Table 4.
Performance of the neural fitting algorithms in conductivity estimation.
| Algorithm name | Network size | Results | RMSE | R2 |
|---|---|---|---|---|
| Levenberg–Marquardt | 10 | Training | 0.42 | 0.94 |
| Levenberg–Marquardt | 10 | Validation | 0.49 | 0.91 |
| Levenberg–Marquardt | 10 | Testing | 0.53 | 0.88 |
| Levenberg–Marquardt | 100 | Training | 0.24 | 0.98 |
| Levenberg–Marquardt | 100 | Validation | 0.25 | 0.94 |
| Levenberg–Marquardt | 100 | Testing | 0.4 | 0.96 |
| Bayesian regularization | 50 | Training | 0.14 | 0.99 |
| Bayesian regularization | 50 | Testing | 0.18 | 0.99 |
| Scaled conjugate gradient | 100 | Training | 0.55 | 0.90 |
| Scaled conjugate gradient | 100 | Validation | 0.50 | 0.88 |
| Scaled conjugate gradient | 100 | Testing | 0.56 | 0.88 |