Table 1.
ρx | ρb | ρy | glmneta | joinet | glmnetb | earth | spls | MRCE | remMap | MRFc | SiER | mcen | GPM | RMTL | MTPS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.0 | 0.1 | 20.6 | 20.4 | 21.0 | 25.2 | 21.1 | 20.7 | 32.7 | 52.5 | 21.2 | 23.4 | 21.8 | 21.1 | 22.7 |
0.1 | 0.0 | 0.6 | 21.0 | 21.1 | 20.9 | 25.4 | 21.1 | 21.7 | 33.9 | 41.3 | 21.6 | 22.9 | 20.9 | 21.5 | 22.7 |
0.3 | 0.0 | 0.5 | 21.7 | 21.6 | 21.7 | 24.2 | 21.8 | 21.9 | 27.2 | 38.4 | 21.9 | 22.3 | 21.7 | 22.0 | 24.1 |
0.0 | 0.5 | 0.4 | 21.6 | 21.3 | 21.6 | 24.0 | 21.8 | 22.0 | 41.5 | 44.1 | 21.5 | 22.9 | 21.6 | 21.5 | 23.3 |
0.1 | 0.5 | 0.2 | 21.6 | 21.7 | 21.8 | 28.2 | 21.5 | 21.5 | 23.6 | 47.7 | 22.2 | 23.7 | 21.9 | 22.0 | 23.3 |
0.3 | 0.5 | 0.6 | 21.0 | 21.0 | 21.3 | 25.4 | 22.4 | 20.5 | 27.9 | 33.6 | 21.9 | 21.1 | 21.5 | 21.9 | 21.4 |
0.0 | 0.9 | 0.8 | 20.9 | 20.7 | 20.7 | 21.6 | 21.2 | 21.7 | 23.9 | 41.1 | 21.6 | 23.1 | 20.6 | 20.7 | 21.4 |
0.1 | 0.9 | 0.8 | 20.8 | 20.6 | 20.6 | 23.4 | 21.0 | 21.6 | 23.6 | 37.4 | 21.5 | 22.9 | 20.6 | 20.7 | 22.1 |
0.3 | 0.9 | 0.8 | 20.7 | 20.4 | 20.4 | 22.3 | 21.0 | 21.5 | 23.2 | 32.3 | 20.5 | 21.2 | 20.6 | 20.9 | 22.1 |
| |||||||||||||||
0.0 | 0.0 | 0.0 | 24.7 | 22.9 | 29.1 | 49.2 | 26.5 | 100.0 | 41.5 | 98.2 | 31.4 | 27.2 | 100.0 | 30.1 | 29.6 |
0.1 | 0.0 | 0.2 | 26.5 | 25.5 | 29.0 | 35.4 | 21.8 | 100.0 | 37.6 | 84.0 | 38.8 | 26.5 | 100.0 | 67.0 | 30.2 |
0.3 | 0.0 | 0.5 | 26.6 | 26.2 | 28.2 | 32.5 | 37.9 | 100.0 | 49.8 | 57.7 | 36.6 | 25.6 | 100.0 | 46.8 | 29.1 |
0.0 | 0.5 | 0.0 | 28.4 | 23.6 | 30.6 | 48.8 | 23.0 | 100.0 | 47.8 | 97.3 | 27.2 | 30.1 | 100.0 | 32.2 | 34.0 |
0.1 | 0.5 | 0.2 | 26.2 | 24.8 | 29.6 | 39.6 | 34.6 | 100.0 | 42.4 | 84.7 | 45.5 | 26.9 | 100.0 | 65.5 | 29.4 |
0.3 | 0.5 | 0.5 | 26.5 | 26.4 | 30.7 | 42.3 | 39.4 | 100.0 | 33.3 | 59.4 | 47.6 | 27.6 | 100.0 | 42.0 | 30.3 |
0.0 | 0.9 | 0.3 | 27.5 | 24.9 | 28.3 | 26.8 | 23.8 | 100.0 | 41.7 | 97.5 | 32.7 | 28.8 | 100.0 | 28.2 | 32.3 |
0.1 | 0.9 | 0.5 | 26.3 | 25.4 | 27.8 | 27.7 | 23.9 | 100.0 | 35.1 | 83.1 | 32.0 | 27.8 | 100.0 | 28.9 | 30.0 |
0.3 | 0.9 | 0.6 | 25.9 | 26.5 | 26.5 | 31.4 | 33.8 | 100.0 | 36.5 | 57.2 | 34.7 | 26.4 | 100.0 | 30.7 | 28.4 |
| |||||||||||||||
0.0 | 0.0 | 0.1 | 89.2 | 89.7 | 89.4 | 143.3 | 89.5 | 100.0 | 100.0 | 99.1 | 94.8 | 97.4 | 100.0 | 86.9 | 89.5 |
0.1 | 0.0 | 0.7 | 27.5 | 25.9 | 28.4 | 80.5 | 27.8 | 100.0 | 42.6 | 61.1 | 29.4 | 35.0 | 100.0 | 27.3 | 27.8 |
0.3 | 0.0 | 0.8 | 22.3 | 22.0 | 22.3 | 50.4 | 21.8 | 100.0 | 42.0 | 37.6 | 23.2 | 25.2 | 100.0 | 23.1 | 22.3 |
0.0 | 0.5 | 0.4 | 89.1 | 91.5 | 89.5 | 165.8 | 88.9 | 100.0 | 100.0 | 99.5 | 92.6 | 96.1 | 100.0 | 90.0 | 99.8 |
0.1 | 0.5 | 0.8 | 28.4 | 26.6 | 29.5 | 73.4 | 27.0 | 100.0 | 64.1 | 61.7 | 28.0 | 33.8 | 100.0 | 28.1 | 28.0 |
0.3 | 0.5 | 0.8 | 21.8 | 21.8 | 21.9 | 51.3 | 21.6 | 100.0 | 58.4 | 37.4 | 23.3 | 24.7 | 100.0 | 22.3 | 23.4 |
0.0 | 0.9 | 0.7 | 90.7 | 89.9 | 91.4 | 146.3 | 91.8 | 100.0 | 100.0 | 99.3 | 90.2 | 99.5 | 100.0 | 92.3 | 96.8 |
0.1 | 0.9 | 0.8 | 28.6 | 26.5 | 29.7 | 73.6 | 26.8 | 100.0 | 58.0 | 62.1 | 27.8 | 33.0 | 100.0 | 27.7 | 30.1 |
0.3 | 0.9 | 0.8 | 22.7 | 22.2 | 22.8 | 47.8 | 22.8 | 100.0 | 45.2 | 38.3 | 23.1 | 25.6 | 100.0 | 22.2 | 22.5 |
Note: The first three columns indicate the correlation between inputs (ρx), the correlation between effects (ρb) and the resulting mean correlation between outputs (ρy). The other columns show the predictive performance of a univariate method (glmneta), the proposed multivariate method (joinet) and eleven other multivariate methods (glmnetb, earth, spls, MRCE, remMap, MRFc, SiER, mcen, GPM, RMTL, MTPS). For each setting (row), the colour black indicates which multivariate methods are more predictive than the univariate method (glmneta), and the underline indicates the most predictive method, based on the sharp (not rounded) numbers. aUnivariate linear regression with glmnet. bMultivariate linear regression with glmnet. cMultivariateRandomForest.