consistency between the regression and the classification results. The
median value of the predicted conductivity for the group with σ < 5 is
1.8 mS cm−1. Meanwhile, the median value for the group with σ ≥ 5 is

9.1 mS cm−1. Finally, we propose 49 ILs with σ ≥ 5 mS cm−1 along with a
calculated ECW>4V in the recommendation list for developing IPEs in
LMBs. The full list is included inSupplementary Table 5. To validate our
prediction results, we compare the predicted σ of the liquid ILs in this
work to the experimental results stored in the NIST ILthermo
Database44. The ILthermo Database contains 523 unique ILs with
measured σ values at varying temperatures. As shown in Fig. 3d,
though only 18 ILs are overlapped between our predicted σ and
ILThermo database σ at 25 °C (298.15 K), we observe high consistency
between the predicted results and the ILthermo results, especially for
those with high σ. The R2 factor is 0.82, and the mean absolute error
(MAE) is 1.8 mS cm−1. More discussions about the R2 based on this
distinctive validation are included in Supplementary Note 6 and Sup-
plementary Table 6. It is also difficult for us to find similar R2 validation
results in the literature, which compares the unique ILs with an
external database at a single temperature aswe reported here. Overall,
we conclude that thismodel can performwell in predicting the σ of ILs
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Fig. 3 | Supervised learning of the dataset. a The column plots for the average
binding energy (Ebinding) between cations and anions in specific groups. Blue col-
umns show the average Ebinding for the ILs with known phases. Red columns show
the average Ebinding for the ILswith predicted phases, including liquid and solid-x/3,
where x (x = 1, 2, 3) is the number of ML models (SVM, RF, XGB) with prediction
results being in solid phase for the ILs. The column labels refer to the number of ILs
and the average Ebinding in each group. b The key features when classifying solid/
liquid phases of the candidates and their average values for each group. c The

boxplots of predicted σ for the two categories with σ ≥ 5 mS cm−1 or not.
d Comparison of the predicted σ in the test dataset to literature reported σ in the
ILThermoDatabase at 25 °C. The horizontal error bar shows the standard deviation
of the experimental values stored in ILThermo database. The red circle is excluded
in validation for its substantial uncertainty. e, f The bubble plots show the rela-
tionship between ECW and σ of the final recommended ILs grouped by cation and
anion types, separately. The bubble size refers to the count of ILs in each category.
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with high σ. The bubble plots shown in Fig. 3e, f indicate the dis-
tribution of the filtered ILs based on the cation and anion types, cor-
respondingly. In terms of the cations, we observe that the ammonium
and imidazolium cations display the highest averageσ that agreeswith
the box plots shown in the unsupervised learning section. Regarding
the anions, BF4, triflate, and imide show promising ECW and σ. Based
on these preliminary rules, we select 5 ILs from the bubbles and con-
duct the experimental validation in the following section.

Ebinding = Eopt +½ � �½ � � Eopt½+ � � Eopt½�� ð4Þ

Electrochemical performance of IPEs based on the filtered IL
To verify the efficiency of this screening process, we develop a series
of IPEs based on 5 ILs on the final recommendation list and validate
the cycling behavior and electrochemical performance of the
developed IPEs coupled with the Li metal anodes. The selected
ILs include 1-ethyl-3-methylimidazolium triflate (C2mimTFO), 1-ethyl-
3-methylimidazolium tetrafluoroborate (C2mimBF4), 1-ethyl-3-
methylimidazolium ethyl sulfate (C2mimES), diethylmethylammo-
nium triflate (DemaTFO) and diethylmethylsulfonium bis(tri-
fluoromethuldulfonyl)imide (DemsTFSI). All these ILs show both
high σ and wide ECW at RT. The fabricated IPEs are transparent and
mechanically strong with 5/10wt% of PBDT. We employ the stress-
strain tests for the IPEs with 10% PBDT and C2mimTfO. As shown in
Supplementary Fig. 3a, the yield strength of the membrane is
6.21MPa. The Young’s modulus based on the slope of the linear
portion on the curve is ~300MPa, which is 3000 times higher than
that of PEO-based electrolyte (0.1MPa)45,46. In Supplementary Fig. 3b,
the dynamic mechanical analysis results show that this membrane
maintains a high modulus >200MPa from −50 to 300 °C, which
ensures the safety and thermal stability of this material as applied to
real devices. After ion exchange with the ionic liquid electrolyte (ILE)
with LiFSI dissolved in C3mpyrFSI, we obtain a large area and flexible
IPE membranes. We also employ NMR and DSC to confirm the
extremely low amount of H2O in the IPEs, which guarantees the
excellent performance of IPEs in LMBs (Supplementary Fig. 4). In
Fig. 4a, we perform cyclic voltammetry (CV) on Li|IPEs|SUS to eval-
uate the Li plating (negative scan) and stripping (positive scan)
behavior of the selected 5 IPEs. We observe that upon scanning in the
negative direction, only IPE with DemaTFO displays no Li deposition
in the cathodic deposition, all other 4 IPEs display excellent cathodic
stability along with high current density that offers promise for these
IPEs as conductive electrolytes in LMBs. The ion exchange protocol
fails to incorporate Li ions in DemaTFO-based IPEs, which indicates
that the ion association behavior and varying binding energies are
essential factors in determining the ion transport in the IPEs. In the
following discussion, we will only focus on the other 4 IPEs. Overall,
these 4 IPEs show promising ECW approaching 6 V. For the positive
direction, as shown in the enlarged curves in the insets, we observe
that C2mimTFO and DemsTFSI-based IPEs show the highest anodic
stability as compared to C2mimBF4 and C2mimES. This ensures the

excellent full cell performance of IPEs based on C2mimTFO and
DemsTFSI as indicated in the following section. As reported pre-
viously, the calculated anodic limits for BF4

− as shown in Fig. 2d are
usually overestimated when using the vacuum calculation model
compared to the experimental results39. The reasons for the incon-
sistency originate frommany factors, for example, the assumption of
the calculationmodel and the complicated ion association in the real
system. For comparison, we include the CV results for the neat ILs in
Supplementary Fig. 5. Surprisingly, the cathodic stability for the neat
ILs is much lower compared to the IPEs. We propose that the high Li+

concentration, the decomposition of FSI− and the liquid crystalline
PBDT in the IPEs can comprehensively improve the cathodic stability
of the composite electrolytes, which is analogy to the “water in salt”
electrolytes proposed by Suo et al.47. In addition to the SEI formed by
the decomposition of FSI−, the solvation and coordination numbers
of the Li+ will change dramatically with the adjustment of the relative
cation and anion concentrations. We have demonstrated that the
rigid-rod polyelectrolyte PBDT backbone will selectively absorb
cations and anions during the ion exchange process, which will
promote the Li transference number (tLi+) of the system. Here, we
estimate the tLi+ based on the steady-state current of the Li symmetric
cell assembled with IPEs in Fig. 4b. Supplementary Note 7 includes
the Bruce-Vincent analysis and shows the corresponding impedance
spectra of the cells before and after the polarization48. As shown in
Supplementary Table 7, the determined tLi+ in these IPEs (0.4–0.5) are
much higher compared to the pure ILE with LiFSI|C3mpyrFSI (tLi+ =
0.18)49. Among these 4 IPEs, C2mimTFO and DemsTFSI-based IPEs
show higher tLi+ = 0.5 compared to C2mimBF4 (0.4) and Dema Ethyl
Sulfate (0.4) for the varying interaction between PBDT chains and the
anions in ILs. We are conducting in-depth quantum chemistry cal-
culations to measure the interaction energies between anions and
PBDT polymer chains, thus offering a clearer idea about the deter-
mining factors in the ion exchange process. The thickness of the
electrolytes (~50 μm) is determined by SEM as shown in Fig. 4c. Fig-
ure 4d shows ionic conductivities of the IPEs as a function of tem-
perature. The exceedingly high σ at RT (~1mS cm−1) originates from
the fibrillar and nanocrystalline conducting phase formed in the
composite structure of IL and liquid-crystalline polymers reported
previously1,6. Meanwhile, all samples show stable Li stripping and
plating at varying current grades in the Li||Li cell cycling process. As
shown in Fig. 4e, C2mimTFO, C2mim ES and DemsTFSI display stable
cycling at high current density (J) at 6mA cm−2 at 80 °C, which is
promising, since most organic cells reported cannot sustain any
stable performance at this high temperature without any safety
concerns.

In this section, we mainly extend the investigation of IPEs based
on C2mimTFO at varying current densities and cell configurations.
The IPEs based on DemsTFSI show promising performance as well,
the detailed results for DemsTFSI are included in Supplementary
Fig. 6. In Fig. 5a, we initially test the symmetric cell performance at
varying J at RT. The critical J is 2.0mA cm−2 at RT. As shown in Fig. 5b,
the cells canmaintain at least 800 h at 1mA cm−2 at RTwithout a short
circuit, which is rarely seen by other single-layer polymer electrolytes
without any supporting separators or organic plastiziers50. In addi-
tion, we prepare the Li|IPEs|Cu cell to investigate the plating and
striping of Li at theCu anode based on these IPEs. Figure 5c shows the
voltage-cycle profile for the cells at RT. The secondary axis shows the
corresponding coulombic efficiency (CE) values, the average value of
which is >98%. The reported average CE for Li||Cu cells using regular
organic electrolytes is ~90%, which indicates the highly reversible Li
deposition on the Cu surface of these IPEs51–53. The SEM image of the
deposited Li on the current collector is included in Supplementary
Fig. 7. We observe no Li dendrites formed using these IPEs with Li
metal anodes, which is believed to originate from the high modulus
of the IPEs.

Table 1 | The performance of the classification tasks based on
different algorithms

Algorithm Accuracy*
(Solid or Liquid)

Accuracy*
(σ ≥5 or σ < 5)

Support Vector Machine (SVM) 0.81 0.85

Random Forest (RF) 0.83 0.80

XGBoosting (XGB) 0.85 0.82

Graph Convolutional Neural
Network (GCNN)

0.83 NA

*The accuracy score for SVM, RF, and XGB algorithms indicate the average of the 5-fold cross-
validation accuracy results.
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For practical application, we also report the full cell performance
of C2mimTfO-based IPEs using the LiFePO4 cathode with high loading
(10.3mgcm−2). Figure 6a shows the long-term cycling of the full cell at
RT at 0.5 C rate, the cell shows96% capacity retention at 350 cycle. The
voltage capacity files for the selectedmain cycles are shown in Fig. 6b.
The major population of the CE is between 100.1%–100.2%, which is
slightly higher than the theoretical maximum value (100%) for the
thermal fluctuation at the ambient temperature. Thus indicates the
high reversibility of the Limetal cells based on this IPEs at RT. Figure6c
shows the long-term cycling of the full cell at 50 °C at 2 C rate, the cell
shows not only a high average CE (>99.9%), but also 80% capacity
retention at the 350th cycle, which is promising to satisfy the fast
charge/discharge requirements for widely used portable devices. The
voltage capacity files for the selectedmain cycles are shown in Fig. 6d.
At last, we also investigate the fast charge/discharge capability and

thermal stability of these IPEs at 80 °C, which is a dangerous tem-
perature for regular organic cells. Figure 6e shows the cycling per-
formanceof the IPE at an increasingC rate from0.5 C (0.53mA/cm2) to
5 C (5.3 mA cm−2)) at 80 °C. Here, we observe that the cell maintains
high capacity (~120 mAh g−1) without short circuit at super high J up to
5C (8.3mAcm−2), which show promise for these IPEs as next-
generation solid-state electrolytes for fast charge/discharge LMBs at
mid-high temperatures. The corresponding voltage capacity curves for
the selected cycles are shown in Fig. 6f. We further conclude a com-
parison to recent literature as shown in Table 212,54–59. Overall, the IPEs
reported in this work outperform from a comprehensive perspective,
including the current density, the cell cycling life, and especially the
high cathode loading required for practical applications.

In summary, we have described a ML-guided screening protocol
to filter promising ILs with high ionic conductivity and wide
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electrochemical window for the preparation of IPEs in LMBs. In terms
of the ML model, through the unique object-oriented unsupervised
learning and multistep supervised learning. This comprehensive
approach is essential to improve the efficiency to target promising ILs
for practical applications. Compared to previous literature, instead of
focusing on individual properties, for example, melting point, viscos-
ity, and ionic conductivity, we first combine the factor of ionic con-
ductivity with the electrochemical window as the guidelines for the
selection of battery electrolytes. This novel conceptual design is also
insightful and can be easily applied to related research areas. In addi-
tion, though there are plenty of published works based on ML and
ionic liquids, it is still difficult to predict the ionic conductivity for ILs
accurately because of the data scarcity issues. This work focuses on
unique and commercially available cations and anions from IoLiTec
company instead of the widely used and scattered NIST ILThermo
database. This helps the research work better align with the com-
mercially available products, we believe this is also significant for
practical research and new materials design in the future. In terms of
the electrolytematerial development and performance evaluation, the
promising experimental results reported in this work represent the
performance of the state-of-the-art polymer electrolytes for Li metal
batteries. We further confirm the rigid-rod liquid crystalline polyelec-
trolyte PBDTas an essential polymermatrix todevelop a series of solid-
state polymer electrolytes with extremely high CE and excellent fast
charge and discharge performance at high temperatures. PBDT rods
can serve as the assembly template not only offering mechanical
integrity but also endowing nanoscale structuring in the composite,
ensuring the fast Li+ transportation. Overall, this platform shows
immense potential to serve as an efficient method to quickly focus on
the essential ILs for specific applications. More importantly, this work
provides novel insights into strategies to overcomedata scarcity issues
and realize the efficient utilization of ML in material design and opti-
mization. Through investigationof the golden rules,we could fabricate

IPEs with tunable variations in mechanical, structural, and transport
properties for a large array of applications in versatile functional
devices, including batteries, fuel cells, supercapacitors, mechanical
actuators and so on.

Methods
Machine Learning
Python programming language was used to conduct this machine-
learning workflow. For the unsupervised learning, Dendrogram func-
tion from the SciPy package was used to perform the agglomerative
hierarchical clustering. For the supervised learning, three main algo-
rithms, including SVM, RF and XGB from the Scikit-learn package were
used for the regression and classification tasks. The raw input data were
web scrapped from the IoLiTec companywebsite. The 74 input features
for the cations, anions, and the permutations were calculated from
RDKit (60) and Psi4 (14). Default features based on rdkit.Chem.De-
scriptors (10)module and rdkit.Chem.Descriptors3D (10)module of the
cation, anion, and cation-anion pair were obtained by RDKit. These two
modules are representative and contain detailed molecular and geo-
metric properties of the molecules. The cation, anion, and cation-anion
pair weremodeledwith the same set of descriptors basedonRDkit. The
remaining 14 features based on Psi4 will be introduced in the quantum
chemistry calculation as below. GridSearch function was employed to
obtain the optimized parameters for the three models. A 5-fold cross-
validation was used to analyze the performance of the models during
the training step for SVM, RF, and XGB. The NIST ILThermo Database
was used to validate the predicted conductivity. Graph convolutional
neural network was employed to conduct the classification in the
supervised learning according to the RDkit and PyTorch Geometric
(PyG) library. The machine learning workflow mainly consists of
10 sections, the codewaspackaged in aClass object named “ILP”. All the
code and the description for the codes are available on the GitHub
website with links included in the Data Availability section.

Fig. 5 | Critical current density in Li||Li and coulombic efficiency in Li||Cu cells.
a Voltage-time profile for Li|IPEs|Li cell at room temperature (RT) with increasing J
from 0.1 to 2.0mA cm−2. b Long-term voltage-time profile for Li|IPEs|Li cell cycled

with 1mA cm−2 (0.5mAh cm−2) atRT. cVoltage-cycle profile for Li|IPEs|Cu cell cycled
with 1mA cm−2 (0.5 mAh cm−2) at RT. The secondary axis shows the corresponding
CE values with an average value >98%.
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Table 2 | Comparison of the LMB cells based on IPEs in this work to recent literature

Materials Temperature (°C) Cathode Loading (mg cm−2) Current density (mA cm−2) Cycle number References

LiFePO4- FMC-ASPE-Li 70 1–2 0.07–0.14 400 (2022)
Nat. Commun54.

LiFePO4- FEC-SPE -Li 22 12 0.36 60 (2022)
Nat. Nano55.

LiFePO4- PI/PEO -Li 40 6.9 0.08 60 (2019)
Nat. Nano56.

LiFePO4- Li-Cu-CNF -Li RT 4.5–7.5 0.15 200 (2021)
Nature12

LiFePO4- PEO/LSTZ -Li 45 3.5 0.15 350 (2019)
PNAS57

LiFePO4- CPE-05MC -Li 55 5 0.5 100 (2021)
JACS58

LiFePO4- HSE-EMIM-PP13 -Li RT 6.5 0.18 50 (2022)
Nat. Nano59.

LiFePO4- IPEs -Li RT 10.3 0.83 350 This work

LiFePO4- IPEs -Li 50 10.3 3.32 350 This work
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Fig. 6 | Long-term cycling performance of Li|IPEs-C2mimTfO|LiFePO4 cell at
varying temperatures and C rates. a Cycling performance of Li|IPEs|LiFePO4 cell
at 0.5 C (0.83mAcm−2) at RT. The black circles show the specific discharge capacity
as a function of the increasing cycle number. The blue circles display the coulombic
efficiency (CE) for each cycle correspondingly. b The voltage-capacity profiles for
the main cycles in (a). c Cycling performance of Li|IPEs|LiFePO4 at 2 C

(3.32mA cm−2) at 50 °C. d The voltage-capacity profiles for the main cycles in (c).
e The Li|IPEs|LiFePO4 cell cycling profile at elevated rates from 0.5 C to 5 C
(8.3mA cm−2) at 80 °C confirms the thermal stability when using this electrolyte at
high temperatures. f The voltage-capacity curves for the main cycles are shown
in (e).
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Quantum chemistry calculation
The quantum chemistry calculation was performed using Psi4 based
on the self-consistence field (Hartee-Fork) method with basis set of
6–311+g** for the calculation of the energy, the HOMO, the LUMO, the
total dipole moment, and the individual dipole moments along the
three main directions for the cations and anions in the IL permutation
table. The Psikit module, which is an ensemble of RDkit and Psi4, was
used to connect and perform the calculation. In terms of the calcula-
tion of binding energies between the cations and anions, the com-
mercially available Gaussian 16 softwarewas employed to optimize the
geometrical structure of the cations and anions separately, then the
cation-anion pairs were further optimized based on the initially opti-
mized cations and anions. The geometry optimization and frequency
check were completed with B3LYP/6–311 g**. The energy calculations
were based on M062X/6–311 + G(2d, p). The dispersion correction of
DFT-D3was applied forboth optimization and single-point calculation.
The convergence criteria were set by the Gaussian software with
default values.

Materials
PBDT was synthesized by interfacial condensation polymerization of
2,2’-Benzidinedisulfonic acid (BDSA) and Terephthaloyl chloride
(TPC). BDSA (with 30wt% water, Alfa Aesar) was purified through
recrystallization before use. TPC (99%, SigmaAldrich) was purified by
vacuum sublimation prior to use. Polyethylene glycol with a mole-
cular weight of 200 gmol−1 (PEG 200, General-Reagent), solvent
chloroform (99.5%, General-Reagent), and catalyst sodium carbonate
(>99.95%, Adamas-beta) were used without further purification.
C2mimTfO, C2mimBF4, C2mimES, and DemaTFSI were purchased
from IoLiTec (>99%) and used without further purification.
C3mpyrFSI (purity > 99.9%) and LiFSI (purity > 99.5%)were purchased
from Solvionic and used without further purification. Dimethylfor-
mamide (DMF) was sourced from Adamas. Lithium metal (Li-metal)
foil with a thickness of 180 μm was sourced from Hongwei Lithium
Co. Ltd. (purity > 99.9%). All ILs were further dried in a vacuumbefore
moving to the glove box. The LiFePO4 cathodewith an area loadingof
10.3mg cm−2 and Cu foil were sourced from Canrd New Energy
Technology Co., Ltd.

Preparation of the ionic polymer electrolytes (IPEs)
0.45 g ILs and 0.05 g PBDT were dissolved in 5 g distilled H2O sepa-
rately. Note, the only exception is that the solvent for DemaTFSI is
DMF. The two solutions weremixedwhile heated up to 50 °C. Then the
mixture solutions were poured into an 80mm × 60mm PTFE mode.
The water/DMF solvent was slowly evaporated at RT and followed by
vacuumdrying at 80 ̊C for at least 24 h before transferring to the glove
box. The membrane was then cut into round disks with a diameter of
9mm and then immersed in the ionic liquid electrolytes (ILEs) for
>24 h at RT. The ILEswere prepared by adding the prescribed amounts
of LiFSI to C3mpyrFSI IL at RT in an Ar-filled glove box (<0.01 ppm O2

and <0.01 ppm H2O). The ILE was LiFSI dissolved in C3mpyrFSI with a
concentration of 3.2mol kg−1.

Symmetric and full cells
The Li-metal symmetric coin cells were prepared with CR2032 cases
with two 5mm diameter Li-metal electrodes and 9mm diameter IPEs
(~50μm) between them in an Ar-filled glove box. The Li|IPEs|Li sym-
metric coin cells were used for polarization, impedance spectroscopy,
and cycling measurements. The Li|IPEs|LiFePO4 and Li|IPEs|Cu coin
cells were also prepared for investigation of the electrochemical
cycling performance, correspondingly. The thickness/diameter
dimensionof theworking electrodes of LiFePO4 is 80μm/4mmandCu
is 10μm/4mm. A NeWare Technology system was used for battery
testing.

Cyclic voltammetry (CV)
A stainless steel working electrode and a Li-metal foil counter elec-
trode were employed for CV. The thickness of the Li metal counter
electrode used in the CV experiment is 180 μm and the diameter is
5mm. The CV measurements were performed against Li|Li+ redox
potential. All scanswere performed atRTwith 10mV s−1 scan rate using
a Biologic VMP 3e controlled by EC-Lab (ver. 10.40) software.

Ionic conductivity
The ionic conductivitywasmeasured via dielectric response over a 100
mHz–1MHz frequency range for the assemble coin cells with stainless
steel as the electrodes. A temperature scan range of −50 °C to 150 °C
was selected, and the temperature was controlled by an oven. The
ionic conductivities of the IPEs were obtained by fitting the electro-
chemical impedance spectra to an equivalent circuit model using EC-
Lab (ver. 13.40) software®.

Li transference number (tLi+)
The transference number was determined by direct current (DC)
polarization. An AC impedance test was first performed over a 1 Hz to
1MHz range to obtain the interfacial resistance before and after the
polarization. The Li symmetric cells were polarized at ambient tem-
perature with a constant potential of 10mV for 1 h to obtain a stable
current.

Morphological and mechanical characterizations
Scanning electron microscopy was performed using a Zeiss Gemini
SEM500 FESEM equipped with a Leica EM VCT500 microscope.
Dynamic mechanical analysis was performed with TA Q800 using the
stress-strain test of IPEs at a stress rate of 2 Nmin−1 under nitrogen
atmosphere at RT. The slope of the stress−strain curves at <0.5% strain
yields the Young’s modulus. The tension mode was used to determine
the storagemodulus of IPEs at 1 Hz frequency. The test samplewasfirst
cooled to −50 °C and then heated to 300 °C at a heating rate of
2 °C min−1.

Data availability
All data generated and analyzed in this study are included in this
published article and its supplementary information files and are also
available at https://github.com/wangyingxie/ILP.

Code availability
The codes for the machine learning workflow, Psi4 calculation and
GCNN predictions are also available online at https://github.com/
wangyingxie/ILP with https://doi.org/10.5281/zenodo.793238460.
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