Skip to main content
. 2023 May 15;13:7837. doi: 10.1038/s41598-023-35104-9

Table 3.

The performance of regression learning algorithms for conductivity estimation.

Algorithm name Model type RMSE R2
Linear regression Linear 1.29 0.43
Linear regression Interactions linear 0.99 0.66
Linear regression Robust linear 1.65 0.07
Linear regression Stepwise LINEAR 0.99 0.66
Tree Fine tree 0.37 0.95
Tree Medium tree 0.58 0.88
Tree Coarse tree 0.81 0.77
SVM Linear SVM 1.43 0.30
SVM Quadratic SVM 0.95 0.69
SVM Cubic SVM 5.48 0.00
SVM Fine Gaussian SVM 0.48 0.92
SVM Medium Gaussian SVM 0.67 0.84
SVM Coarse Gaussian SVM 1.39 0.34
Ensemble Boosted trees 0.41 0.94
Ensemble Bagged trees 0.53 0.90
GPR Squared exponential GPR 0.27 0.97
GPR Matern 5/2 GPR 0.25 0.98
GPR Rational quadratic GPR 0.25 0.98
GPR Exponential GPR 0.15 0.99