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Abstract
Background  Ovarian ageing causes endocrine disturbances and the degeneration of systemic tissue and organ functions 
to seriously affect women's physical and mental health, and effective treatment methods are urgently needed. Based on our 
previous studies using juvenile rhesus monkey bone marrow mesenchymal stem cells (BMMSCs) to treat ovarian ageing 
in rhesus monkey, we found that BMMSCs improved ovarian structure and function. This study continues to explore the 
mechanism by which BMMSCs reversed granulosa cell (GC) ageing.
Methods  A GC ageing model and coculture system of BMMSCs were established, changes in the level of the N6-methyl-
adenosine (m6A) methylation modification were detected, m6A-modified RNA immunoprecipitation sequencing (MeRIP-
seq) were performed, correlations between m6A peaks and mRNA expression were determined, and the expression of hub 
genes was identified using Q-PCR, immunofluorescence staining, and western blot.
Results  Our results showed that H2O2 successfully induced GC ageing and that BMMSCs reversed measures of GC ageing. 
BMMSCs increased the expression of the FTO protein and reduced the overall level of m6A. We identified 797 m6A peaks 
(348 hypomethylated and 449 hypermethylated peaks) and 817 differentially expressed genes (DEGs) (412 upregulated and 
405 downregulated) after aged GCs were cocultured with BMMSCs, which significantly associated with ovarian function 
and epigenetic modification. The epigenetic repressive mark and important cell cycle regulator lysine demethylase 8 (KDM8) 
was downregulated at both the mRNA and protein levels, histone H3 was upregulated in aged GCs after BMMSC coculture, 
and KDM8 was upregulated after FTO was inhibited through FB23.
Conclusions  Our study revealed an essential role for m6A in BMMSCs in reversing GC ageing, and FTO regulated KDM8 
mediates histone H3 changes may as a novel regulatory mechanism in BMMSCs to reverse GC ageing.
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Abbreviations
BMMSCs	� Bone marrow mesenchymal stem cells
hGC	� Human granulosa cell
MeRIP-seq	� M6A-modified RNA immunoprecipitation 

sequencing

KDM8	� Lysine demethylase 8
m6A	� N6-methyladenosine
DEGs	� Differentially expressed genes

Introduction

The world's population is ageing rapidly, and the number 
of elderly individuals has increased significantly, which 
has placed great pressure on society and become one of 
the major economic challenges facing contemporary soci-
ety [1–3]. The ovary is a dynamic reproductive endocrine 
organ that enacts female reproductive function through 
ovulation and the secretion of sex hormones and affects 
tissues and organs throughout the body [4, 5], it is also 
one of the most sensitive organs to ageing. A variety of 
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stimuli may lead to ovarian ageing, which makes women 
infertile and is potentially accompanied by related growth 
and developmental diseases that are serious threats to 
women's health [6–8]. At the molecular level, ovarian age-
ing is gradual and involves multifactor interactions and 
complex biological processes; it is caused by decreases 
in follicle quantity and quality and is related to autoim-
munity, genetic susceptibility, mitochondria, and telom-
erase [9–11]. However, the mechanisms of transcription, 
regulation and modification of reproductive helper cells in 
the occurrence and development of ovarian ageing are not 
clear, which hinders the progress of effective treatment of 
ovarian ageing.

The ageing ovary is mainly characterized by tissue struc-
ture atrophy, lack of self-renewal ability of reproductive 
helper cells, decreased cell numbers and functional degen-
eration. Bone marrow mesenchymal stem cells (BMMSCs) 
have several biological characteristics: multidirectional dif-
ferentiation potential, strong self-renewal ability, and the 
ability to secrete multiple cytokines and repair tissue [12, 
13]. Therefore, they may become a novel tool for reversing 
ovarian ageing. Many studies have shown that mesenchymal 
stem cells (MSCs) are safe and effective in the treatment of 
ovarian ageing, and they are a more effective cell type to 
improve ovarian structure and function [14]. Previous stud-
ies have confirmed that MSCs can regulate women's sex hor-
mone secretion, promote follicular regeneration, and restore 
the activity and number of reproductive helper cells [15–18]. 
However, the transcriptional modification profile and key 
regulatory signaling pathways in MSCs used in the treatment 
of ovarian ageing are unclear, and systematic research with 
comparisons to normal controls is lacking.

N6-methyladenosine (m6A) is a common internal modifi-
cation of mRNA and has many effects on the fate of mRNA 
[19]. Recent studies have found that m6A plays an important 
role in regulating gene expression, splicing, RNA editing, 
and RNA stability, controlling mRNA lifespan and degra-
dation, and mediating circular RNA translation [20, 21]. In 
addition, previous studies have showed that m6A was sig-
nificantly associated with ovarian ageing and ageing-related 
diseases [22–25]. However, researchers have not comprehen-
sively investigated whether BMMSCs affect ovarian ageing 
by regulating the m6A modification of RNA, which attracted 
our attention.

Therefore, a human granulosa cell (hGC) ageing model was 
established and cocultured with BMMSCs in vitro to explore 
the mechanism by which MSCs participate in ovarian ageing. 
Then, m6A-modified RNA immunoprecipitation sequencing 
(MeRIP-seq) and bioinformatics analyses were performed to 
explore the overall effect of BMMSCs on m6A levels in RNA 
and the mRNA expression profiles, and the key factors and 
regulatory signalling pathways were identified using a variety 

of biotechnological approaches to provide a theoretical basis 
for the use of MSCs to treat ovarian ageing.

Results

H2O2‑induced hGC Ageing, and BMMSCs Reversed 
hGC Ageing

hGCs are the most important cells in the ovary; therefore, an 
hGC ageing model was established in vitro to further explore 
the mechanism of BMMSCs in ovarian ageing. As a small-
molecule oxidant, H2O2 easily causes cell ageing by inducing 
oxidative stress through the biofilm system, and this technique 
has been widely applied to induce cell ageing [26, 27]. In 
our study, hGCs were exposed to H2O2 for 24 h and cocul-
tured with BMMSCs for 48 h. Firstly, under the fluorescence 
inverted microscope, the GCs in the model group were flat and 
wide, with a large number of intracellular vacuoles and a small 
number of cells compared with the control group. Meanwhile. 
the morphology of GCs was improved, the number increased 
and the intracellular vacuoles decreased after coculture with 
BMMSCs (Fig. 1A). Secondly, β-galactosidase staining (blue 
staining due to β-galactosidase activity) (Fig. 1B) showed 
that 7.33 ± 1.69% of the hGCs were stained blue in the control 
group, 93.33 ± 0.47% in the model group, and 43.66 ± 2.05% 
in the coculture group (Fig. 1C). Then, immunohistochemical 
staining was performed to detect the expression of the P53 
protein (Fig. 1D), and the results showed that 21.04 ± 0.48% of 
cells expressed the P53 protein in the control group compared 
with 58.20 ± 1.21% in the model group and 42.90 ± 1.41% in 
the coculture group (Fig. 1E). Next, Proliferation and division 
reflect the activation of hGCs. BrdU staining (red) showed that 
hGCs were proliferating and dividing (Fig. 1F): 87.66 ± 1.24% 
of hGCs were stained red in the control group compared 
with 16.33 ± 1.24% in the model group and 80.66 ± 1.24% 
in the coculture group (Fig. 1G). Finally, reactive oxygen 
species (ROS) are an important ageing marker [28, 29], and 
DHE staining showed that the ROS level was 3.77 ± 0.12% 
in the control group, 8.63 ± 0.12% in the model group, and 
5.63 ± 0.12% in the coculture group (Fig. 1H, I). Those results 
suggested that the hGCs were ageing after treatment with 
273 mM H2O2 for 24 h, and BMMSCs reversed the changes 
in these ageing markers in aged hGCs.

Changes in the Level of the m6A RNA 
Methylation Modification in Aged hGCs 
and After Treatment with BMMSCs

Studies have proven that the expression of the demethylase 
FTO is downregulated in ovarian tissue with increasing age 
to promote ovarian ageing [22, 30]. However, researchers 
do not adequately understand whether BMMSCs regulate 
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FTO to alter methylation and subsequently reverse age-
ing. Interestingly, our results showed that the expression 
of the FTO protein was markedly upregulated in ovarian 

tissues of macaques after BMMSCs treatment compared 
with the model group (Fig. 2A, B). Furthermore, immuno-
fluorescence staining indicated that FTO was significantly 

Fig. 1   hGC ageing model and coculture with BMMSCs. A The mor-
phology of GCs (200 ×). B-C β-Galactosidase staining detected the 
activity of β-galactosidase (200 ×). D-E Immunohistochemical stain-
ing detected the expression of P53(50 μm). F-G BrdU staining was 

performed to observe hGC proliferation and division (100 ×). H-I 
DHE staining detected the ROS level (200 ×). P < 0.05 indicates a sta-
tistically significant difference
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upregulated in aged hGCs after coculture with BMMSCs 
in vitro (Fig. 2 C, D), and this result also was confirmed by 
western blotting (Fig. 2E, F). In addition, the overall level 

of m6A was reduced in aged hGCs after coculture with 
BMMSCs (Fig. 2G), suggesting that the m6A methylation 
modification of RNA is closely related to hGC ageing, and 

Fig. 2   Changes in the level of the m6A methylation modification. 
A-B Immunofluorescence staining detected the expression of FTO in 
ovarian tissues(40  μm). C-D Immunofluorescence staining detected 

the expression of FTO in hGCs (400 ×). E–F Western blot showing 
the protein levels of FTO in hGCs. G Colorimetric detection of the 
overall m6A level
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BMMSCs play a key role in regulating FTO expression and 
the subsequent m6A methylation modification to reverse 
hGCs ageing.

Overview of the m6A Methylation Landscape 
in Aged hGCs before and after Coculture 
with BMMSCs

Notably, m6A is the most prevalent modification of mRNAs 
and lncRNAs and plays a key role in ageing and various 
ageing-related diseases [24, 31]. However, its specific regu-
latory mechanism in ovarian ageing remains unclear. In our 
study, after hGC ageing was induced and cells were cocul-
tured with BMMSCs, MeRIP-seq was performed to explore 
the effect of BMMSCs on the m6A modification in ageing 
hGCs. Our results showed that 7,923 transcripts displayed a 
total of 14,417 sites that were modified by m6A in the model 
group, and 6,867 transcripts displayed a total of 11,715 
sites that were modified by m6A in the coculture group. 
Among them, 14,241 individual m6A peaks in 9,741 m6A-
modified genes were detected in the model and coculture 
groups (Fig. 3A, B). Notably, the coculture group had 6,109 
new peaks and 9,088 missing peaks compared to the model 
group, revealing that the global m6A modification patterns 
were markedly different between the model and coculture 
groups (Fig. 3A). As shown in Supplementary Fig. 1A, B, 
the results showed different patterns of peaks with a rela-
tive increase in the start codon region (6.4 vs. 5.7% for aged 
hGCs and aged hGCs cocultured with BMMSCs, respec-
tively) and in the 3’ untranslated region (3’UTR, 39.4 vs. 
37.6%) and a relative decrease in the coding sequence (CDS, 
30 vs. 32.3%) and at the stop codon (20.1 vs. 21%). Fig-
ure 3C shows that the distribution of m6A signals around 
mRNAs and lncRNAs was comparable in the model and 
coculture groups. In general, m6A peaks tended to occur in 
CDS regions and 3’UTRs, suggesting that m6A is likely to 
play a crucial role in regulating the expression and stabil-
ity of mRNAs, consistent with previous MeRIP-seq results 
[32, 33]. The m6A peak distribution analysis suggested that 
most mRNAs and genes had m6A peaks, and there were 
mostly 1 to 3 m6A modifications in the exons (Figs. 3D, E, 
F). In addition, m6A peaks were found in all chromosomes, 
with the highest numbers being in chr1, chr17, and chr19 
(Figs. 3G).

Differences in m6A Peaks between Model 
and Coculture Groups

GO and KEGG pathway analyses of differentially methylated 
mRNAs were conducted to explore the biological signifi-
cance of the m6A modification in BMMSCs interacting with 

aged hGCs. As shown in Supplementary Fig. 2A, compared 
to aged hGCs alone, aged hGCs that had been cocultured 
with BMMSCs presented 449 significantly upregulated m6A 
peaks and 348 downregulated m6A peaks (fold changes ≥ 2). 
Furthermore, the classic GGACU motif and the top 5 m6A 
motifs were observed in the model (Supplementary Fig. 2B) 
and coculture groups (Supplementary Fig. 2C). GO results 
showed that the altered m6A peaks were noticeably enriched 
in chromatin modification, regulation of transcription, 
DNA − templated, and cell cycle (Fig. 4A). Additionally, in 
KEGG pathway analyses, the spliceosome, Epstein-Barr virus 
infection, and thyroid hormone signalling pathway were mark-
edly correlated with genes that showed m6A peaks in aged 
hGCs (Fig. 4B). Those results imply that BMMSCs reversed 
hGC ageing, which was significantly related to regulating the 
m6A methylation modification of mRNAs.

Changes in mRNAs in Aged hGCs 
before and after Coculture with BMMSCs

First, we assessed the transcriptome profiles of altered 
genes in three pairs of aged hGCs and aged hGCs after 
coculture with BMMSCs using MeRIP-seq. Compared 
to aged hGCs, hGCs cocultured with BMMSCs had 412 
significantly upregulated genes and 405 notably downregu-
lated genes (|log2FC|> 1, P value < 0.05) (Supplementary 
Fig. 3A), and the PPI networks are presented in Fig. 5A 
and B. A functional network analysis showed that the 412 
genes were involved in regulation of mitotic sister chroma-
tid segregation, positive regulation of protein localization 
to endosomes, and cellular senescence (Supplementary 
Fig. 3B). The KEGG pathway analysis mainly identified 
enrichment of the terms cytokine-cytokine receptor, pentose 
phosphate pathway, rheumatoid arthritis, and TNF signaling 
pathway (Fig. 5C). In addition, the 405 genes were involved 
in purine nucleoside triphosphate biosynthetic processes, 
neural crest cell migration, and embryonic camera-type 
eye formation (Supplementary Fig. 3C), and were signifi-
cantly enriched in the terms nonhomologous end-joining, 
the Hippo signaling pathway, sphingolipid metabolism, and 
the homologous recombination signaling pathway (Fig. 5D). 
The results suggested that the main enriched signaling path-
ways of the 817 DEGs may play a defining role in the ability 
of BMMSCs to reverse hGC ageing.

Correlation Analysis between Differential 
m6A Peaks and Differentially Expressed 
mRNAs

Correlation analyses of altered m6A peaks with differ-
entially expressed mRNAs (|log2FC|> 1, P value < 0.05) 
were performed to identify the key genes through which 
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BMMSCs affect the m6A methylation modification in 
hGCs ageing (Fig. 6A, B). The cumulative differential 
mRNA abundance is shown in Fig. 6C. We identified 42 
hypermethylated m6A peaks in mRNAs that were signifi-
cantly upregulated (3) or downregulated (39), while 88 
hypomethylated m6A peaks in mRNAs were significantly 

upregulated (74) or downregulated (14) (Fig. 6D). Next, 
130 genes that showed significant changes in both m6A 
modification and RNA expression levels were subjected 
to GO, pathway and PPI network analyses. The GO anal-
yses of processes associated with the 130 gene sets are 
shown in detail in Fig. 6E and identified numerous linked 

Fig. 3   Overview of the m6A methylation landscape. A Venn diagram 
showing the m6A peaks. B Venn diagram showing the m6A-modified 
genes. C Distribution of m6A peaks in mRNA and lncRNA. D Distri-
bution of altered m6A peaks per gene. E Distribution of altered m6A 

peaks per mRNA. F Distribution of altered m6A peaks per exon. 
G Distribution of altered m6A peaks in human chromosomes. Fold 
change ≥ 2 and P < 0.05
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functional processes and pathways. We found that the top 
3 GO terms of histone H3-K36 demethylation (KDM8 
and RIOX1), regulation of apoptotic DNA fragmentation, 
and regulation of DNA catabolic process were enriched 
in the GO maps of aged hGCs cocultured with BMMSCs 

(Fig. 6E). Interestingly, the correlation of histone H3-K36 
demethylation was consistent with the results of the GO 
analysis of DEGs (Supplementary Fig. 3B). In addition, 
the top 20 KEGG pathways are shown in Fig. 6F and were 
significantly enriched in metabolism, genetic information 

Fig. 4   Biological significance analysis of differentially methylated mRNAs. A Bubble chart showing the top 20 enriched GO terms. B Bubble 
chart showing the top 20 enriched pathway terms
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processing, and environmental information processing. 
Moreover, the results of the EcCenticity analysis showed 
that KDM8 ranked first in the PPI network (Fig. 6G) and 
was involved in negative regulation of osteoblast dif-
ferentiation and circadian regulation of gene expression 
(Fig. 6H). These observations indicate that KDM8 with 
the m6A modification may play important roles in revers-
ing hGC ageing through interference by BMMSCs.

The Changes of KDM8 in BMMSCs 
Reversing hGCs Aging and after Inhibited 
the Expression of FTO

KDM8 (lysine demethylase 8) is an epigenetic repressive 
mark and important cell cycle regulator that functions as a 
transcriptional activator by inhibiting HDAC recruitment 

via the demethylation of H3K36me2 [34], and is involved in 
osteoblast differentiation [35]. Methylation modifications of 
histones play critical roles in regulating gene expression, the 
cell cycle, genome stability, and nuclear structure; therefore, 
we explored the regularity of KDM8 in hGCs and ovarian tis-
sue, and the intervening effect of BMMSCs. Compared with 
the aged model group, KDM8 protein expression was down-
regulated in the ovarian tissue of macaques after BMMSC 
treatment (Fig. 7A, B). According to a previous study, his-
tone H3 is a major target of KDM8 cleavage activity, and 
the N-tail of H3 is proteolytically cleaved between K9 and 
S10 by KDM8 following DNA damage [36]. Subsequently, 
our immunofluorescence costaining of KDM8 and H3 results 
showed that the expression of the histone H3 protein was 
upregulated in aged hGCs after coculture with BMMSCs 
(Fig. 7C, D, E), which exhibited a change contrary to KDM8. 
In addition, both the KDM8 mRNA were downregulated in 

Fig. 5   Analysis of the changes in transcriptome expression profiles 
between the model and coculture groups. A PPI networks of down-
regulated genes after coculture with BMMSCs. B PPI networks of 
upregulated genes after coculture with BMMSCs. C Top 20 pathways 

enriched in downregulated genes after coculture with BMMSCs. D 
Top 20 pathways enriched in upregulated genes after coculture with 
BMMSCs
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aged hGCs after coculture with BMMSCs (Fig. 7F). FB23 
as an effective and selective inhibitor of FTO demethylase 
activity [37], therefore, FB23 was used to inhibit FTO and 
explore whether FTO downregulation influenced KDM8 
expression, our results showed that FTO significantly down-
regulated after 30 μm FB23 treated 48 h (Fig. 7G, H), and 

KDM8 was upregulated after the selective inhibition of FTO 
in normal hGCs (Fig. 7I, J). These results imply that the regu-
latory mechanisms by which BMMSCs reverse hGC ageing 
involve the upregulation of FTO expression to reduce m6A 
modification of KDM8 to promote the protein expression of 
KDM8, and then KDM8 mediates changes in H3.

Fig. 6   The correlation between differential m6A peaks and differen-
tially expressed mRNAs. A-B Heat map of differential m6A peaks 
and differentially expressed mRNAs. C The cumulative differential 
mRNA abundance. D Four-quadrant diagram showing correlations 

between m6A peaks and mRNAs. E Top 20 enriched GO terms. F 
Top 20 enriched KEGG pathways. G PPI network showing the top 5 
hub genes. H Pathway and functional enrichment analyses of KDM8
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Discussion

BMMSCs have multidirectional differentiation potential, 
a strong self-renewal ability, the ability to combat oxida-
tive stress and inflammation, and secrete various cytokines, 

which have been postulated to play a key role in reversing 
ovarian ageing. Moreover, hGCs are the most important aux-
iliary cells and provide support and nutrition for follicles and 
oocytes [38]. Therefore, we used BMMSCs cocultured with 
aged hGCs in a Transwell system to explore the interaction 

Fig. 7   The changes in KDM8 after treatment with BMMSCs. A-B 
Immunofluorescence staining detected the expression of KDM8 in 
ovarian tissues of macaques. C-E Immunofluorescence costaining of 
KDM8 and H3. F q-PCR detected the mRNA expression of KDM8 in 

hGCs. G-H Western blot detected the protein expression of FTO. I-J 
Western blot detected the protein expression of KDM8 after inhibited 
FTO expression
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mechanism. Interestingly, the structure and function of the 
ovary significantly improved after BMMSC treatment, the 
levels of β-galactosidase and ROS decreased, proliferation 
increased, and the expression of the P53 protein was down-
regulated after aged hGCs were cocultured with BMMSCs, 
indicated that BMMSCs restored the levels of the aforemen-
tioned factors related to ageing to normal levels comparable 
to those in the model group. Additionally, a model of ageing 
hGCs was successfully established, and BMMSCs reversed 
hGC ageing.

The m6A modification has been reported as a novel epige-
netic modification that is strongly associated with ageing and 
various ageing-related diseases [39, 40]. However, research-
ers have not clearly determined whether BMMSCs reverse 
hGC ageing through the m6A modification. In our study, 
compared to the control group, the expression of FTO was 
downregulated and the overall m6A levels increased in the 
model group, consistent with a previous study showing that 
increased m6A levels in hGCs mediate faster aging-related 
phenotypes that result in ovarian ageing [22]. The expression 
of FTO was upregulated and the overall m6A levels decreased 
after BMMSC treatment. In addition, we identified 797 
altered m6A peaks after BMMSC treatment, and they were 
significantly enriched in chromatin modification, regulation 
of transcription, DNA-templated, and cell cycle, which were 
associated with ovarian ageing. Additionally, in KEGG path-
way analyses, the spliceosome, Epstein-Barr virus infection, 
and thyroid hormone signalling pathway were significantly 
correlated with genes that showed m6A peaks in aged hGCs, 
suggesting that m6A peaks play a key role in regulating ovar-
ian ageing.

In the analysis of the mRNA transcriptional profile, 
we detected 817 genes with altered expression after 
aged hGCs were cocultured with BMMSCs, of which 
412 genes were upregulated and 405 genes were down-
regulated. The 412 genes function in the regulation of 
mitotic sister chromatid segregation, positive regulation 
of protein localization to endosomes, and cellular senes-
cence, and the 405 genes were significantly associated 
with embryonic placenta morphogenesis and fertilization, 
which have been linked to epigenetic modification and 
female fertilization function. These results suggested that 
BMMSCs may interact with aged hGCs by regulating the 
transcriptional profile of those mRNAs to reverse ovar-
ian ageing.

By combining MeRIP-seq and RNA-seq data, we identi-
fied 42 hypermethylated m6A peaks in mRNAs that were 
significantly upregulated (3) or downregulated (39) and 88 
hypomethylated m6A peaks in mRNAs that were signifi-
cantly upregulated (74) or downregulated (14). We found 
that histone H3-K36 demethylation (KDM8 and RIOX1) 
ranked first in the GO analysis, and the enriched path-
ways mainly included metabolism, genetic information 

processing, and environmental information processing. 
Interestingly, the correlation results for histone H3-K36 
demethylation were consistent with the GO analysis of the 
DEGs, and the signalling pathways of KDM8 were involved 
in negative regulation of osteoblast differentiation. This 
result is consistent with the finding that cellular senes-
cence is mediated by the positive regulation of osteoblast 
differentiation, and with the research findings that m6A is 
important to maintain the bone mass and functions to pro-
tect osteoblasts from the ROS-mediated cell ageing process 
[41]. KDM8 is a epigenetic repressive mark and important 
cell cycle regulator, high expression of KDM8 suppresses 
migration and proliferation [42–44], consistent with our 
results that KDM8 was upregulated in the model group but 
was downregulated after BMMSC treatment, at the same 
time, the expression of H3 showed a change contrary to 
KDM8. Additionally, KDM8 subsequently dwonregulated 
after FTO was inhibited, indicated that the expression of 
KDM8 was significantly related to m6A methylation modi-
fication. Therefore, we speculate KDM8 may be a com-
ponent of a novel regulatory mechanism in BMMSCs to 
reverse hGC ageing.

In summary, BMMSCs reverse changes in hGC age-
ing-related indexes, upregulate the expression of FTO, 
and decrease the overall m6A level. The m6A methyla-
tion modification plays an important role in the ability 
of BMMSCs to reverse hGC ageing, and the FTO regu-
lated KDM8-mediates changes in H3 may represent a 
novel regulatory mechanism in BMMSCs to reverse hGC 
ageing.

Conclusion

	 i.	 In the ageing model of hGCs, hGCs were treated with 
273 mM H2O2 for 24 h, leading to increased levels of 
β-galactosidase and ROS, reduced proliferation, and 
increased expression of P53 to induce hGC ageing, 
while BMMSCs reversed the changes in the aforemen-
tioned factors related to ageing.

	 ii.	 BMMSCs significantly upregulated the expression 
of FTO and reduced overall levels of the m6A RNA 
methylation modification.

	 iii.	 The m6A methylation modification mainly occurred 
in the 3’UTR and CDS of mRNAs to regulate their 
expression and subsequently induce or suppress 
hGC ageing, and upregulation of FTO expression 
to reduce m6A modification of KDM8 to promote 
the protein expression of KDM8, and then KDM8 
mediates changes in H3, which may represent a novel 
regulatory mechanism in BMMSCs to reverse hGC 
ageing.

963Stem Cell Reviews and Reports (2023) 19:953–967



1 3

Materials and Methods

Materials

BMMSCS were provided by the Basic Medical Laboratory 
of the 920th Hospital of Joint Logistics Support Force of 
PLA, The Transfer Medicine Key Laboratory of Cell Ther-
apy Technology of Yunan Province, and The Integrated 
Engineering Laboratory of Cell Biological Medicine of State 
and Regions. hGCs were purchased from Bainer Chuanglian 
Biotechnology Co., Ltd.

Induction of hGCs Ageing

When hGCs reached 80% confluence in 6-well plates, the 
model group was treated with 273  mM H2O2 for 24  h. 
β-Galactosidase staining was used to detect the expression 
of β-galactosidase [45], DHE staining was performed to 
detect the level of ROS [46], and BrdU staining were per-
formed to observe proliferation [47]. Immunohistochemical 
staining was performed to detect the expression of the P53 
protein [48].

Aged hGCs Cocultured with BMMSCs

A total of 104 hGCs were added to the lower chamber of 
the Transwell plate. When the confluence rate reached 80%, 
273 mM H2O2 was incubated with the cells for 24 h. Then, 
the medium was changed, and 104 BMMSCs at P4 were 
added to the upper chamber of the Transwell for the model 
and coculture groups, which were cocultured for 48 h, and 
β-galactosidase staining, DHE staining, BrdU staining, and 
immunohistochemical staining were performed to detect the 
relative ageing indexes.

Colorimetry

The overall methylation level detection kit (EpiQuik™ 
m6A RNA Methylation Quantification Kit, Colorimetric, 
Epigentek) quantifies m6A ribonucleic acid methylation by 
extracting total RNA for m6A RNA capture and then meas-
uring the signal at 450 nm using a microplate reader.

MeRIP‑seq

hGCs in the control, model, and coculture groups were 
collected, TRIzol was added to the lysate, and total RNA 
was extracted for reverse transcription. High-throughput 
sequencing was performed to obtain raw data, which were 
then extracted and quality controlled. Processing yielded 
clean reads, and FastQC was used to analyse the quality of 
sequencing data and obtain information. Mapping analyses 
identified the source of the sequencing sequence, its position 

in the genome, and unique mapped reads. HISAT2 software 
was used to compare the filtered clean reads with the refer-
ence genome of the corresponding species of the sample to 
obtain unique mapped reads for further analysis. The tdf file 
or bigwig file was converted from the processed bam file 
after standardization and used for IGV or Genome Browser 
(UCSC) visualization. ExomePeak was used to verify the 
quality of the data and the enrichment of short sequences 
in the genome. Peak annotation was analysed, and the gene 
structure and overall distribution characteristics of the peak 
were determined to draw metagene plots and pie diagrams. 
HOMER (http://​homer.​ucsd.​edu/​homer/​ngs/​peakM​otifs.​
html) software was used to perform motif analysis of the 
peaks.

Differential peak analysis first identifies reads enriched in 
binding sites and then checks whether these sites have differ-
ential methylation modifications under the two experimental 
conditions and statistical tests. Differential m6A peak-modi-
fied genes were analysed with STRING and Cytoscape. The 
m6A-modified genes were analysed with GO and KEGG 
analyses, the logarithmic result of a significant P-value was 
used for visualization, and the first 20 terms were selected 
to draw a bubble chart.

Analysis of the Correlation of m6A Modifications 
with RNA Expression

Genome version GRCh38_Ensembl91_year_2017 was used 
with htseq-count to count the number of reads in some units 
of the genome. Differential expression analysis was per-
formed with DESeq2, and the significantly different gene 
criteria were as follows: 1. |log2FC|> 1; 2. P-value < 0.05. 
Cluster analysis of the DEGs was performed. A normal-
ized expression table of the selected differential genes was 
used as the input file. Fisher’s test was used to calculate the 
significance level (P-value) of each GO term and pathway. 
The m6A-modified genes and the mRNA expression level 
changes were analysed for correlation, and some key genes 
related to the ageing phenotype were identified for follow-
up research. A cumulative distribution diagram and a four-
quadrant diagram were generated to show the correlation 
analysis results.

Reverse Transcription and Quantitative PCR 
(RT‑PCR)

Total RNA was extracted from hGCs using TRIzol reagent 
(Invitrogen, USA) and reverse transcribed into cDNAs using 
the High-Capacity RNA to cDNA Kit (GoldenstarTMRT6, 
China); the CFX96™ real-time system was used to perform 
Q-PCR with SYBR Green Master Mix (TsingKe Biotech 
Co., China). The primer sequences for KDM8 are F: 5,-ACA​
AAG​AAA​GCA​AGG​GCG​GA-3, and R: 5,-ACC​TCG​AAC​
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CAA​CTT​CCA​CT-3,, and the results were normalized to 
GAPDH levels.

Western Blot

Cells from each group were collected, total protein was 
extracted, and the BCA protein concentration assay kit was 
used to measure the protein concentration. The protein sam-
ples were mixed with 5X reducing protein loading buffer at 
a ratio of 4:1, denatured in a boiling water bath for 15 min, 
and separated on SDS-PAGE gels. Proteins were transferred 
to a membrane at a constant current of 300 mA before the 
membrane was blocked with skim milk for 30 min. Next, 
the primary antibody (FTO or KDM8) was added and incu-
bated at 4 °C overnight; the membrane was washed three 
times with TBST for 5 min each The secondary antibody 
was added and incubated for 30 min, and the membrane was 
washed three times with TBST for 5 min each before devel-
opment and fixation. ImageJ software was used to analyse 
the grayscale values of the protein bands.

Positive Cell Count and Statistical Analysis

The FTO-, P53-, BrdU-, ROS-, KDM8-, and H3-positive GCs 
were observed under an Olympus fluorescence microscope. 
Three visual fields were randomly selected from each group, 
and ImageJ software was used to count and analyse the num-
ber of positive cells per unit area. SPSS l8.0 software was used 
to analyse the experimental results, and the data are presented 
as means ± standard deviations. The differences between the 
two groups were analysed using an independent sample t-test, 
and the differences among multiple groups were analysed 
using single factor analysis of variance. P < 0.05 indicates 
that the difference was statistically significant.
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