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ABSTRACT
Objective  Antithrombotic therapy is essential for patients 
with atrial fibrillation (AF) and stable coronary artery 
disease (CAD) because of the high risk of thrombosis, 
whereas a combination of antiplatelets and anticoagulants 
is associated with a high risk of bleeding. We sought to 
develop and validate a machine-learning-based model to 
predict future adverse events.
Methods  Data from 2215 patients with AF and stable 
CAD enrolled in the Atrial Fibrillation and Ischaemic Events 
With Rivaroxaban in Patients With Stable Coronary Artery 
Disease trial were randomly assigned to the development 
and validation cohorts. Using the random survival forest 
(RSF) and Cox regression models, risk scores were 
developed for net adverse clinical events (NACE) defined 
as all-cause death, myocardial infarction, stroke or major 
bleeding.
Results  Using variables selected by the Boruta 
algorithm, RSF and Cox models demonstrated acceptable 
discrimination and calibration in the validation cohort. 
Using the variables weighted by HR (age, sex, body mass 
index, systolic blood pressure, alcohol consumption, 
creatinine clearance, heart failure, diabetes, antiplatelet 
use and AF type), an integer-based risk score for NACE 
was developed and classified patients into three risk 
groups: low (0–4 points), intermediate (5–8) and high (≥9). 
In both cohorts, the integer-based risk score performed 
well, with acceptable discrimination (area under the curve 
0.70 and 0.66, respectively) and calibration (p>0.40 for 
both). Decision curve analysis showed the superior net 
benefits of the risk score.
Conclusions  This risk score can predict the risk of NACE 
in patients with AF and stable CAD.
Trial registration numbers  UMIN000016612, 
NCT02642419.

INTRODUCTION
Antiplatelet therapy is required for the 
secondary prevention of cardiovascular 
events in patients with coronary artery 
disease (CAD),1–3 and anticoagulant therapy 
is essential for the prevention of throm-
boembolic events in patients with atrial 

fibrillation (AF).4–6 A combination of anti-
platelet and anticoagulant agents has been 
used in patients with AF and CAD; however, 
the high risk of antithrombotic therapy-
related bleeding complications remains a 
problem. The AFIRE trial (Atrial Fibrillation 
and Ischaemic Events with Rivaroxaban in 
Patients with Stable Coronary Artery Disease) 
showed that rivaroxaban monotherapy was 
non-inferior in at reducing the risk of cardi-
ovascular events or all-cause death and supe-
rior in at reducing the risk of major bleeding 
compared with a combination of rivaroxaban 
with a single antiplatelet drug in AF patients 
with stable CAD at ≥1 year after revascularisa-
tion or those with angiographically confirmed 
CAD not requiring revascularisation.7

Simple conventional risk scores, such as the 
CHADS2,

8 CHA2DS2-VASc9 or HAS-BLED10 
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scores, have been widely used to estimate the individual 
risk of thromboembolic or bleeding events in patients 
with AF. In addition, the CHADS2 score is a useful predic-
tion tool for cardiovascular or cerebrovascular events, 
even in CAD patients without AF.11 12 However, subanalysis 
of the AFIRE trial demonstrated that patients with major 
bleeding had a high risk of subsequent major adverse 
cardiac and cerebrovascular events, especially within 30 
days after major bleeding,13 suggesting that a balanced 
risk assessment should be established to estimate the inte-
grated risk of both thromboembolic and bleeding events 
in patients with AF and CAD.

To address this challenging issue, we conducted a post 
hoc analysis of the AFIRE trial to develop and validate a 
machine-learning-based risk prediction model for future 
net adverse clinical events (NACE) among patients with 
AF and stable CAD.

METHODS
Study design and study participants
This study was a post hoc analysis of the AFIRE trial, a 
multicentre, randomised, open-label, parallel-group trial. 
The detailed study design, protocol, and results of the 
primary analysis of the AFIRE trial have been reported 
previously.7 14 Briefly, the AFIRE trial was conducted in 
294 hospitals across Japan between 23 February 2015 
and 30 September 2017 and included patients aged ≥20 
years, diagnosed with AF with a CHADS2 score ≥1 and 
stable CAD at ≥1 year after revascularisation or those with 
angiographically confirmed CAD not requiring revas-
cularisation. Patients with a history of stent thrombosis, 
coexisting active cancer or poorly controlled hyperten-
sion were excluded in the trial. Patients were randomised 
in a 1:1 ratio to receive either rivaroxaban (10 mg once 
daily for patients with a creatinine clearance rate (CCR) 
of 15–49 mL/min or 15 mg once daily for patients with 
a CCR≥50 mL/min) alone or rivaroxaban plus an anti-
platelet drug (either aspirin or P2Y12 inhibitor). Patient 
follow-up was performed at baseline, 6 months and at 
the end of the trial, with additional follow-up for routine 
clinical care if needed. The study follow-up period was at 
least 24 months and up to 45 months.

The data were reviewed by an independent data and 
safety monitoring committee. In this post hoc analysis, 
2215 patients in the modified intention-to-treat popula-
tion from the AFIRE trial were analysed.

Outcome
The primary outcome of this study was NACE, consisting 
of all-cause death, myocardial infarction, stroke or major 
bleeding according to the criteria of the International 
Society on Thrombosis and Haemostasis.15

Candidate variables
After excluding of variables with >10% missing values and 
a correlation coefficient >0.7, 78 candidate variables at 
baseline were used to develop the risk prediction model 
as potential predictors of NACE (online supplemental 

table 1). Missing values were imputed by missForest,16 
which is a non-parametric imputation method using a 
random forest model that can learn non-linearity, easily 
handle mixed-type data and calculate out-of-bag errors.

Statistical analysis
Based on the outcome, study participants were randomly 
assigned to a development (50%) or validation (50%) 
dataset. The development dataset was further divided 
into two (a training or tuning set, each 50%) to tune the 
hyperparameters. Categorical variables are presented as 
frequencies and percentages, and continuous variables 
are presented as medians and IQR. Using only data from 
the development dataset, feature selection and relation-
ship modelling for risk prediction model development 
were conducted (figure 1).

Feature selection
From all candidate variables, we further identified 13 
predictors (age, sex, treatment randomisation, body 
mass index (BMI), systolic blood pressure, diastolic blood 
pressure, CCR, type of AF, alcohol consumption, diabetes 
mellitus, heart failure, prior stent implantation and prior 
coronary artery bypass grafting) using a feature selection 
method with the Boruta algorithm, which is a wrapper 
around a random forest classification algorithm that can 
provide a numerical estimate of the feature importance 
without tuning the parameters and removing the varia-
bles that are less relevant than random probes by a statis-
tical test.17

Model development and evaluation
The relationships between the outcomes and variables 
selected by the Boruta algorithm were assessed using Cox 
proportional hazard (PH) models and random survival 
forest (RSF) models,18 which is an ensemble tree-based 
classification method for the analysis of right-censored 
survival data. Each model was assessed based on Harrell’s 
concordance index (C-index) for discrimination perfor-
mance and the Brier score for both discrimination and 
calibration performance in the development and valida-
tion datasets.

Risk score development and validation
For clinical use, a simple integer-based risk score to 
predict the outcome was developed based on each vari-
able’s unadjusted HR, with statistical significance calcu-
lated from the Cox PH model in the development dataset. 
Continuous variables were categorised as follows: age 
(≥80 years, <80 years), BMI (<18.5, 18.5–25, ≥25), systolic 
blood pressure (<90, 90–140, ≥140), diastolic blood 
pressure (<60, 60–90, ≥90) and CCR (<30, 30–50, ≥50). 
The discrimination performance of the integer-based 
risk score was assessed using the area under the receiver 
operating characteristic curve (AUC-ROC) and its 95% 
CIs in the development and validation datasets. The cali-
bration performance of the risk score was assessed using 
a calibration plot and Hosmer-Lemeshow test. Perfor-
mance comparison of the new risk score with that of 
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conventional risk scores, such as the CHADS2 (Congestive 
heart failure, Hypertension, Age ≥75 y, Diabetes mellitus, 
Stroke or TIA), CHA2DS2-VASc (Congestive heart failure, 
Hypertension, Age ≥75 y, Diabetes mellitus, Stroke or 
TIA, Vascular disease, Age 65-74 y, Sex category [female]) 
and HAS-BLED (Hypertension, Abnormal renal/liver 
function, Stroke, Bleeding, Labile INR, Elderly, Drugs) 
scores, was performed using ROC analysis, category and 
category-free net reclassification improvement, inte-
grated discrimination improvement and decision curve 
analysis to indicate net benefit and clinical utility.19–21

Statistical analyses were performed using SPSS (V.23.0; 
IBM), R software, V.4.0.5 (The R Project for Statistical 
Computing) and Python (V.3.7.11, Python Software 
Foundation). Statistical significance was defined as a two-
sided p<0.05.

RESULTS
Study participants
Among the 2215 patients in the AFIRE trial, 1107 were 
included in the development cohort (median (IQR) age, 
75 (69–80) years; 870 (78.6%) males) and 1108 in the 
validation cohort (median (IQR) age, 75 (69, 80) years; 
881 (79.5%) males). During a median (IQR) follow-up 
of 24.1 (17.3–31.5) months, 215 patients (9.7%) suffered 
NACE (107 and 108 in the development and validation 
cohorts, respectively). Patient characteristics for the devel-
opment and validation cohorts are presented in table 1. 
There were no statistical differences in demographic and 

physiological findings, antithrombotic regimen, type of 
AF, comorbidities, medical history, or prior revascularisa-
tion between the cohorts, except for the location of the 
culprit lesion, interventions other than revascularisation 
and prior bleeding complications.

Performance of development models and integer-based risk 
score
The 13 Boruta algorithm-selected variables had high 
C-index of 0.706 and 0.667 in the development and vali-
dation cohorts, respectively, when used with the RSF 
model (online supplemental table 2). Using the same 
variables as the Cox PH model, the discrimination perfor-
mance was acceptable (C-index of 0.680 and 0.650 in the 
development and validation cohorts, respectively). The 
RSF model had low Brier scores of 0.081 and 0.080 in the 
development and validation cohorts, respectively (online 
supplemental table 2), indicating good calibration. Simi-
larly, the Cox PH model had low Brier scores of 0.079 and 
0.081 in the development and validation cohorts, respec-
tively.

The β-coefficients, HRs and 95% CIs for each of the 
selected variables calculated using the Cox PH model 
are presented in table 2. Using the variables with statis-
tical significance, an integer-based risk score for NACE 
was created (figure 2); according to each variable’s HR, 
a score for the risk of NACE was assigned (table 2). The 
new risk score model has a theoretical range of 0–23 
and is divided into three risk groups: low (0–4 points), 

Figure 1  Study flow chart. Study design for the development and validation of the machine learning-based risk score model. 
AFIRE, Atrial Fibrillation and Ischaemic Events With Rivaroxaban.
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Table 1  Clinical characteristics

Variables
Development cohort
N=1107

Validation cohort
N=1108 P value

Age, years 75 (69, 80) 75 (69, 80) 0.723

Male 870 (78.6) 881 (79.5) 0.594

BMI, kg/m2 24.2 (22.2, 26.6) 24.2 (22.2, 26.5) 0.782

Systolic BP, mm Hg 126 (116, 136) 126 (116, 135) 0.722

Diastolic BP, mm Hg 70 (64, 78) 71 (64, 80) 0.350

Current smoker 149 (13.5) 143 (12.9) 0.700

Alcohol consumption 0.369

 � Daily 202 (18.2) 221 (19.9)

 � Occasionally 361 (32.6) 374 (33.8)

 � None 544 (49.1) 513 (46.3)

Rivaroxaban monotherapy 549 (49.6) 558 (50.4) 0.718

Dose of rivaroxaban 0.459

 � 10 mg/day 509 (46.0) 501 (45.2)

 � 15 mg/day 588 (53.1) 596 (53.8)

 � Other 2 (0.2) 0 (0.0)

 � Unknown 8 (0.7) 11 (1.0)

Type of atrial fibrillation 0.337

 � Paroxysmal 571 (51.6) 605 (54.6)

 � Persistent 172 (15.5) 167 (15.1)

 � Permanent 364 (32.9) 336 (30.3)

Hypertension 955 (86.3) 936 (84.5) 0.233

Diabetes mellitus 460 (41.6) 467 (42.1) 0.777

Dyslipidaemia 774 (69.9) 764 (69.0) 0.622

Angina pectoris 714 (64.5) 696 (62.8) 0.410

Heart failure 398 (36.0) 390 (35.2) 0.711

Liver dysfunction 19 (1.7) 22 (2.0) 0.638

Creatinine clearance 59.8 (45.7, 75.0) 58.7 (44.8, 74.0) 0.322

Haemorrhagic diathesis 17 (1.5) 15 (1.4) 0.720

Prior stroke 158 (14.3) 165 (14.9) 0.680

Transient ischaemic attack 23 (2.1) 25 (2.3) 0.773

Prior myocardial infarction 381 (34.4) 396 (35.7) 0.514

Prior PCI 779 (70.4) 785 (70.8) 0.805

Stent implantation 718 (64.9) 726 (65.5) 0.743

Type of stent 0.802

 � Drug-eluting 480/718 (66.9) 497/726 (68.5)

 � Bare-metal 179/718 (24.9) 163/726 (22.5)

 � Both types 27/718 (3.8) 28/726 (3.9)

 � Unknown 32/718 (4.5) 38/726 (5.2)

 � Cipher 86/718 (12.0) 88/726 (12.1)

 � TAXUS 32/718 (4.5) 23/726 (3.2)

 � Endeavour 23/718 (3.2) 29/726 (4.0)

 � Xience 187/718 (26.0) 201/726 (27.7)

 � Promus 103/718 (14.3) 112/726 (15.4)

 � Nobori 46/718 (6.4) 38/726 (5.2)

Continued
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intermediate (5–8 points) and high (≥9 points). The 
new risk score model demonstrated good discrimination 
with a C-index of 0.70 (95% CI 0.65 to 0.75; figure 3A) 
and acceptable calibration (Hosmer-Lemeshow test; χ2 
of 7.789, p=0.454; online supplemental figure 1a). The 
cumulative 3-year incidence of NACE increased in a 
graded fashion across the risk groups in the development 
cohort (figure 4A).

Validation and decision curve analysis of the integer-based 
risk score
In the validation cohort, the AUC of the new risk score 
was 0.66 (95% CI 0.60, 0.72; figure 3B) and the Hosmer-
Lemeshow goodness-of-fit χ2 was 3.417 (p=0.906; online 

supplemental figure 1), indicating moderate discrimina-
tion and acceptable calibration, respectively. The cumula-
tive 3-year incidence of NACE also increased in a graded 
fashion across the three risk groups in the validation 
cohort (figure 4B). The AUC of conventional risk scores 
such as the CHADS2, CHA2DS2-VASc and HAS-BLED 
scores were 0.57 (95% CI 0.51 to 0.62), 0.57 (95% CI 
0.51 to 0.62) and 0.51 (95% CI 0.46 to 0.57), respectively 
(online supplemental figure 2). Compared with these 
conventional risk scores, the discrimination performance 
of the new risk score was significantly higher (online 
supplemental figure 2 and online supplemental table 3). 
The decision curves for the new and conventional risk 

Variables
Development cohort
N=1107

Validation cohort
N=1108 P value

 � Other 67/718 (9.3) 97/726 (13.4)

Prior CABG 128 (11.6) 124 (11.2) 0.783

Location of culprit lesion

 � Segment #1 113 (10.2) 127 (11.5) 0.342

 � Segment #2 134 (12.1) 123 (11.1) 0.461

 � Segment #3 111 (10.0) 106 (9.6) 0.716

 � Segment #4PD 20 (1.8) 33 (3.0) 0.071

 � Segment #4AV 24 (2.2) 36 (3.2) 0.117

 � Segment #5 15 (1.4) 31 (2.8) 0.017

 � Segment #6 251 (22.7) 258 (23.3) 0.732

 � Segment #7 253 (22.9) 298 (26.9) 0.028

 � Segment #8 17 (1.5) 34 (3.1) 0.016

 � Segment #9 43 (3.9) 37 (3.3) 0.492

 � Segment #10 2 (0.2) 4 (0.4) 0.687

 � Segment #11 77 (7.0) 71 (6.4) 0.606

 � Segment #12 44 (4.0) 29 (2.6) 0.074

 � Segment #13 117 (10.6) 125 (11.3) 0.591

 � Segment #14 34 (3.1) 34 (3.1) 0.997

 � Segment #15 15 (1.4) 10 (0.9) 0.313

Interventions other than PCI or CABG 120 (10.8) 158 (14.3) 0.015

Prior aortic aneurysm 46 (4.2) 30 (2.7) 0.061

Systemic embolism 5 (0.6) 6 (0.5) 0.764

Deep venous thrombosis 8 (0.7) 6 (0.5) 0.591

Pulmonary embolism 3 (0.3) 5 (0.5) 0.726

Peripheral artery disease 70 (6.3) 69 (6.2) 0.926

Other ischaemic disorder 87 (7.9) 104 (9.4) 0.200

Prior bleeding complication 37 (3.3) 22 (2.0) 0.047

Proton pomp inhibitor 670 (60.5) 687 (62.0) 0.475

NSAIDs 29 (2.6) 16 (1.4) 0.050

Data are presented as n (%) or median (IQR).
AV, atrioventricular branch; BMI, body mass index; BP, blood pressure; CABG, coronary artery bypass grafting; NSAIDs, nonsteroidal anti-
inflammatory drugs; PCI, percutaneous coronary intervention; PD, posterior descending branch.

Table 1  Continued

https://dx.doi.org/10.1136/openhrt-2023-002292
https://dx.doi.org/10.1136/openhrt-2023-002292
https://dx.doi.org/10.1136/openhrt-2023-002292
https://dx.doi.org/10.1136/openhrt-2023-002292
https://dx.doi.org/10.1136/openhrt-2023-002292
https://dx.doi.org/10.1136/openhrt-2023-002292
https://dx.doi.org/10.1136/openhrt-2023-002292


Open Heart

6 Ishii M, et al. Open Heart 2023;10:e002292. doi:10.1136/openhrt-2023-002292

scores for predicting NACE in the validation cohort are 
shown in figure 5A. The new risk score had a greater net 
benefit, with threshold probabilities of 5%–25% than 
the conventional risk scores. A 10-fold cross-validated 
decision curve of the new risk score showed a similar 
standardised net benefit at each threshold probability 
(figure 5B), indicating the robustness of the results.

DISCUSSION
This post hoc analysis of the AFIRE trial demonstrated 
the development and validation of a machine-learning-
based risk score that integrated easily available clinical 
and laboratory data to predict future adverse clinical 
events in patients with AF and stable CAD. Patients in 
the high-risk group had a 3-year NACE risk of approx-
imately 40%. This risk score substantially improved the 

discriminatory ability and clinical usefulness of adverse 
clinical events compared with conventional risk scores. 
Antithrombotic therapy is needed for patients with AF 
and stable CAD because of the high risk of ischaemic 
and thrombotic events, whereas a combination of anti-
platelet therapy with anticoagulants is associated with a 
high risk of bleeding events. Given this clinically unre-
solvable dilemma, this machine learning-based risk score 
is comprehensive, easily available and clinically useful for 
predicting future adverse events. Based on this risk score, 
clinicians should reconsider patient management, and 
close follow-up and cardiovascular healthcare should be 
provided to high-risk patients.

Machine learning has advantages in prediction model 
development compared with traditional statistical 
methods that focus on inference and do not require a 

Table 2  Cox proportional hazard parameter estimates and assigned score for the risk of NACE

Variables β-estimate HR (95% CI) P value Score

Age, years 0.044 1.05 (1.02 to 1.07) 0.001

Elderly (age ≥80 years) 0.706 2.03 (1.37 to 3.00) <0.001 2

Female 0.488 1.63 (1.08 to 2.46) 0.020 2

Combination with antiplatelet agents 0.392 1.48 (1.00 to 2.18) 0.047 1

BMI, kg/m2 −0.068 0.93 (0.88 to 0.99) 0.020

 � <18.5 1.062 2.89 (1.43 to 5.83) 0.003 3

 � ≥18.5, <25 Ref Ref Ref

 � ≥25 −0.083 0.92 (0.61 to 1.38) 0.690

Systolic BP, mm Hg −0.013 0.99 (0.98 to 1.00) 0.042

 � <90 1.540 4.66 (1.71 to 12.7) 0.003 4

 � ≥90, <140 Ref Ref Ref

 � ≥140 −0.043 0.96 (0.58 to 1.58) 0.865

Diastolic BP, mm Hg −0.010 0.99 (0.97 to 1.01) 0.227

 � <60 0.191 1.21 (0.73 to 2.02) 0.465

 � ≥60, <90 Ref Ref Ref

 � ≥90 −0.497 0.61 (0.22 to 1.66) 0.332

Type of atrial fibrillation

 � Paroxysmal Ref Ref Ref

 � Persistent −0.035 0.97 (0.52 to 1.79) 0.912

 � Permanent 0.469 1.60 (1.07 to 2.40) 0.023 2

No alcohol consumption 0.500 1.65 (1.04 to 2.62) 0.035 2

Diabetes mellitus 0.416 1.52 (1.04 to 2.22) 0.032 2

Heart failure 0.556 1.74 (1.19 to 2.55) 0.004 2

Prior stent implantation 0.226 1.25 (0.84 to 1.88) 0.273

Prior CABG −0.632 0.53 (0.25 to 1.14) 0.106

Creatinine clearance −0.018 0.98 (0.97 to 0.99) <0.001

 � ≥50 Ref Ref Ref

 � ≥30, <50 0.612 1.84 (1.23 to 2.78) 0.003 2

 � <30 1.150 3.16 (1.67 to 5.96) <0.001 3

BMI, body mass index; BP, blood pressure; CABG, coronary artery bypass grafting; NACE, net adverse clinical event.
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prior assumption of causality in variable selection and 
modelling. Many machine-learning-based risk predic-
tion models have been reported for the diagnosis and 
prognosis of patients with CAD22–25 or AF,26–28 whereas 
there has only been one previous report of a machine 
learning-based prediction model for CAD patients 
complicated with AF.29 However, only one report showed 
a machine-learning prediction model for all-cause death 
among these patients. No established machine-learning-
based risk score has been reported for the prediction of 
NACE combining thromboembolic events with bleeding 
events; therefore, this was the first study to develop a 
machine-learning-based risk prediction score for NACE 
with internal validation. In this study, we used the Boruta 
algorithm for variable selection and an RSF model in 
the development process of the prediction model, as 
well as the traditional Cox PH model for modelling 
and scoring. The Boruta algorithm is a novel feature 
selection algorithm to identify all relevant variables for 
outcomes and a wrapper built around a random forest 

classification algorithm, which can be performed quickly 
without tuning the parameters and provides a numerical 
estimate of feature importance.17 RSF is a random forest 
method for the analysis of right-censored survival data18 
and can mathematically build binary recursive trees for 
all samples and obtain the maximal survival difference 
across daughter nodes with the application of bootstrap 
methods and the log-rank splitting rule.30 31 Although 
traditional statistical methods for survival data, such as 
the Cox PH model, rely on restrictive assumptions such as 
PHs, machine-learning-based methods can manage large 
multidimensional datasets of right-censored survival data 
without the need for assumptions of parametric distribu-
tions, interaction between variables, linear relationships 
with outcome and overfitting of models. Therefore, 
to avoid these mathematical issues, machine-learning 
approaches may be able to predict complex clinical 
outcomes such as NACE more accurately. Moreover, the 
integer-based risk score created in this study would be 
easy to use in clinical practice because it does not require 

Figure 2  The machine learning-based New Risk Score for NACE incidence and the three risk groups. The bar graph shows 
the incidence rate of NACE among the three risk groups in the development and validation cohorts. AF, atrial fibrillation; BMI, 
body mass index; DOAC, direct oral anticoagulant; NACE, net adverse clinical event; SBP, systolic blood pressure.

Figure 3  The ROC curves for the machine learning-based risk score for predicting NACE incidence. The AUC (95% CI) of the 
risk score in the (A) development and (B) validation cohorts is shown. AUC, area under the curve; NACE, net adverse clinical 
events; ROC, receiver operating curve.
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nesting on a web-based platform or electronic medical 
record.

In patients with AF, the CHADS2
8 and CHA2DS2-VASc 

scores9 have been established as risk scores for throm-
boembolic events and the HAS-BLED score10 as the risk 
score for major bleeding events. However, this study 
showed that these conventional risk scores did not have a 
good predictive performance for NACE in patients with 
AF and stable CAD. Here, we developed and validated 
a machine learning-based risk score for NACE in these 
patients, and the risk score had modest discrimination 
and good calibration with good reclassification improve-
ment compared with conventional risk scores. One of the 
responsible factors may be that the variable selection of 
the integer-based risk score was conducted by combining 
machine learning (Boruta algorithm) and classical 

statistical (Cox PH) methods. The variables selected for 
the risk score in this study, such as older age, low BMI, 
female sex, CCR, heart failure, diabetes and combina-
tion with antiplatelets, were included in other tradi-
tional risk scores for the assessment of thrombotic and 
bleeding events.10 32 33 Although most variables selected 
for the risk score can be interpreted and may be useful 
in understanding the underlying mechanism of clinical 
adverse events in patients with AF and stable CAD, the 
association between no alcohol consumption and high 
risk of NACE may be difficult to interpret. However, this 
can be explained by the following mechanism: among 
patients who do not have a drinking habit, some patients 
cannot consume alcohol because of decreased aldehyde 
dehydrogenase 2 (ALDH2) activity due to the ALDH2-
deficient variant, which presents as alcohol flushing 

Figure 4  Kaplan-Meier curves of NACE according to the three risk groups. Patients with AF and stable CAD were stratified 
into three risk groups according to their risk score for NACE. Kaplan-Meier curves show the cumulative incidence of NACE 
among the three risk groups in the (A) development and (B) validation cohorts. AF, atrial fibrillation; CAD, coronary artery 
disease; NACE, net adverse clinical event.

Figure 5  Decision curves for the new and conventional risk scores. (A) Decision curves for the new and conventional 
(CHADS2, CHA2DS2-VASc and HAS-BLED scores) risk scores to predict NACE incidence in patients with AF and stable 
CAD. (B) A 10-fold cross-validated decision curve for the new risk score to obtain a bias-corrected decision curve. AF, atrial 
fibrillation; CAD, coronary artery disease; NACE, net adverse clinical event; CHADS2, Congestive heart failure, Hypertension, 
Age ≥75 y, Diabetes mellitus, Stroke or TIA; CHA2DS2-VASc, Congestive heart failure, Hypertension, Age ≥75 y, Diabetes 
mellitus, Stroke or TIA, Vascular disease, Age 65-74 y, Sex category [female]; HAS-BLED, Hypertension, Abnormal renal/liver 
function, Stroke, Bleeding, Labile INR, Elderly, Drugs.
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syndrome and is more common in East Asians than in 
other ethnic populations.34–37 The ALDH2-deficient 
variant is a risk factor for ischaemic heart diseases, such 
as coronary spasms38 and acute myocardial infarction.39 40 
Based on these findings, alcohol consumption may have 
been selected as a candidate risk prediction score for 
NACE in this study. This machine-learning-based risk 
score is easy to use because it is based on information that 
is easily available in clinical settings and does not require 
testing results or information that is difficult to obtain.

This study had several limitations. First, the study popu-
lation was Japanese and received a rivaroxaban dose of 10 
or 15 mg once daily approved by Japan, rather than the 
once-daily dose of 20 mg approved globally, which may have 
caused selection bias. Additionally, because the study popu-
lation included only patients who met the eligibility criteria 
of the AFIRE trial, we did not verify that the results of this 
study are applicable to patients in a real-world setting. To 
confirm generalisability, the risk score should be validated in 
other ethnic populations or settings. Second, because rele-
vant information, such as haemoglobin,33 platelet count,33 
complex percutaneous coronary intervention41 and control 
of chronic disease (diabetes mellitus and dyslipidaemia), 
was not captured in the AFIRE trial, the information was 
not included in the variable selection. Third, although 
discontinuation of antithrombotic therapy is a risk factor for 
thrombotic events, data for antithrombotic therapy adher-
ence were not collected in the AFIRE trial and lack of data 
may have affected the results of this study.

In conclusion, this post hoc analysis of the AFIRE trial 
demonstrated the development and validation of a machine 
learning-based risk score that can predict future adverse 
clinical events in patients with AF and stable CAD. It is 
important to balance the risk of both thromboembolic and 
bleeding events in the antithrombotic management of these 
patients, and the application of this risk score can be useful 
for decision-making in clinical settings.
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