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Abstract
Purpose  Orbital fibroblasts (OF) are considered the central target cells in the pathogenesis of thyroid-associated orbitopathy 
(TAO), which comprises orbital inflammation, orbital tissue edema, adipogenesis, fibrosis, oxidative stress and autophagy. 
Certain active ingredients of traditional Chinese medicine (TCM) demonstrated inhibition of TAO-OF in pre-clinical studies 
and they could be translated into novel therapeutic strategies.
Methods  The pertinent and current literature of pre-clinical studies on TAO investigating the effects of active ingredients 
of TCM was reviewed using the NCBI PubMed database.
Results  Eleven TCM compounds demonstrated inhibition of TAO-OF in-vitro and three of them (polydatin, curcumin, and 
gypenosides) resulted in improvement in TAO mouse models. Tanshinone IIA reduced inflammation, oxidative stress and 
adipogenesis. Both resveratrol and its precursor polydatin displayed anti-oxidative and anti-adipogenic properties. Celastrol 
inhibited inflammation and triptolide prevented TAO-OF activation, while icariin inhibited autophagy and adipogenesis. 
Astragaloside IV reduced inflammation via suppressing autophagy and inhibited fat accumulation as well as collagen depo-
sition. Curcumin displayed multiple actions, including anti-inflammatory, anti-oxidative, anti-adipogenic, anti-fibrotic and 
anti-angiogenic effects via multiple signaling pathways. Gypenosides reduced inflammation, oxidative stress, tissue fibrosis, 
as well as oxidative stress mediated autophagy and apoptosis. Dihydroartemisinin inhibited OF proliferation, inflammation, 
hyaluronan (HA) production, and fibrosis. Berberine attenuated inflammation, HA production, adipogenesis, and fibrosis.
Conclusions  Clinical trials of different phases with adequate power and sound methodology will be warranted to evaluate 
the appropriate dosage, safety and efficacy of these compounds in the management of TAO.

Keywords  Traditional Chinese medicine, thyroid-associated orbitopathy · Orbital fibroblasts · Autophagy · Inflammation · 
Oxidative stress

Introduction

Thyroid-associated orbitopathy (TAO), also termed Graves’ 
orbitopathy, is an orbital inflammatory disorder related 
to autoimmune thyroid disease and is the most common 
extrathyroidal manifestation of Graves’ disease (GD) [1–5]. 
The classical features of TAO include soft tissue inflamma-
tion, upper eyelid retraction, diplopia, proptosis, as well as 
rare but sight-threatening complications due to dysthyroid 
optic neuropathy or corneal breakdown [6, 7]. Owing to 
significant disfigurement and disability, TAO compromises 

patients’ psychological well-being and incurs a huge socio-
economic burden [8–12]. Over the past two decades, impor-
tant pharmacological advances in the management of TAO 
remarkably improved patients’ outcomes and quality of life. 
However, the current treatment options have limitations in 
terms of response rates, potential toxicities, geographical 
availability, and affordability, therefore the search for novel 
treatment strategies is warranted and ongoing [5, 13–17]. 
Importantly, various active ingredients of traditional Chinese 
medicine (TCM) demonstrated potential therapeutic benefits 
in in-vitro and animal studies of TAO. In this review, we 
provide a brief overview of the pathogenesis of TAO and 
summarize how these TCM compounds may provide novel 
therapeutics insights in TAO.Y. P. Hai and A. C. H. Lee shared co-first authorship and contributed 

equally to the preparation of the manuscript.
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Pathophysiology of TAO

The exact pathogenesis of TAO remains unclear, although 
most researchers have considered TAO an orbital inflam-
matory disorder related to autoimmune thyroid disease 
[15, 18–20]. The pathological hallmarks of TAO include 
orbital inflammatory infiltration, over-production of hydro-
philic glycosaminoglycans, de novo adipogenesis, and tis-
sue fibrosis. In the presence of genetic, autoimmune and 
environmental factors, autoimmune T cells, B cells, and 
OF are activated by unbalanced immune tolerance, result-
ing in a series of inflammatory responses, including cel-
lular and humoral immunity [21, 22]. The overproduction 
of hydrophilic glycosaminoglycans, especially hyaluronan 
(HA), leads to orbital tissue edema, which, together with 
de novo adipogenesis, causes orbital tissue expansion [6, 
18, 23, 24]. These pathological processes explain most of 
the clinical manifestations of TAO.

Orbital fibroblasts (OF) are considered the central cells 
in the pathogenesis of TAO [6, 15, 18, 19, 23, 24]. OF-
mediated interaction with immune cells via the produc-
tion of different cytokines and chemokines is the primary 
mechanism for maintaining orbital inflammation in TAO 
[24, 25], and most pathological processes and clinical fea-
tures of TAO involve OF. Thyrotropin receptor (TSH-R) 
acts as the principal autoantigen in GD and TAO. TSH-R 
autoantibody (TSH-R-Ab) is the specific biomarker and 
major pathogenic autoantibody in these disorders, and 
its titer was positively correlated with the activity and 
severity of TAO [26–32]. Upon stimulation by TSH-R-
Ab, TSH-R/insulin growth factor-1 receptor (IGF-1R) 
crosstalk signaling pathway represents the most important 
mechanism of OF activation, including overproduction of 
HA [18, 19], differentiation into adipocytes [23, 24], and 
differentiation into myofibroblasts induced by transform-
ing growth factor (TGF)-β, interleukin (IL)-17A and IL-
23A resulting in tissue remodeling and fibrosis [18, 19]. In 
addition, the activation of OF also produces cytokines and 
chemokines (e.g. IL-6, IL-8, IL-16, and monocyte che-
moattractant protein-1 [MCP-1]), and perpetuates orbital 
inflammation [33].

Oxidative stress, defined as an imbalance between the 
production and elimination of reactive oxygen species 
(ROS), plays a major role in TAO [18, 34–36]. Oxygen 
radicals induced the proliferation of OF and the expres-
sion of 72-kDa heat shock protein, leading to the produc-
tion of ROS and oxidative stress [18, 34, 35]. In contrast 
to healthy controls, various substances involved in oxida-
tive stress, including superoxide dismutase, superoxide 
anions, malondialdehyde, hydrogen peroxide, and glu-
tathione reductase, were significantly increased in the OF 

of patients with TAO (TAO-OF) [34]. Cigarette smoking, 
which is the most important environmental risk factor of 
TAO, enhanced the in-vitro ROS synthesis and suppressed 
the antioxidant machinery [7, 18]. Selenium, an antioxi-
dant, reduced the proliferation of OF and the production 
of glycosaminoglycans and hyaluronan, and benefited 
patients with mild TAO [37, 38]. In addition, several other 
antioxidants, including beta-carotene, N‑acetyl cysteine, 
vitamin C, and melatonin, demonstrated therapeutic effi-
cacy in in-vitro studies of TAO-OF [37, 39].

Autophagy, a natural and destructive mechanism that 
allows orderly degradation and recycling of unneces-
sary cellular components, has also been implicated in the 
pathogenesis of TAO recently [40]. Autophagy plays an 
adaptive role in cell survival, development, differentiation 
and intracellular homeostasis [41]. Autophagy is recog-
nized as a ‘self-cannibalizing’ process that is active during 
stress (e.g. starvation, chemotherapy, infection, aging, and 
hypoxia) to protect organisms from various irritants and to 
regenerate materials and energy. However, autophagy can 
also lead to a form of programmed cell death distinct from 
apoptosis [41]. In the immune system, autophagy regu-
lates antigen uptake and presentation, pathogen removal, 
immune cell survival, and cytokine-dependent inflamma-
tion [42]. Insufficient and excessive autophagic activities 
have been implicated in several autoimmune diseases, 
such as rheumatoid arthritis, systemic lupus erythemato-
sus (SLE), Crohn’s disease, and multiple sclerosis [43]. A 
study showed that autophagy, induced by the pro-inflam-
matory cytokine IL-1β, was upregulated in TAO orbital 
tissues and blocking autophagy inhibited adipogenic dif-
ferentiation [40]. Therefore, inhibiting autophagy may 
become a therapeutic target in TAO.

In summary, OF are mainly involved in orbital inflamma-
tion, orbital tissue expansion, adipogenesis, fibrosis, oxida-
tive stress and autophagy in TAO. Inhibiting TAO-OF by 
interrupting one or more of the above pathological processes 
represents a major direction in developing novel therapeutic 
strategies.

Potential therapeutic effects of TCM active 
ingredients in TAO

Eleven active ingredients of traditional Chinese medicine 
demonstrated potential therapeutic benefits in in-vitro exper-
iments using OF, and three of them (polydatin, curcumin, 
and gypenosides) showed favorable effects in TAO mouse 
models. They are reviewed in this session and the mecha-
nisms of action of these compounds in relation to the patho-
physiology of TAO is summarized in Fig. 1.



1105Journal of Endocrinological Investigation (2023) 46:1103–1113	

1 3

Tanshinone IIA

Tanshinone IIA, a lipophilic diterpene, is the most abundant 
active ingredient extracted from the Chinese herb Salvia 
miltiorrhiza bunge (Danshen) and it has been widely used 
to treat ischemic heart disease and cerebrovascular disease in 
the Chinese community for many centuries, owing to its pro-
posed anti-inflammatory and anti-oxidative properties [44].

Tanshinone IIA demonstrated anti-inflammatory, anti-
oxidative and anti-adipogenic effects on TAO-OF in an in-
vitro study [45]. Tanshinone IIA inhibited IL-1β-induced 
expression of pro-inflammatory cytokines (IL-6, IL-8, and 
MCP-1), reduced cigarette smoke extract or H2O2-induced 
generation of ROS, and upregulated the expression of the 
anti-oxidative enzyme heme oxygenase-1 (HO-1) through 
activating extracellular signal-regulated kinase (ERK) 
signaling pathway. The expression of adipogenesis-related 
factors (peroxisome proliferator-activated receptor gamma, 
PPARγ; CCAAT-enhancer-binding protein alpha, C/EBPα) 
was downregulated. These results were consistent with find-
ings from recent non-OF in-vitro studies, which confirmed 
the anti-inflammatory, anti-oxidative, as well as antifibrotic 
properties of tanshinone IIA [44, 46, 47].

Resveratrol

Resveratrol, a well-known polyphenol phytoalexin, is 
extracted from the roots of the Chinese herb Polygonum cus-
pidatum (Huzhang) and multitudinous fruits (e.g. grapes, 
and berries). It has been extensively utilized and prescribed 
in TCM practice [48, 49]. Resveratrol demonstrated immu-
nomodulatory effects in-vitro via various signaling path-
ways (e.g. arachidonic acid, nuclear factor kappa B [NF-κb], 
mitogen-activated protein kinase (MAPK) and anti-oxidant 
defense pathways [50]). Multiple studies employing animal 

models of inflammatory bowel disease showed that resvera-
trol exerted anti-inflammatory action via targeting various 
molecular targets and signaling pathways (e.g. NF-κb, Sir-
tuin-1 [SIRT1], mammalian target of rapamycin [mTOR], 
hypoxia-inducible factor-1α [HIF-1α], microRNA [miR-
NAs], nuclear factor erythroid 2-related factor 2 [NRF2], 
tumor necrosis factor-alpha [TNFα], and autophagy) [51]. 
In two double-blind placebo-controlled randomized clinical 
trials, supplementation with resveratrol improved clinical 
disease activity and quality of life in patients with ulcera-
tive colitis, via reducing inflammation and oxidative stress 
[52, 53].

Treatment with resveratrol attenuated oxidative stress and 
suppressed adipogenesis in TAO-OF [54]. Resveratrol inhib-
ited ROS production stimulated by cigarette smoke extract 
and H2O2. It reduced levels of HO-1, copper/zinc-superox-
ide dismutase [SOD], catalase and thioredoxin, but increased 
the level of manganese-SOD, reflecting regulation in the 
expression of anti-oxidative defenses. Resveratrol counter-
acted rosiglitazone (PPARγ agonist) induced adipogenesis, 
as evidenced by a decreased number of adipocytes and the 
accumulation of intracellular lipid droplets. Furthermore, 
alterations in the levels of transcriptional regulators sug-
gested that resveratrol modulated ERK, JNK and NF-κB 
signaling pathways.

Polydatin

Polydatin, a glycoside and natural precursor of resvera-
trol, similarly displayed anti-oxidative and anti-adipogenic 
properties in both in-vitro and in-vivo models [55]. It 
inhibited H2O2-induced ROS production by cultured non-
TAO-OFs in a dose-dependent manner, while silencing 
NRF2 decreased the anti-oxidative effect of polydatin. In a 
TAO mouse model, treatment with polydatin reduced ROS 

Fig. 1   Active ingredients in 
traditional Chinese medicine: 
mechanisms of action shown in 
pre-clinical TAO studies
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production. The attenuation in orbital oxidative stress was 
associated with a lower level of Keap1, as well as a higher 
level of nuclear located NRF2 and antioxidant genes (e.g. 
NAD(P)H dehydrogenase, quinone 1 [NQO1]), suggesting 
that polydatin mediated anti-oxidative effect via stimulating 
Keap1/NRF2/ARE pathway. Polydatin also inhibited adipose 
tissue expansion and lipid droplet accumulation in retrobul-
bar fat of TAO mice, reflecting suppression of adipogenesis.

Celastrol

Celastrol, a natural triterpene, is isolated from the root 
extracts of Tripterygium wilfordii and Tripterygium regelii, 
both from the Celastraceae family. It suppressed inflam-
matory responses in experimental models of various auto-
immune diseases, such as rheumatoid arthritis, multiple 
sclerosis, inflammatory bowel disease, SLE, psoriasis and 
type 1 diabetes [56]. The potential mechanisms of celas-
trol-mediated anti-inflammatory and anti-oxidative effects 
include preventing the production and expression of pro-
inflammatory cytokines, promoting the heat-shock response, 
inhibiting the generation of inducible nitric oxide synthase 
and lipid peroxidation, as well as restoring the level of 
autophagy [57].

In an in-vitro study [58], celastrol significantly reduced 
IL-1β-induced expression of pro-inflammatory molecules 
(IL‑6, IL‑8, prostaglandin E2, cyclooxygenase-2 [COX-2], 
intercellular adhesion molecule‑1 [ICAM-1]) in TAO-OF. 
The anti-inflammatory action of celastrol was mediated 
through inhibition of the NF-κB signaling pathway, as evi-
denced by suppression of IL-1β induced phosphorylation 
of IκBα (an inhibitor of NF-κB). This is consistent with the 
observation that celastrol attenuated inflammation in experi-
mental models of osteoarthritis and rheumatoid arthritis by 
inhibiting the NF-κB signaling pathway [57, 59].

Triptolide

Triptolide, a diterpene triepoxide, is another pharmacologi-
cally active component of Tripterygium wilfordii Hook F 
from the Celastraceae family. It has been used as a rem-
edy for various inflammatory and autoimmune disorders, 
including lupus nephritis, rheumatoid arthritis, inflammatory 
bowel disease, and asthma [60]. In an in-vitro study, trip-
tolide effectively inhibited interferon-γ induced activation of 
TAO-OF, as evidenced by reduced expression of human leu-
kocyte antigen (HLA)-DR, ICAM-1, and CD40, as well as 
suppression of cellular proliferation and HA synthesis [61].

Icariin

Icariin, a flavonoid isolated from several species of plants 
in the genus Epimedium, has several pharmacological 

properties, such as immunomodulatory, anti-inflammatory, 
anti-oxidative and lipid-lowering effects [62, 63]. Adipo-
genesis and autophagy were considered two important 
mechanisms in TAO [18, 24, 40]. Adipogenesis involves 
the process of autophagy, which is regulated by two factors, 
mTOR and 5' adenosine monophosphate-activated protein 
kinase (AMPK, a serine-threonine kinase that functions as 
a metabolic sensor and activates autophagy in response to 
low energy levels) [64]. Icariin attenuated cardiomyocyte 
hypertrophy induced by isoproterenol in mice, by suppress-
ing apoptosis and promoting autophagic flux. Isoproterenol 
promoted phosphorylation of AMPK (p-AMPK) and inhib-
ited phosphorylation of mTOR (p-mTOR), while icariin 
reversed these effects, suggesting that the cardioprotective 
effect was mediated through AMPK/mTOR signaling path-
way [62].

The effects of Icariin were evaluated in both in-vitro study 
and in-vivo TAO mouse model [64]. Icariin inhibited the 
differentiation of preadipocytes into adipocytes through the 
suppression of autophagy, which was a key process essen-
tial for adipogenesis. Similarly, it suppressed adipogen-
esis in orbital tissues in terms of PPARγ expression and 
lipid droplet accumulation, while it partially reversed the 
enhanced autophagy observed in TAO mice. The inhibition 
of adipogenesis by icariin, which decreased p-AMPK and 
increased p-mTOR levels in both in-vitro and in-vivo stud-
ies, was probably mediated by the suppression of autophagy 
through AMPK/mTOR signaling pathway. Furthermore, 
Pingmu decoction (composed of a mixture of herbs includ-
ing Epimedium Brevicornu Maxim) reduced viability/pro-
liferation of TAO-preadipocytes and induced apoptosis of 
TAO-adipocytes, by activating programmed cell death via 
Fas/Fas ligand signaling pathway [65, 66].

Astragaloside IV

The Chinese herbs Radix Astragali Mongolici (Huangqi), 
the dried root of leguminous plants Mongolia, is widely pre-
scribed to treat cardiovascular disorders, hepatitis, kidney 
disease, and skin diseases in China [67, 68]. Astragaloside 
IV, a tetracyclic triterpenoid saponin, has been identified 
as one of the bioactive ingredients in Huangqi [67]. It has 
been reported to possess anti-oxidative, cardioprotective, 
anti-inflammatory, antimicrobial, antifibrotic, anti-diabetic, 
and immunoregulatory properties [69]. Astragaloside IV 
was effective in inhibiting pro-inflammatory macrophages 
and promoting the pro-resolving macrophages to ameliorate 
experimental inflammatory bowel disease via the regula-
tion of the STAT signaling pathway [69]. Astragaloside IV 
improved oxidative stress-mediated endothelial dysfunction 
relevant to cardiovascular diseases through several mecha-
nisms: preventing the uncoupling of endothelial nitric oxide 
synthase (eNOS), increasing eNOS and nitric oxide (NO), 
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and enhancing several activating enzymes to activate the 
antioxidant system [70].

Astragaloside IV demonstrated an anti-inflammatory 
effect, which was mediated by suppression of autophagy, in 
both in-vitro and in vivo models of TAO [71]. It inhibited 
IL-1β-induced expression of pro-inflammatory cytokines 
(IL-6, IL-8, TNF-α, and MCP-1) in non-TAO-OF. Rapa-
mycin (an autophagy activator) significantly enhanced, but 
autophagy inhibitors or silencing autophagy-related pro-
teins attenuated inflammation of non-TAO-OF, suggesting 
that autophagy was involved in IL-1β mediated inflamma-
tory response. Pre-treatment with astragaloside IV strongly 
inhibited IL-1β induced autophagy and prevented rapamycin 
from enhancing IL-1β mediated inflammation. In the TAO 
mouse model, astragaloside IV administration resulted in 
lower serum levels of thyroid hormones, TSH-R-Ab and 
pro-inflammatory cytokines. The orbital tissues of astra-
galoside IV-treated TAO mice also displayed significant 
improvement, as evidenced by a reduction in fat accumula-
tion, collagen deposition, macrophage infiltration, as well 
as autophagic activity.

Curcumin

Curcumin is an active ingredient extracted from Curcuma 
longa, a traditional Chinese medicinal herb with a long his-
tory of use as a treatment for inflammatory conditions in 
China and Southeast Asia [72]. Curcumin has strong anti-
oxidative and anti-inflammatory activities and was tested 
in more than 100 clinical trials in various chronic diseases, 
including inflammatory bowel disease, rheumatoid arthritis 
and psoriasis [72].

The effects of curcumin on TAO-OF were evaluated in 
two separate in-vitro studies. Curcumin inhibited the produc-
tion of proinflammatory cytokines induced by IL-1β (IL-
6, IL-8, MCP-1, ICAM-1). Upon induction of adipogenic 
differentiation, curcumin significantly reduced intracellular 
lipid droplet accumulation and levels of adipogenic tran-
scription factors (PPARγ, C/EBPα, and C/EBPβ), reflect-
ing suppression of adipogenesis. H2O2 or cigarette smoke 
extract stimulated ROS production was also attenuated by 
pretreatment with curcumin. Curcumin inhibited phospho-
rylation of multiple signaling molecules (ERK, JNK, NF-κB, 
p65), and stimulated nuclear translocation of β-catenin 
during adipogenesis which probably resulted in increased 
expression of downstream anti-adipogenic genes [73].

In another study curcumin demonstrated anti-fibrotic 
and anti-angiogenic properties [74], Transforming growth 
factor beta 1 (TGFβ1) induced expression of myofibro-
blast differentiation markers (connective tissue growth 
factor, CTGF; alpha-smooth muscle actin, α-SMA) and 
phosphorylation of SMAD2/3 (major signal transducers 
for receptors of TGFβ superfamily) were suppressed by 

curcumin, therefore curcumin inhibited TGFβ1 induced 
myofibroblast differentiation of TAO-OF. The condi-
tioned medium from curcumin-treated TAO-OF reduced 
the TGFβ1-induced migratory ability and tube-forming 
capacity of endothelial cell lines in-vitro, hence curcumin 
inhibited the TGFβ1 mediated pro-angiogenic effect on 
TAO-OF.

Gypenosides

Gypenosides are saponins and represent the most phar-
macologically active component of Gynostemma penta-
phyllum. Their biological actions include: regulating the 
activation of immune cells and the expression of cytokines 
[75]; decreasing inflammatory response in inflammatory 
bowel disease by inhibiting NF-κB and signal transducer 
and activator of transcription 3 (STAT3) signal pathways 
[76]; and inhibiting differentiation of hepatic progenitor 
cells into myofibroblasts and hence hepatic fibrosis by 
inhibiting the expression of TGF-β1, TGF-β1 receptor 1 
and SMAD2/3 [77, 78].

Gypenosides displayed anti-inflammatory, anti-fibrotic 
and anti-oxidative effects in two separate in-vitro studies 
employing TAO-OF [75, 79]. Pretreatment with gypeno-
sides significantly attenuated IL-1β-induced expression 
of pro-inflammatory cytokines (IL-6, IL-8, TNFα, CCL2) 
by TAO-OF, via reducing activation of Toll-like recep-
tors 4 (TLR4)/NF-κB signaling pathway. TGFβ1 induced 
upregulation of fibrotic markers (hyaluronic acid, α-SMA, 
collagen type 1, fibronectin) in TAO-OF was prevented 
by gypenosides, through inhibiting SMAD2/4 signaling 
pathway [75].

In another study [79], gypenosides decreased oxidative 
stress via NRF2/ERK/HO-1 signaling pathway, as well as 
inhibited autophagy and apoptosis in TAO-OF treated with 
H2O2. They enhanced H2O2-stimulated malondialdehyde 
production but attenuated H2O2-induced SOD expres-
sion, suggesting regulation in the level of oxidative stress 
in TAO-OF. Gypenosides further promoted H2O2-induced 
expression NRF2/ERK/HO-1 proteins, while they inhibited 
H2O2-induced autophagy, as evidenced by reduced expres-
sion of autophagy activation-related proteins and reduced 
number of autophagosomes/autophagolysosomes. The anti-
apoptotic effect was suggested by reducing the expression 
of apoptosis-related mRNA (caspase 3, BAX) and apoptosis 
rate of TAO-OF treated with H2O2. In addition, through 
in silico methods (including gene ontology analysis, pro-
tein–protein interaction network construction, and molecular 
docking), gypenosides might play an anti-inflammatory and 
anti-oxidative role in TAO via STAT1/3 signaling pathways 
[80]. Nonetheless, the therapeutic potential of gypenosides 
needs to be verified by further in-vitro and in-vivo studies.
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Dihydroartemisinin

Dihydroartemisinin is a derivative of artemisinin, a sesquit-
erpene lactone extracted from the Chinese herb Artemisia 
annua L. It is widely used in the treatment of fever and 
malaria [81]. Many in vivo experiments in disease-relevant 
animal models demonstrated the therapeutic efficacy of arte-
misinin-type drugs against rheumatic diseases, inflammatory 
bowel disease, and other inflammatory and autoimmune dis-
eases [82, 83]. Apart from their antimalarial efficacy, arte-
misinin compounds demonstrated remarkable antifibrotic 
properties in multiple preclinical disease models [81]. For 
instance, dihydroartemisinin inhibited pulmonary inflamma-
tion/fibrosis and arthritis in animal models by suppressing 
JAK2/STAT3 signaling pathway [84, 85]. In an SLE mouse 
model, dihydroartemisinin ameliorated disease manifesta-
tion by inhibiting the senescence of myeloid-derived sup-
pressor cells via activating NRF2/HO-1 signaling pathway 
[86]. Furthermore, dihydroartemisinin was shown to attenu-
ate lipopolysaccharide-induced acute kidney injury via the 
inhibition of inflammatory mediators and oxidative stress 
[87].

Dihydroartemisinin demonstrated potent anti-inflam-
matory and antifibrotic effects on TAO-OF [88]. It reduced 
HA production and mRNA expression of pro-inflamma-
tory cytokines, chemokines (IL-6, IL-8, CXCL-1, MCP-1, 
ICAM-1), as well as HA synthases, suggesting inhibition of 
IL-1β induced inflammation. Dihydroartemisinin inhibited 
proliferation, migration capacity and wound-healing ability 
of TAO-OF. Dihydroartemisinin significantly downregu-
lated TGFβ1-induced expression of fibrosis markers (e.g. 
α-SMA, CTGF) at both mRNA and protein levels. As dihy-
droartemisinin decreased TGFβ1-induced phosphorylation 
of ERK1/2 and STAT3, its anti-fibrotic action was likely 
mediated via suppression of ERK and STAT3 signaling 
pathways.

Berberine

Berberine, an isoquinoline alkaloid extracted from the Chi-
nese herb Coptidis rhizoma (Huanglian), demonstrated mul-
tiple biological functions, including anti-inflammatory and 
anti-bacterial effects, alleviation of liver fibrosis, inhibition 
of carcinogenesis, cardiometabolic protection, as well as 
neuroprotection [89–92].

Berberine exerted inhibition on TAO-OF in an in-vitro 
experiment by suppressing inflammation, HA production, 
fibrosis, adipogenesis [93]. It attenuated IL-1β-induced 
expression of pro-inflammatory mediators (IL-6, PTX-3, 
and COX-2) via inactivating NF-κB signaling pathway. 
Berberine also inhibited TGFβ1 induced HA production 

and mRNA expression of HA synthases. Various fibrotic 
markers were downregulated at both mRNA and protein 
levels. A reduction of intracellular fat accumulation and 
various adipogenic markers at both mRNA and protein 
level was evident when TAO-OF undergoing adipogenic 
differentiation were treated with berberine. The suppres-
sion of adipogenesis was mediated through inhibiting 
AMPK and PPARγ signaling pathways.

Hydroxypropyl-berberrubine, an analog of berberine 
metabolite, significantly decreased cholesterol level by 
upregulating low-density lipoprotein receptor (LDL-R) 
and downregulating proprotein convertase subtilisin/kexin 
type 9 (PCSK9) in-vitro. Hypercholesterolemia itself 
was associated with increased risk and disease activity, 
as well as decreased response to intravenous glucocorti-
coid in TAO [94–96]. Statin, a class of well-established 
cholesterol-lowering agents, inhibited TAO-OF in-vitro 
[97–99], and atorvastatin was recently shown in a rand-
omized controlled trial to enhance the clinical efficacy of 
intravenous glucocorticoid therapy in patients with active 
moderate-to-severe TAO [100]. Therefore, berberine may 
be beneficial in the management of TAO. Furthermore, 
the efficacy of berberine in Graves’ hyperthyroidism was 
also evaluated in a small non-randomized clinical trial 
[101]. Compared with methimazole monotherapy, the 
addition of berberine was associated with higher chance 
of normalizing TSH level and lower TSH-R-Ab levels at 
6 months. Combination treatment also significantly modi-
fied the composition of gut microbiota, with an increased 
abundance of beneficial bacteria Lactococcus lactis and 
a reduced abundance of pathogenic bacteria Enterobac-
ter hormaechei and Chryseobacterium indologenes. The 
potential beneficial effects of berberine on Graves’ hyper-
thyroidism and TAO will need to be further evaluated in 
larger clinical trials.

Potential roles of TCM in Graves’ 
hyperthyroidism

Given the potential therapeutic effects of various TCM 
compounds on TAO and the shared pathogenesis between 
GD and TAO, TCM compounds could also be beneficial 
in the clinical management of Graves’ hyperthyroidism. 
Compared with antithyroid drug (ATD) monotherapy, 
ATD/TCM herbal combination more effectively reduced 
goiter size and relieved hypermetabolic symptoms in small 
clinical trials. Combined treatment may also offer both 
control of hyperthyroidism and desensitization in the set-
ting of ATD allergy [102]. Acupuncture, an important 
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TCM technique, is probably the most popular alternative 
therapy practiced in western countries, and its anti-inflam-
matory and immunomodulatory properties may also have 
potential therapeutic roles in TAO [103].

Conclusions

Various active ingredients in TCM demonstrated inhibition of 
TAO-OF in-vitro and improved TAO in mouse models in-vivo. 
The growing interaction between conventional western medi-
cine and TCM will help identify the effective molecules in 
herbal medicine with therapeutic implications and define pre-
cisely their role in clinical management [103]. Clinical trials of 
different phases with adequate power and sound methodology 
will be warranted to evaluate the appropriate dosage, safety 
and efficacy of these compounds in the management of TAO.
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