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Abstract

Motivation: Multivariate (multi-target) regression has the potential to outperform univariate (single-target)
regression at predicting correlated outcomes, which frequently occur in biomedical and clinical research. Here we
implement multivariate lasso and ridge regression using stacked generalization.

Results: Our flexible approach leads to predictive and interpretable models in high-dimensional settings, with a
single estimate for each input–output effect. In the simulation, we compare the predictive performance of several
state-of-the-art methods for multivariate regression. In the application, we use clinical and genomic data to predict
multiple motor and non-motor symptoms in Parkinson’s disease patients. We conclude that stacked multivariate
regression, with our adaptations, is a competitive method for predicting correlated outcomes.

Availability and implementation: The R package joinet is available on GitHub (https://github.com/rauschenberger/
joinet) and CRAN (https://cran.r-project.org/package¼joinet).

Contact: armin.rauschenberger@uni.lu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For clinical diagnosis and prognosis, multinomial (multiclass) classi-
fication is often more relevant than binary classification (Biesheuvel
et al., 2008; de Jong et al., 2019), because it exploits and provides
more information. Similarly, multivariate (multi-target) as com-
pared to univariate (single-target) classification or prediction might
often be more clinically relevant. Classifying patients into diseases
that are not mutually exclusive, for example, requires a multivariate
approach (cf. Vega, 2021). Teixeira-Pinto et al. (2009) explain why
many applications involve multiple outputs rather than a single out-
put: ‘lack of consensus on the most important [output]’, ‘desire to
demonstrate effectiveness on [multiple outputs]’ and ‘disease com-
plexity is often [better characterized by multiple outputs]’. Recent
applications with multiple outputs include predicting mental illness
and criminal behaviour of soldiers (Rosellini et al., 2017), predicting
various conditions of anaesthesia patients (Wang et al., 2019) and
predicting clinical outcomes after severe injury (Christie et al.,
2019). Although multiple outputs are commonly available, they are
not commonly used for predictive modelling.

In a prediction problem with multiple outputs, which may repre-
sent different symptoms of the same disease, we could fit one uni-
variate regression for each output, or one multivariate regression for
all outputs. Exploiting the correlation among outputs, multivariate
regression potentially improves the prediction of the output(s) of
interest. Waegeman et al. (2019) describes the use of stacked gener-
alization (also known as ‘stacking’) for multivariate regression
(Wolpert, 1992; Breiman and Friedman, 1997). Here we adapt this
approach to ridge and lasso regression, which are generalized by

elastic net regression (Zou and Hastie, 2005), in order to estimate
interpretable and predictive models in high-dimensional settings. As
an implementation, we provide the package joinet for the R statis-
tical computing environment.

Stacked multivariate regression involves multiple univariate
regressions in two layers. In the base layer, we regress each output
on all inputs, and in the meta layer, we regress each output on all
cross-validated linear predictors from the base layer. Since combin-
ing linear predictors is equivalent to combining estimated coeffi-
cients, we construct a single estimate for each input–output effect
(Rauschenberger et al., 2021). Compared to multiple univariate
regressions, stacked multivariate regression increases the predictive
performance, while maintaining model interpretability. Thus, the
proposed approach shares the benefits of ensemble learning methods
in terms of predictivity without their usual limitations in terms of
providing uninterpretable ‘black box’ models.

Friedman et al. (2010) have implemented elastic net regression
(Zou and Hastie, 2005) for many univariate families and the
multivariate Gaussian family (R package glmnet). We extend this im-
plementation to multivariate outputs from the Gaussian, binomial and
Poisson families through stacked generalization. Alternative multivari-
ate predictive methods include multivariate adaptive regression splines
(Friedman, 1991, R package earth), sparse partial least squares
(Chung and Keles, 2010, R package spls), multivariate regression
with covariance estimation (Rothman et al., 2010, R package MRCE),
regularized multivariate regression for identifying master predictors
(Peng et al., 2010, R package remMap), multivariate random forest
(Segal and Xiao, 2011, R package MultivariateRandomForest),
signal extraction for sparse multivariate regression (Luo and Qi, 2017,
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R package SiER), multivariate cluster elastic net (Price and Sherwood,
2017, R package mcen), Gaussian process modelling (Bostanabad
et al., 2018, R package GPM) and regularized multi-task learning (Cao
et al., 2019, R package RMTL). Furthermore, Xing et al. (2020) also
implemented multi-task prediction using stacking (R package MTPS),
but their approach does not meet our objective to increase the predict-
ive performance without decreasing model interpretability (see Section
5).

There are different prediction types for multivariate regression.
When modelling two binary events, for example, we might want to
predict the marginal probability of an event, i.e. PðY1 ¼ 1Þ or
PðY2 ¼ 1Þ, the joint probability of both events, i.e.
PðY1 ¼ 1 \ Y2 ¼ 1Þ, or the conditional probability of one event given
the other event, i.e. PðY1 ¼ 1jY2 ¼ 1Þ or PðY2 ¼ 1jY1 ¼ 1Þ.
Wilkinson et al. (2021) illustrate marginal, joint and conditional (mar-
ginal or joint) prediction in the context of species distribution model-
ling. We focus on marginal prediction, i.e. exploiting the correlation
between outputs to improve the prediction of each output separately.
For modelling multiple binary outputs, however, joint prediction might
be more relevant (Dudbridge, 2020), i.e. modelling the correlation be-
tween events to predict the simultaneous occurrence of multiple events.
See Martin et al. (2021) for a comparison of approaches to marginal
and joint prediction of multiple binary outputs.

2 Materials and methods

Let the n�p matrix X denote the inputs (e.g. clinical or molecular
data), and let the n�q matrix Y denote the outputs (e.g. multiple
clinical measures), where n is the sample size, p is the number of
inputs and q is the number of outputs. We will use the inputs (inde-
pendent variables) to predict the outputs (dependent variables). Let i
in f1; . . . ;ng index the samples, j in f1; . . . ;pg index the inputs, and
k and l in f1; . . . ; qg index the outputs. For sample i, the entries Xij

and Yik represent input j and output k, respectively. We allow for
high-dimensional settings ðp� nÞ and for outputs generated from
different univariate distributions (Gaussian, binomial, Poisson).

In the base layer, we regress each output on all inputs X. For any
sample i and output k, the base model equals

E½Yik� ¼ h�1
k

 
b0k þ

Xp

j¼1

bjkXij

!
;

where hkð�Þ is the link function (identity, logit, log), b0k is the unknown
intercept and bk ¼ ðb1k; . . . ; bpkÞ> are the unknown slopes. The slope
bjk represents the effect of input j on the linear predictor for output k.
We estimate the q base models by maximizing the penalized likeli-
hoods, under lasso ðL1Þ or ridge ðL2Þ regularization (Zou and Hastie,
2005), which render sparse or dense models, respectively.

For each output, we tune the regularization parameter by k-fold
cross-validation. Let the n�q matrix Ĥ

ðcvÞ
represent the cross-

validated linear predictors (‘out-of-fold’), where Ĥ
ðcvÞ
ik is the entry

for sample i and output k:

Ĥ
ðcvÞ
ik ¼ b̂

�jðiÞ
0k þ

Xp

j¼1

b̂
�jðiÞ
jk Xij;

where the superscript �jðiÞ indicates that the regression coefficients
are estimated without using the fold including sample i. Using cross-
validated rather than fitted linear predictors reduces leakage of in-
formation from the outputs to the inputs for the meta models (level-
one data).

In the meta layer, we regress each output on all linear predictors
Ĥ
ðcvÞ

. For any sample i and output k, the meta model equals

E½Yik� ¼ h�1
k

�
x0k þ

Xq

l¼1

xlkĤ
ðcvÞ
il

�
;

where x0k is the unknown intercept and xk ¼ ðx1k; . . . ;xqkÞ> are
the unknown slopes. The slope xlk represents the effect of the cross-
validated linear predictor for output l from the base model on the

linear predictor for output k in the meta model. We estimate the q
meta models under lasso ðL1Þ regularization to avoid overfitting.

In many applications, it is reasonable to assume that all pairwise
combinations of outputs (e.g. different measures for disease severity)
are positively correlated, i.e. qkl > 0 for all k and l in f1; . . . ; qg, po-
tentially after additive inverse transformations of some outputs, i.e.
Y�k ! �Y�k for some k in f1; . . . ; qg. We then impose non-negativity
constraints on the slopes of the meta models, i.e. x̂ lk � 0 for all k
and l in f1; . . . ; qg. Non-negativity constraints have proven useful in
the case of strongly positively correlated predictors according to ex-
tensive simulation studies (Breiman, 1996).

Given the estimated coefficients, we typically want to predict the
outputs for previously unseen samples. The linear predictors of the
meta learners combine the linear predictors of the base learners. For
sample i and output k, the linear predictor equals

g?ik ¼ x̂0k þ
Xq

l¼1

x̂ lkĤ il ¼ x̂0k þ
Xq

l¼1

x̂ lk

 
b̂0l þ

Xp

j¼1

b̂jlXij

!

¼ b̂
?

0k þ
Xp

j¼1

b̂
?

jkXij;

where b̂
?

0k ¼ x̂0k þ
Pq

l¼1 x̂ lkb̂0l and b̂
?

jk ¼
Pq

l¼1 x̂ lkb̂jl. Hence, b̂jk

and b̂
?

jk are the initial and final estimated effects of input j on the lin-
ear predictor for output k, respectively, meaning that the final mod-
els have the same intuitive interpretation as the initial models in
terms of input–output effects. For each input, stacking exchanges in-
formation among the estimated effects on the outputs, such that the
final estimated effect on one output linearly combines the initial esti-
mated effects on all outputs (Fig. 1).

Next, we consider two extensions to make stacked multivariate
regression more generally applicable.

The first extension concerns input–output relationships: In some
applications, we might want to exploit different inputs for modelling
different outputs. For example, one group of inputs might be rele-
vant for all outputs, but another group of inputs might only be rele-
vant for some outputs. Let the p�q matrix W indicate which inputs
(rows) are relevant for which outputs (columns). Specifically, let the
entry in the jth row and the kth column indicate whether the jth in-
put may be used for modelling the kth output in the base layer, with
Wjk ¼ 0 meaning ‘no’ and Wjk ¼ 1 meaning ‘yes’. If an input may
not be used for modelling an output (Wjk ¼ 0), the corresponding
coefficient in the base model is set to zero (b̂jk ¼ 0). In the meta
layer, however, each output is regressed on all cross-validated linear
predictors from the base layer. This means that even if the univariate
prediction for output k may not depend on input j (base model), the
multivariate prediction for output k might still depend on input
j (meta model).

The second extension concerns output–output relationships: If all
outputs are positively correlated, non-negativity constraints can help to
introduce stability (see above). If some outputs are negatively corre-
lated, however, we need to choose between not using any

βj1 βj2 βj3 βjk βjq

ω1k ω2k ω3k ωkk ωqk

xj… …

y1 y2 y3 yk yq… …

y1 y2 y3 yk yq… …

Fig. 1. To estimate the effect of input j on the linear predictor for output k, we first

estimate the effects of input j on the linear predictor for each output (base layer) and

then estimate the effects of all cross-validated linear predictors on the linear predict-

or for output k (meta layer)
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constraints and using non-negativity and non-positivity constraints. Let
the q�q matrix V represent these contraints, where the entry in the lth
row and the kth column indicates how the lth output may be used for
modelling the kth output, with Vlk ¼ �1 meaning ‘non-positive effect’,
Vlk ¼ 0 meaning ‘no effect’, Vlk ¼ 1 meaning ‘non-negative effect’ and
a missing value meaning ‘any effect’. The resulting constraints are
x̂ lk � 0 for a non-positive effect, x̂ lk ¼ 0 for no effect and x̂ lk � 0
for a non-negative effect. While the diagonal elements of the matrix V
equal one, the off-diagonal elements may represent known or estimated
relationships between outputs. Tentatively, we could check whether
the Spearman correlation coefficient (between outputs l and k) is sig-
nificantly negative (Vlk ¼ �1), insignificant (Vlk ¼ 0) or significantly
positive (Vlk¼ 1) at the 5% level.

3 Simulation

We report the simulation study using the ADEMP framework (Morris
et al., 2019):

• Aims: In this simulation study, we compare the (marginal) pre-

dictive performance of different approaches to multivariate

regression.

• Data-generating mechanisms: We repeatedly simulate data for n

samples, p inputs, and q outputs, namely the n � p matrix X

(inputs), the p � q matrix B (effects) and the n � q matrix Y (out-

puts), with a fixed random seed for reproducibility.

For the inputs, we simulate the n�p matrix X from a multivari-

ate Gaussian distribution with the constant mean 0 and the con-

stant correlation qx, where 0 � qx � 1. For the effects, we

simulate the p�q matrix B from a multivariate Gaussian distri-

bution with the constant mean 0 and the constant correlation qb,

where 0 � qb � 1. In each column, we leave the m largest val-

ues unchanged, and set the p�m smallest values equal to 0,

where 0 < m < p. Then the entry in row j and column k of B

indicates whether input j affects output k, where j in f1; . . . ;pg
and k in f1; . . . ;qg. For the outputs, we calculate the n�q linear

predictor matrix H ¼ XB, column-standardize H and simulate

the n�q error matrix E from a standard Gaussian distribution.

We then obtain the n�q matrix Y ¼
ffiffiffiffiffiffiffi
0:8
p

H þ
ffiffiffiffiffiffiffi
0:2
p

E.

We considered low-dimensional settings, sparse high-dimensional

settings and dense high-dimensional settings. While the low-

dimensional settings involve p¼10 inputs with m¼5 effects on

each output, the sparse and dense high-dimensional settings in-

volve p¼500 inputs with m¼10 or m¼100 effects on each out-

put, respectively. All settings involve n ¼ 10100 samples and

q¼3 outputs. We also varied the correlation between inputs and

the correlation between effects. The correlation between inputs qx

takes values in f0:0;0:1;0:3g, and the correlation between effects

qb takes values in f0:0; 0:5; 0:9g. This leads to 3� 3� 3 ¼ 27 set-

tings in total, with various degrees of correlation between outputs.

• Estimands/targets: We trained and validated the models with

n0 ¼ 100 samples, and tested the models with n1 ¼ 10 000 sam-

ples, with 10 repetitions for each setting. This means that models

are tested on previously unseen samples (‘holdout’). In each of

the 270 iterations (27 settings times 10 repetitions), let X0 and

Y0 denote the training data, and let X1 and Y1 denote the testing

data. For each model, we compare its predicted outputs (Ŷ1 )

with the true outputs (Y1).

• Methods: We compared the proposed method (joinet) with

one univariate method (glmnet) and eleven multivariate

methods (glmnet, earth, spls, MRCE, remMap,

MultivariateRandomForest, SiER, mcen, GPM, RMTL,

MTPS).

For standard univariate and multivariate regression (glmnet)

and the base learners of stacked multivariate regression

(joinet, MTPS), we used lasso regularization in the low-

dimensional and the sparse high-dimensional settings, and ridge

regularization in the dense high-dimensional settings.

We aimed at comparable hyperparameter optimization, but

this is too computationally expensive for three methods

(MultivariateRandomForest, SiER, mcen). For internal

cross-validation, we used the same 10 folds (glmnet, joinet,

mcen), other 10 folds (spls, MRCE, MTPS, remMap, RMTL), be-

cause the implementations let the user choose the number of

folds but not the fold identifiers, or 3 folds (SiER) due to the

computational expense. We performed grid searches, specifically

for glmnet and joinet: data-dependent sequence of 100 regu-

larization parameters; spls: number of hidden components in

f1;2; 3; . . . ;10g and thresholding parameter in

f0:0;0:1;0:2; . . . ; 0:9g (i.e. 10�10); MRCE: both penalty param-

eters in f101; 100:5; 100; . . . ;10�4g (i.e. 11�11); remMap: both

penalty parameters in fe0; e0:5; e1; . . . ; e5g (i.e. 11�11); mcen:

sequence of five penalty parameters, one possible cluster and

cluster parameter in f0:1; 1:1; 2:1; . . . ;5:1g (i.e. 5�6); and

RMTL: both penalty parameters in f101; 100:5; 100; . . . ;10�4;0g
(i.e. 12�12). For MultivariateRandomForest, we used

100 trees, 5 features for each split and 5 samples for each node.

For MTPS, we chose cross-validation residual stacking (Xing

et al., 2020), either ridge or lasso regression for the base learners

(see above), and regression trees for the meta learner (Xing et al.,

2020), but a potential limitation is the ‘one-standard-error rule’

for the base learners (see Section 5).

• Performance measures: We measured the predictive performance

based on the mean squared error of the testing samples, i.e.

MSE ¼ 1
n1�q

Pn1

i¼1

Pq
k¼1 ðY1 ik � Ŷ1 ikÞ2, but we divided the mean

squared errors of all methods by the mean squared error of pre-

diction by the mean (empty model, intercept-only model). These

re-scaled mean squared errors are more comparable between dif-

ferent simulation settings, because 0% means that the predic-

tions are perfect and 100% means that the predictions are as

poor as those from prediction by the mean. For each method, we

obtained 27 � 10 re-scaled mean squared errors (27 settings, 10

repetitions).

For each setting and each repetition (27�10), we ranked the 12

multivariate methods by the re-scaled mean squared error.

According to the mean rank, stacked multivariate regression

(joinet) is among the top three most predictive methods in the

low-dimensional settings (joinet: 2.1, glmnet: 2.8, GPM: 3.9),

the sparse high-dimensional settings (joinet: 1.8, mcen: 3.0,

spls: 3.4) and the dense high-dimensional settings (joinet:

2.1, spls: 2.6, RMTL: 3.2). For each of the 27 settings, we exam-

ined the 10 paired differences in re-scaled mean squared error be-

tween stacked multivariate regression and univariate regression.

According to the one-sided Wilcoxon-signed rank test at the 5%

level, stacked multivariate regression is significantly more pre-

dictive than univariate regression in 21 settings, namely in 6 low-

dimensional, 8 sparse high-dimensional and 7 dense high-

dimensional settings. As compared to the other multivariate

methods, stacked multivariate regression outperforms univariate

regression in more settings (joinet: 21, spls: 10, RMTL: 8,

others: � 6). Table 1 summarizes the re-scaled mean squared
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errors for each setting and each method (mean over 10 repeti-

tions). We conclude that stacked multivariate regression leads to

a competitive predictive performance.

Multivariate regression can be computationally expensive. As
compared to glmnet and joinet, the mean computation time is
shorter for earth, but about five times longer for MRCE, remMap
and MTPS, about ten times longer for RMTL, spls and mcen
and above twenty times longer for SiER, GPM and
MultivariateRandomForest. The computational efficiency of
glmnet and thereby joinet stems from regularization paths via
coordinate descent (Friedman et al., 2010).

Another advantage of stacked multivariate regression (joinet)

is its flexibility. First, it accepts multivariate outcomes from different

families. Some of the alternative methods allow for different families

in separate models but not in the same model. The current imple-

mentations accept continuous multivariate outcomes (glmnet,

spls, MRCE, remMap, MultivariateRandomForest, SiER,

GPM), either continuous or binary multivariate outcomes (earth,

mcen, RMTL), or continuous and binary multivariate outcomes

(joinet, MTPS). Second, it accepts missing values in the outcomes.

An alternative would be to impute them by chained equations (van

Buuren and Groothuis-Oudshoorn, 2011, R package mice) for the

training data.

4 Application

We illustrate the application and assess the performance of stacked
multivariate regression by analysing data from a clinical cohort
study on Parkinson’s disease, which is part of the Parkinson’s
Progression Markers Initiative (PPMI, Marek et al., 2011). From clin-
ical or genomic variables measured at baseline, we predict motor
and non-motor symptoms measured at three follow-up visits.
Supplementary Table A includes details on the pre-processing of the
clinical and the genomic data.

The outputs to predict are the (total) scores from the following
clinical assessment tools: Montreal Cognitive Assessment (MOCA,
adjusted for education), Questionnaire for Impulsive-Compulsive
Disorders in Parkinson’s Disease (QUIP), Movement Disorder Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS, ‘off’), Geriatric
Depression Scale (GDS), Scales for Outcomes in Parkinson’s Disease
– Autonomic Dysfunction (SCOPA-AUT), Epworth Sleepiness Scale
(ESS), Benton Judgement of Line Orientation Test (BJLOT) and Rapid
Eye Movement (REM) Sleep Behaviour Disorder Questionnaire. We
take the additive inverse transform of the MOCA and BJLOT scores
ðy! �yÞ to ensure that all minima indicate ‘no symptoms’ and all
maxima indicate ‘severe symptoms’ (which should render all pair-
wise combinations of outputs positively correlated). The inputs con-
sist of 138 clinical variables (dataset 1) or 17714 RNA-Seq gene
expression variables reflecting measurements from whole-blood
samples (dataset 2). We restrict the analysis to samples with both

Table 1. Mean loss of different models (re-scaled mean squared error, mean over 10 repetitions) in low-dimensional (top), sparse high-

dimensional (centre) and dense high-dimensional (bottom) settings

qx qb qy glmneta joinet glmnetb earth spls MRCE remMap MRFc SiER mcen GPM RMTL MTPS

0.0 0.0 0.1 20.6 20.4 21.0 25.2 21.1 20.7 32.7 52.5 21.2 23.4 21.8 21.1 22.7

0.1 0.0 0.6 21.0 21.1 20.9 25.4 21.1 21.7 33.9 41.3 21.6 22.9 20.9 21.5 22.7

0.3 0.0 0.5 21.7 21.6 21.7 24.2 21.8 21.9 27.2 38.4 21.9 22.3 21.7 22.0 24.1

0.0 0.5 0.4 21.6 21.3 21.6 24.0 21.8 22.0 41.5 44.1 21.5 22.9 21.6 21.5 23.3

0.1 0.5 0.2 21.6 21.7 21.8 28.2 21.5 21.5 23.6 47.7 22.2 23.7 21.9 22.0 23.3

0.3 0.5 0.6 21.0 21.0 21.3 25.4 22.4 20.5 27.9 33.6 21.9 21.1 21.5 21.9 21.4

0.0 0.9 0.8 20.9 20.7 20.7 21.6 21.2 21.7 23.9 41.1 21.6 23.1 20.6 20.7 21.4

0.1 0.9 0.8 20.8 20.6 20.6 23.4 21.0 21.6 23.6 37.4 21.5 22.9 20.6 20.7 22.1

0.3 0.9 0.8 20.7 20.4 20.4 22.3 21.0 21.5 23.2 32.3 20.5 21.2 20.6 20.9 22.1

0.0 0.0 0.0 24.7 22.9 29.1 49.2 26.5 100.0 41.5 98.2 31.4 27.2 100.0 30.1 29.6

0.1 0.0 0.2 26.5 25.5 29.0 35.4 21.8 100.0 37.6 84.0 38.8 26.5 100.0 67.0 30.2

0.3 0.0 0.5 26.6 26.2 28.2 32.5 37.9 100.0 49.8 57.7 36.6 25.6 100.0 46.8 29.1

0.0 0.5 0.0 28.4 23.6 30.6 48.8 23.0 100.0 47.8 97.3 27.2 30.1 100.0 32.2 34.0

0.1 0.5 0.2 26.2 24.8 29.6 39.6 34.6 100.0 42.4 84.7 45.5 26.9 100.0 65.5 29.4

0.3 0.5 0.5 26.5 26.4 30.7 42.3 39.4 100.0 33.3 59.4 47.6 27.6 100.0 42.0 30.3

0.0 0.9 0.3 27.5 24.9 28.3 26.8 23.8 100.0 41.7 97.5 32.7 28.8 100.0 28.2 32.3

0.1 0.9 0.5 26.3 25.4 27.8 27.7 23.9 100.0 35.1 83.1 32.0 27.8 100.0 28.9 30.0

0.3 0.9 0.6 25.9 26.5 26.5 31.4 33.8 100.0 36.5 57.2 34.7 26.4 100.0 30.7 28.4

0.0 0.0 0.1 89.2 89.7 89.4 143.3 89.5 100.0 100.0 99.1 94.8 97.4 100.0 86.9 89.5

0.1 0.0 0.7 27.5 25.9 28.4 80.5 27.8 100.0 42.6 61.1 29.4 35.0 100.0 27.3 27.8

0.3 0.0 0.8 22.3 22.0 22.3 50.4 21.8 100.0 42.0 37.6 23.2 25.2 100.0 23.1 22.3

0.0 0.5 0.4 89.1 91.5 89.5 165.8 88.9 100.0 100.0 99.5 92.6 96.1 100.0 90.0 99.8

0.1 0.5 0.8 28.4 26.6 29.5 73.4 27.0 100.0 64.1 61.7 28.0 33.8 100.0 28.1 28.0

0.3 0.5 0.8 21.8 21.8 21.9 51.3 21.6 100.0 58.4 37.4 23.3 24.7 100.0 22.3 23.4

0.0 0.9 0.7 90.7 89.9 91.4 146.3 91.8 100.0 100.0 99.3 90.2 99.5 100.0 92.3 96.8

0.1 0.9 0.8 28.6 26.5 29.7 73.6 26.8 100.0 58.0 62.1 27.8 33.0 100.0 27.7 30.1

0.3 0.9 0.8 22.7 22.2 22.8 47.8 22.8 100.0 45.2 38.3 23.1 25.6 100.0 22.2 22.5

Note: The first three columns indicate the correlation between inputs (qx), the correlation between effects (qb) and the resulting mean correlation between out-

puts (qy). The other columns show the predictive performance of a univariate method (glmneta), the proposed multivariate method (joinet) and eleven other

multivariate methods (glmnetb, earth, spls, MRCE, remMap, MRFc, SiER, mcen, GPM, RMTL, MTPS). For each setting (row), the colour black indicates which

multivariate methods are more predictive than the univariate method (glmneta), and the underline indicates the most predictive method, based on the sharp (not

rounded) numbers. aUnivariate linear regression with glmnet. bMultivariate linear regression with glmnet. cMultivariateRandomForest.
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types of inputs (n¼242). Our aim is to build the most predictive
model for each clinical assessment tool (MOCA, QUIP, UPDRS, GDS,
SCOPA, ESS, BJLOT, REM) and each clinical follow-up visit (first, second,
third), i.e. 8�3¼24 prediction problems. (In the following, we use
the short terms ‘tool’ and ‘visit’, respectively.) We consider three
types of inputs (clinical, genomic, both) and two types of regulariza-
tion (lasso, ridge), i.e. 3�2¼6 modelling approaches. This leads to
24�6¼144 univariate regression models.

Figure 2 summarizes the correlation between the outputs.
Outputs from the same tool at different visits are strongly correlated
(left), and outputs from different tools at the same visit are weakly
correlated (right). The mean correlation between visits is strongest
for SCOPA (Spearman’s q ¼ 0:78), and the mean correlation between
tools is strongest for SCOPA and UPDRS (Spearman’s q ¼ 0:43). We sus-
pect that, due to the correlated outputs, stacked multivariate regres-
sion has the potential to outperform univariate regression. In our
two applications of multivariate regression, we share information
among different clinical follow-up visits or between different clinical
assessment tools, respectively, reflecting two common settings in
clinical data analysis. In both cases, we first regress each output on
all inputs, and then combine information from different outputs. In
the first case, we support the prediction for one tool and one visit
with the same tool at the other visits (‘support from other visits’),
and in the second case, we support the prediction for one tool and
one visit with another tool at the same visit (‘support from other
tool’). Even if an output is not of interest itself, it can still support
the prediction of other outputs, functioning as a ‘coaching variable’
(Tibshirani and Hinton, 1998).

We evaluate the predictive performance of univariate and
multivariate regression by nested cross-validation, using internal
cross-validation for hyperparameter optimization and external
cross-validation for performance evaluation. While the holdout
method would involve a single train-test split, external cross-
validation involves multiple train-test splits. We first assign each
sample to one external fold (out of five) and one internal fold (out
of ten). In each external iteration (out of five), we train (param-
eter estimation) and validate (hyperparameter optimization) the
models with four external folds (80%), and test (performance
evaluation) the models with the other external fold (20%). The
training and validation phase involves internal cross-validation.
In each internal iteration (out of ten), we train the models with
nine internal folds (80%� 90% ¼ 72%) and keep the other intern-
al fold (80%� 10% ¼ 8%) for validation. After the last internal it-
eration in each external iteration, we tune the hyperparameters,
and after the last external iteration, we evaluate the performance.
This nested cross-validation scheme allows us to repeatedly use
80% of the samples for training and validation, and finally 100%

of the samples for testing. We thereby test the methods on previ-
ously unseen data.

Supplementary Figures A and B show the percentage change in
cross-validated mean squared error from univariate to multivariate
regression. The loss tends to decrease more strongly for the second
visit than for the first and third visits, more under lasso than ridge
regularization and more with combined clinical and genomic data
than either clinical or genomic data. Figure 3 shows the mean per-
centage change in mean squared error. In this application, jointly
modelling different visits (left) is more beneficial than jointly model-
ling different tools (right). It is most beneficial to support the predic-
tion of the MOCA score with the MOCA scores at the other visits (left),
or to support the prediction of the UPDRS score with the MOCA score at
the same visit (right). We also assessed the predictive performance
relative to prediction by the mean. Figure 4 shows the percentage
change in cross-validated mean squared error from prediction by the
mean to prediction by univariate and multivariate regression. The im-
provement is best for MOCA (above 20%) and worst for QUIP (about
1%). We observe the improvement tends to be larger for multivariate
regression than for univariate regression. Overall, these empirical
analyses show that stacked multivariate regression can be an effective
means to improve the predictive performance as compared to uni-
variate regression, if suitable correlated outcome data is available.

5 Discussion

Multivariate outputs frequently occur in biomedical and clinical re-
search, because many symptoms and impairments associated with a
complex disease cannot be captured by a single number. There are
different sources of multivariate outputs: measurements of multiple
attributes (e.g. different symptoms), multiple measurements of the
same attribute (e.g. repeated measures) or multiple transformations
of the same measurement (e.g. identity and logarithm).

If the outputs are neither too weakly nor too strongly correlated,
we expect stacked multivariate regression to be more predictive than
univariate regression. As the strength of the signal also matters, we
cannot provide any thresholds for the correlation. If the inputs pre-
dict one output very badly, this output cannot provide support to
the other outputs. And if the inputs predict one output very well,
this output does not require support from the other outputs. To find
out whether multivariate regression outperforms univariate regres-
sion in a specific application, we propose to use the holdout method
or cross-validation.

Although the proposed multivariate model combines predic-
tions from multiple univariate models, it has comparable interpret-
ability to a univariate model, because stacking linear predictors is
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equivalent to pooling regression coefficients. The proposed method
therefore shares the usual advantage of ensemble learning (high pre-
dictivity) but not the usual disadvantage (low interpretability).
Though another approach to multi-target prediction (Xing et al.,
2020) can also combine two layers of penalized regression, our ap-
proach not only provides (i) a coefficient matrix that links the
inputs to the univariate predictions and (ii) a coefficient matrix that
links the univariate to the multivariate predictions but also a (iii)
coefficient matrix that directly links the inputs to the multivariate
predictions. This facilitates the biological interpretation of the stat-
istical model. If non-linear effects might be important and if the
aim is to maximize predictivity regardless of interpretability, how-
ever, we recommend the approach from Xing et al. (2020) with re-
gression trees, quadratic discriminant analysis or k-nearest
neighbour classification, because the proposed method only esti-
mates linear effects.

The one-standard-error rule normally renders penalized re-
gression models more parsimonious but not significantly less pre-
dictive. We argue, however, that the one-standard-error rule
should not be used in stacked multivariate regression. Although it
normally does not make models significantly less predictive, it
still makes them less predictive (unless there is overfitting).
Whereas it affects each output only once in univariate regression,
it affects each output multiple times in stacked multivariate re-
gression (once in the meta learner and once in each included base
learner). And multiple insignificant decreases in predictivity can
sum up to a significant decrease. Therefore, in stacked multivari-
ate regression, the one-standard-error rule might lead to signifi-
cantly worse predictions.

It would be interesting to extend stacked multivariate regres-
sion to settings with not only many inputs but also many outputs.
This would for example be relevant for predicting gene expression

values from other molecular data. Lutz and Bühlmann (2006)
showed that multivariate modelling can outperform univariate
modelling even if the number of outputs is high-dimensional.
Our approach, however, involves cross-validating two regression
models for each output, which would be too computationally ex-
pensive in this case.

The proposed method is of special interest for biomedical re-
search because multiple outputs and high-dimensional inputs are
becoming the rule rather than the exception in this domain. Our
flexible approach allows for outputs with missing values, output-
specific probability distributions and output-specific loss functions.
It provides a general framework for prediction problems with mul-
tiple outputs and high-dimensional inputs. The R package joinet
is available on GitHub (https://github.com/rauschenberger/joinet)
and CRAN (https://cran.r-project.org/package¼joinet).
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Key points

• Biomedical prediction problems often include many inputs

(e.g. molecular data) and multiple outputs (e.g. clinical

data).
• Multivariate regression (‘multitasking’) outperforms

univariate regression (‘single-tasking’) at predicting

correlated outputs.
• Stacked multivariate regression leads to predictive and

interpretable models in high-dimensional settings.
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