Table 3.
The performance of regression learning algorithms for conductivity estimation.
| Algorithm name | Model type | RMSE | R2 |
|---|---|---|---|
| Linear regression | Linear | 1.29 | 0.43 |
| Linear regression | Interactions linear | 0.99 | 0.66 |
| Linear regression | Robust linear | 1.65 | 0.07 |
| Linear regression | Stepwise LINEAR | 0.99 | 0.66 |
| Tree | Fine tree | 0.37 | 0.95 |
| Tree | Medium tree | 0.58 | 0.88 |
| Tree | Coarse tree | 0.81 | 0.77 |
| SVM | Linear SVM | 1.43 | 0.30 |
| SVM | Quadratic SVM | 0.95 | 0.69 |
| SVM | Cubic SVM | 5.48 | 0.00 |
| SVM | Fine Gaussian SVM | 0.48 | 0.92 |
| SVM | Medium Gaussian SVM | 0.67 | 0.84 |
| SVM | Coarse Gaussian SVM | 1.39 | 0.34 |
| Ensemble | Boosted trees | 0.41 | 0.94 |
| Ensemble | Bagged trees | 0.53 | 0.90 |
| GPR | Squared exponential GPR | 0.27 | 0.97 |
| GPR | Matern 5/2 GPR | 0.25 | 0.98 |
| GPR | Rational quadratic GPR | 0.25 | 0.98 |
| GPR | Exponential GPR | 0.15 | 0.99 |