Table 2.
The performance of Neural fitting algorithms for permittivity estimation.
| Algorithm name | Network size | Results | RMSE | R2 |
|---|---|---|---|---|
| Levenberg–Marquardt | 17 | Training | 2.6 | 0.93 |
| Levenberg–Marquardt | 17 | Validation | 2.8 | 0.91 |
| Levenberg–Marquardt | 17 | Testing | 2.7 | 0.92 |
| Levenberg–Marquardt | 10 | Training | 2.9 | 0.91 |
| Levenberg–Marquardt | 10 | Validation | 3.1 | 0.89 |
| Levenberg–Marquardt | 10 | Testing | 3.5 | 0.90 |
| Levenberg–Marquardt | 50 | Training | 2.4 | 0.94 |
| Levenberg–Marquardt | 50 | Validation | 2.2 | 0.91 |
| Levenberg–Marquardt | 50 | Testing | 2.4 | 0.95 |
| Bayesian regularization | 10 | Training | 2.7 | 0.92 |
| Bayesian regularization | 10 | Validation | 2.5 | 0.92 |
| Bayesian regularization | 10 | Testing | 2.6 | 0.92 |
| Scaled conjugate gradient | 10 | Training | 3.0 | 0.90 |
| Scaled conjugate gradient | 10 | Validation | 2.7 | 0.84 |
| Scaled conjugate gradient | 10 | Testing | 3.1 | 0.89 |