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Abstract 

Background:  There is an increasing interest in the use of Deep Learning (DL) based 
methods as a supporting analytical framework in oncology. However, most direct 
applications of DL will deliver models with limited transparency and explainability, 
which constrain their deployment in biomedical settings.

Methods:  This systematic review discusses DL models used to support inference in 
cancer biology with a particular emphasis on multi-omics analysis. It focuses on how 
existing models address the need for better dialogue with prior knowledge, biologi-
cal plausibility and interpretability, fundamental properties in the biomedical domain. 
For this, we retrieved and analyzed 42 studies focusing on emerging architectural and 
methodological advances, the encoding of biological domain knowledge and the 
integration of explainability methods.

Results:  We discuss the recent evolutionary arch of DL models in the direction of 
integrating prior biological relational and network knowledge to support better gen-
eralisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. 
This represents a fundamental functional shift towards models which can integrate 
mechanistic and statistical inference aspects. We introduce a concept of bio-centric 
interpretability and according to its taxonomy, we discuss representational methodolo-
gies for the integration of domain prior knowledge in such models.

Conclusions:  The paper provides a critical outlook into contemporary methods for 
explainability and interpretability used in DL for cancer. The analysis points in the direc-
tion of a convergence between encoding prior knowledge and improved interpretabil-
ity. We introduce bio-centric interpretability which is an important step towards formali-
sation of biological interpretability of DL models and developing methods that are less 
problem- or application-specific.
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Background
There is an increasing interest in the use of Deep Learning (DL) based methods as 
a supporting analytical framework in oncology. Recent works have articulated the 
potential applied impact of DL-based methods in oncology including drug response 
prediction [1, 2], cancer diagnosis or prognosis [3–8] and the overall impact of this 
emerging analytical substrate to deliver the vision of precision and personalised med-
icine [4, 9]. Despite not being mainstream methods at this point, these architectures 
point in the direction of addressing existing paradigmatic analytical gaps currently 
faced by more traditional inference frameworks, including the tension between small 
study cohorts and increasingly available complex set of features per patient ( p >> n).

However, most direct applications of DL will deliver models with limited trans-
parency and explainability, which constrain their deployment in biomedical set-
tings. In this systematic analysis we tackle an aspect commonly acknowledged but 
left almost untouched, namely: how authors understand and use the definition of 
biological interpretability, and how it dialogues to the growing spectrum of biolog-
ically-informed models, which integrate prior biological knowledge within existing 
DL frameworks. This paper provides a systematic review focused on omics-based DL 
models used in cancer biology highlighting the dialogue and convergence between bio-
logically-informed models, explainable AI (XAI) and biological interpretability. In this 
sense, it complements recent surveys on Machine Learning (ML) methods [10–12] 
and DL methods [13, 14] developed for biomarker identification. Moreover, it sup-
ports the argumentation in favour of the integration of multi-omics data using the AI 
pipelines, which is already regarded as important and advantageous over single-omic 
data (more on this topic in [15–18]). We perform a systematic review, identifying the 
motifs within emerging architectures: the domain knowledge which is integrated in 
the design of the models, data representation aspects and emerging architectures, 
ranging from biological networks and graphs to embedding models. Finally, we intro-
duce the concept of bio-centric interpretability in DL models, which augments the 
contemporary Explainable (XAI) taxonomies and emerges as a fundamental property 
and desideratum of biologically-informed DL.

Addressing the above mentioned gaps, we defined the following research questions: 

1	 What are the perspectives of interpretability accross different DL-based frameworks 
within the cancer research domain?

2	 What are the methods that deliver biological interpretability?
3	 What are the desirable approaches to integration of domain knowledge in the mod-

els’ architecture?
4	 What are the emerging representation paradigms within these models?

In addition to recent surveys in Explainable AI (XAI) (i.a. [19–25]), XAI in the field of 
genomics [15, 16, 26–29] and medicine [13, 30–36] we highlight a much more specific 
sub-field, aiming to link explainability and biological interpretability. Explainabil-
ity is often used interchangeably with interpretability, however the distinction must 
be made as the first is product by the second. Explainability refers to a collection 
of features from the interpretable domain that contributes to the production of an 
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abstract statement. Interpretability refers to mapping this statement into the domain 
the human expert can perceive, comprehend, and understand [37].

Recent works in the area of XAI provide an extensive discussion on the properties and 
desiderata of explainability methods [38–44], however they do not discuss their recep-
tion by a specific user - the biomedical expert. In the area of medical XAI, according to 
Holzinger et al. [45], in order to satisfy the need for trustworthiness at multiple levels 
of the medical workflow the main frontier topics are: the verification and explainability 
methods, inference of complex networks, and graph causal models and counterfactual. 
Our proposed concept of bio-centric interpretability encapsulates all of them.

This systematic review is restricted to the context of multi-omics based DL in cancer 
biology, excluding papers from the computer-vision subarea. The sub-field of ML and AI 
in biomarker identification, is discussed in [10–13, 46]. The recent study, Dhillon et al. 
[14] examines the state of the art feature selection, ML and Deep Learning approaches 
to uncover markers in single and multi-omics data. Zhao et at. [47] investigates the 
aspect of reproducibility in models applied to transcriptomics data. For the review on 
sequence-to-activity and sequence-based DL models, the reader is refereed to [29]. For a 
critical introduction to the application of interpretable genomics, see [48]. Another sub-
field, the Deep Learning in drug response prediction is discussed in [49–52].

The importance and advantages of the integration of multi-omics in the AI algorithms 
over single omics are presented in [15–18]. A summary of recent data integration meth-
ods and frameworks is available in [53]. Alharbi and Rashid [54] catalogue different DL 
tools/software in different subareas of genomics for various predictive tasks and dis-
cussed the data types in genomics assays providing a guidance which DL architecture to 
use. Mo et al. [55] discusses data integration and contrasts DL methods with mechanis-
tic modelling.

These reviews provide a comprehensive overview of current DL modelling techniques 
and their existing genomic applications. However, the above mentioned do not elabo-
rate specifically on the domain knowledge integration into the model and its impact on 
interpretability. In this review, we focus on the dialogue between post-hoc explainability 
(regarding its internal mechanisms and the interpretation of the model’s output) and the 
encoding of prior biomedical knowledge, thus discussing the contribution of AI for sup-
porting the understanding of oncogenic processes, in particular, the methods for inte-
grating existing domain knowledge (DK) into DL models (Additional file 1: Table S1). 
We highlight the dialogue between explicit and latent representations.

The paper is organized as follows: First, we substantiate the concept of bio-centric 
interpretability and explain its three key aspects and four main components. Second, 
we define a taxonomy for the integration of domain knowledge into models, which is 
specific for biologically-informed DL models. Then, we provide a detailed review on 
the DL models for cancer: their architectural patterns, methods of the integration of 
domain knowledge and interpretability, and observed trends. We describe 42 selected 
papers divided into thematic blocks that correspond to the new concept and proposed 
taxonomy. In the Discussion we highlight the prevalence of graph representation, sparse 
connections as a key design feature and improved support for biomarker discovery. 
Then, we summarize specifically in the context of the four research questions. The paper 
concludes with the summary of the main findings and future perspectives in the field of 
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DL models for cancer. Last section, the Methods, contains the details regarding papers’ 
selection criteria and data extraction form. A diagrammatic outline of the discussion is 
depicted in Fig. 1.

Results
The electronic bibliographic databases (PubMed and Web of Science) search identified 
661 records, which were reduced to 591 after removing duplicates. The 591 records were 
screened on the basis of prespecified inclusion criteria resulting in 176 records. All these 
potentially relevant articles were read in full text. The reasons for the exclusion of the 
papers were as follows: papers provided methods that are not directly linked to cancer 
and functional analysis/insights on biological processes; papers provided models based 
on DL and ML using clinical/laboratory data alone; based on microarray data or devel-
oped a sequence-based algorithmic framework. A list of eligible studies was created and 
resulted in 42 studies1 (Additional file 1: Table S1). The PRISMA checklist is provided as 
Additional file 2: Table S2.

Emerging methodological paradigm: bio‑centric model interpretability

Explainability and interpretability are considered as key desiderata of the machine 
learning (ML) models (e.g. [22]). They are thought to prevent the risks of misuse of 
machine learning models embedded in healthcare applications. Model transparency 
and explainability are required to deploy AI-derived biomarkers in clinical settings. In 
addition, the transparency of interpretable methods can minimise the risks in AI-based 
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Fig. 1  Current mechanisms to restore or increase biological interpretability. There is a negative correlation 
between the interpretability of the DL model and the size of the feature space. However, the integration 
of domain knowledge can systematically address this dimensionality issue. Domain knowledge can be 
distinguished between expert-level knowledge and knowledge derived from databases. The motifs for 
integrating domain knowledge within emerging architectures were identified: the domain knowledge which 
a is integrated in the design of the models, b is integrated in the input data pre-processing, c is integrated in 
the post-hoc analysis process

1  Each of the selected studies is from the existing state of the art and not performed by any of the authors.
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decision-making in healthcare applications. It is by definition impossible to appeal to 
decisions resulting from a DL model that are not presented in an understandable man-
ner and cannot be explained in biomedical terms and grounded in current biomedical 
reasoning. In biomedicine, the predictions and metrics calculated from these predic-
tions alone are insufficient to characterise the model.

The existence of multiple types and definitions of models’ interpretability makes it dif-
ficult to formulate a precise definition of biological interpretability in a cancer biology 
setting. When is it valid to say that the ML model used in cancer biology is interpret-
able? The lack of a formal definition needs to be addressed and points in the direction of 
an unmet research gap. Benk and Ferrario [56] introduced three different dimensions of 
the need for interpretation: epistemic, pragmatic, ethical. In biology, the impact of these 
models from a scientific epistemology setting needs to be considered as, at their limit, 
emerging AI methods bring the promise of integrating heterogeneous evidence and 
mechanistic and statistical inference paradigms. These methods can ultimately impact 
fundamental notions of what constitutes a valid scientific argument, bringing alternative 
perspectives to the notion of statistical significance.

Despite high demand, interpretability remains one of the biggest challenges for bring-
ing these models into a real-world setting. In the AI and ML fields, there is a well-known 
trade-off between how well the model performs and how well people are able to inter-
pret it [40, 56, 57]. Additionally, there is no consistent agreement on definitions of 
interpretability. One of its definitions directly refers to the components of interpretable 
models such as transparency (‘how does the model work?’) and post-hoc explanations 
(‘what else can the model tell me?’) [40]. It identifies two main objects for interpretation: 
i) the internal mechanisms, i.e. how the models compute their outcomes, and ii) the out-
comes generated by the model. Similarly, according to known taxonomic accounts [32], 
interpretability can be: algorithmic-centric, focusing on the inner-working of the model; 
or output-centric, highlighting the model agnostic post-hoc analysis.

In the context of DL, we replace algorithmic-centric with architecture-centric inter-
pretability. We argue that more emphasis and inference is put on the structure of the 
model rather than the learning process of the DNN (via backpropagation algorithm).

In order to derive biological insights from the model, an interpretation of a biological 
expert is required regardless of architecture or outcome-centric approach. Both of them 
need to favor mapping the biological mechanisms to the models’ components, aim-
ing at delivering an interpretation for the intended end user (i.e. biologist, oncologist) 
which relies more on biological knowledge rather than on DL or mathematical knowl-
edge. More specifically, a preferable format of model’s transparency would be a biologi-
cal mechanism integrated in the model’s architecture (e.g. gene activation pathway) or 
calculations mimicking biological processes (e.g. mimic typical molecular biology assays 
that study functional genomics), in complement to state-of-the-art explainability meth-
ods borrowed from other fields. Some formats have already been successfully applied to 
transcriptomic data, such as the integration of DK of gene modules, or the integration 
of hierarchical information about molecular subsystems involved in cellular processes. 
Such models provide informative biological interpretation of the predictions by study-
ing the activation of the various subsystems embedded in the model architecture and, 
moreover, they can make it possible to infer on the activity of latent factors as a priori 
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characterized gene modules. The interpretation of the biological expert allows for evalu-
ation of biological plausibility and satisfiability of biological constrains.

Hence, in this paper we revisit the notion of interpretability to ground it in a biomedi-
cal context, introducing the concept bio-centric interpretability. It encompasses three 
key aspects which lead to biological understanding of the investigated problem and new 
insights:

•	 Architecture-centric interpretability
•	 Output-centric interpretability
•	 Post-hoc evaluation of biological plausibility

We argue, that evaluation of the DL model regarding bio-centric interpretability requires 
an analysis of all these aspects at once. These three aspects are evaluated via the analysis 
of the four bio-centric interpretability components:

•	 The integration of different data modalities
•	 The schema level representation of the model
•	 The integration of domain knowledge
•	 Post-hoc explainability methods

The integration of different data modalities.

Cancer is a complex and multi-faceted disease with a landscape of features that can 
separately or together influence treatment responses and patient prognosis. Important 
biological relations can be expressed in more than one data modality, e.g. potential can-
cer driver genes can be represented through integration of copy number, DNA methyla-
tion and gene expression data. Therefore, combining different data modalities in the DL 
model, including different types of omics data is imminent as the field evolves and inher-
ent if biological processes are modelled. Only provided that the biologically-informed 
model can reveal both established and novel molecularly altered candidates which can 
be implicated in predicting advanced disease.

Schema level representation of the model.

Understanding the data flow in the model is crucial for the post-hoc interpretation by 
an expert user. Obviously, this is affected by how the data is represented in subsequent 
components of the model. Usually, collected multi-omics data is stored in tables (matri-
ces). However, over a series of computations steps, the representation can change into 
graphs, networks, eigenvalues, eigenvectors, among others. Each representation has its 
own specific properties and is processed by specific architectural elements in the model, 
e.g. Graph Neural Networks and Graph Convolution Networks (for graphs). Thus, in the 
context of bio-centric interpretability, it is crucial to understand these representations, 
how they transform and how to communicate such transformation during the post-hoc 
inference. The underlying dialogue between the input data model and the architectural 
structure of the model requires a schema level representation, which then allows for 
domain expert interpretation and inference.
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The integration of domain knowledge.

A key aspect, which significantly impacts all three components is the domain knowledge 
integration into the model. A biologically-informed DL model can and should make use 
of databases that contain an abundance of known biological relations. Later in the paper, 
we compare and contrast emerging approaches of DK integration and its close dialogue 
with DL archtectures, indicating which model has the highest potential in improving 
bio-centric interpretability.

Post‑hoc explainability methods.

The inherent property of DL model is its ability to derive latent features reflected in a 
large space of weighted connections between neurons. Even provided that the model’s 
architecture resembles bio relations, post-hoc explainability methods must be applied 
to allow for tracking back the information flow, highlighting the importance (and unim-
portance) of model’s components. More specifically, when investigating an individual 
output it is necessary to define key neurons, connections or layers that most impact the 
prediction, as well as those that do not.

Encoding domain priors: Improving bio‑centric interpretability and integrating relational 

knowledge

In cancer, AI / ML is emerging as a methodological enabler to transform omics data 
into biomarker panels that can diagnose, predict or report on the effectiveness of inter-
ventions in the disease. More recently, some of these methods have concentrated on 
the integration of symbolic-level, explicit domain knowledge into the models. Domain 
knowledge can be understood as the information so far accumulated in a given field 
(here: pathways, PPI networks, Gene Ontology), usually expressed as known relational 
knowledge. In many cases, this knowledge is available in well-known curated databases 
and expressed in canonical data models that can be integrated in a computational pipe-
line. The taxonomy for explicit knowledge integration with the informed ML framework 
proposed by von Rueden et  al. [58] includes: (i) source of knowledge; (ii) representa-
tion of knowledge; (iii) and integration of knowledge in the ML pipeline. Each dimen-
sion contains a set of elements showing different approaches that can be observed in 
previous literature. Knowledge sources can be classified according to the degree of for-
mality. They range from the rigorously expressed scientific knowledge (derived from any 
scientific discipline) to an expert-derived statement (mapping for example their clini-
cal experience). More or less formalised, more general scientific knowledge (aka. world 
knowledge) situated at a basic expertise level within that domain (e.g. that the body is 
composed of cells; that there is DNA inside cell nucleus; that cancer is a disease of the 
genome, etc.); we found the general scientific knowledge not relevant in the context of 
this work.

Domain knowledge can be integrated into the model to improve its consistency, reli-
ability and biological plausibility as well as for supporting better generalisation. As 
proposed by von Rueden et al. [58] this can be done in a variety of ways, such as incor-
porating DK into basic training data (e.g. pre-processing), hypothesis set (e.g. sparse 
connections between neurons), established relational data, learning algorithm (e.g. 
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cost function), and final hypothesis (e.g. model’s architecture). On the other hand, DK 
is needed in order to extract the scientific outcome from the model or from individual 
elements of the model, and/or to explain such outcome. For example, based on DK, the 
contributions of specific model components can be better localised and investigated.

In addition, DK can be used in a post-hoc setting, where the scientific credibility and 
consistency of the results are cross-validated within existing knowledge. Results that do 
not match the existing knowledge can be rejected or flagged as incorrect or suspicious, 
so that the final result is consistent with prior knowledge.

In this paper we define a taxonomy which is more specific for biologically-informed 
DL models (inspired by von Rueden [58]). We suggest three main categories of DK inte-
gration as:

•	 Input data pre-processing (PRE) - DK is used to enrich or augment the input data, 
which results in a change of data representation. Scaling or normalisation is excluded 
from this category.

•	 Architecture definition (ARCH) - DK explicitly impacts the model architecture, such 
as connections between neurons and layers.

•	 Post-hoc comparison (POSTHOC) - DK is used to investigate and explain the out-
come of the model. The DK is used to process the outcome and compare to current, 
known biological relations.

Multiple types of DK integration can be observed in a single model.
Of note, a pre-requisite of developing any DL model in cancer biology is to understand 

the target domain, needed at least to define the input and output, and to qualitatively or 
quantitatively evaluate this output. Despite acknowledging the expert knowledge of the 
authors of the models, we do not consider it as explicitly integrated domain knowledge. 
We consider the post-hoc DK integration when the output is compared with informa-
tion derived from external knowledge, or the representation of the output is changed 
(e.g. a vector to a graph) by using DK, so the the biological plausibility can be validated.

An outline of the three categories of DK integration is shown in Fig. 2. The results for 
selected papers according to proposed taxonomy are summarized in Additional file 1: 
Table S1.

Trends in DL models for cancer

The prominent explanation for the high heterogeneity observed in cancer may be the 
organisation of genes in various signalling/regulatory pathways and protein complexes. 
Cellular-level processes and responses are carried out by spatially and temporally organ-
ized sets of interacting entities such as proteins or RNA molecules. It is fundamental 
to understand how these interactions lead to biological processes. The conventional 
approach to studying biological processes is based on molecular interaction networks 
between individual biological molecules, represented as nodes with edges describing the 
interactions between a pair of nodes [59, 60]. There are multiple types of biological inter-
action networks that represent different biological mechanisms and are based on differ-
ent types of interaction [61]. Many of these biological interactions are publicly available 
through various specific databases such as KEGG [62], Reactome [63], among others. 
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They can be leveraged as DK to deliver a mechanistic and relational inference compo-
nent which can be integrated to a statistical-probabilistic framework (Fig. 3).

Pathway-level representations, which represent sets of the pathway genes subsumed 
into the pathway nodes, with the interactions between the individual genes are also col-
lectively involved in biological processes, such as cell proliferation and death. Thus, mal-
function of the pathways can lead to disease. Taking into account the topology of gene 
interactions as prior knowledge may further help to characterise new genes or disease 
modules. Many network models have been developed to use known gene-gene inter-
actions for prediction, based on the assumption that interacting genes tend to produce 
similar phenotypes. New biomarkers discovered by the DL model can be tracked inside 
the model more easily when the model’s design conforms to biological relations.

The biological pathways can be integrated as curated knowledge on the molecular 
relation, reaction and interaction networks, covering metabolism, cellular processes, 
organismal systems, and human diseases and they are widely used to analyse omics 
data. The pathway construction function can be either a data-driven objective (DDO) 
or a knowledge-driven objective (KDO) [64]. The first component is used to establish 
gene or protein associations identified in a particular experiment. Knowledge-driven 
pathway construction is associated with the development of a detailed knowledge base 
for specific areas of interest. There are various approaches to mapping the organisation 
of cellular functions using molecular interaction networks in which the edges represent 
interactions between genes, proteins or metabolites. Protein-protein interaction (PPI) 
data are used to construct networks of reactions important for the regulation and imple-
mentation of most biological processes in which proteins have been shown to interact 
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Fig. 2  Bio-centric interpretability scheme in the overview of a biologically-informed DL model. Grey boxes 
- three interpretability aspects
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with functionally related proteins. Such an organisation results in the emergence of 
‘functional modules’, i.e. functionally related sub-networks in which there is a statisti-
cally significant aggregation of nodes with an associated cellular function. Co-expression 
data, genetic interaction data, and combined data types have been also used to generate 
similar molecular interaction networks.

Data augmentation with domain knowledge

In this subsection we focus on domain knowledge being used to pre-process the input 
data in order to change its representation by enrichment or augmentation: from meas-
ured omics values as matrices into pathways, networks and graphs (Fig. 3A). First, we 
discuss how the knowledge of pathways derived from databases was integrated into the 
model in the reviewed studies.

At an input level, pathways are mapped to scores, graphs or images. Oh et  al. [65] 
demonstrated the method called PathCNN to build an interpretable CNN model using 
multi-omics data including mRNA expression, copy number variation (CNV) and DNA 
methylation from the cBioPortal database. Information about pathways together with 
the associated genes in each omics type is extracted from the KEGG database. Input data 

 Input data processing
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Model's architecture
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Fig. 3  Data representation paradigms and the impact of the integration of domain knowledge. Domain 
knowledge (DK) can be derived from a database (blue blocks) or expert DK (yellow blocks). DK can be used in 
pre-processing and data augmentation before the training process. DK from databases can be represented in 
two ways: A as a step in the pre-processing of input data, before the training process. This first paradigm has 
emerged for the representation of multi-omic data, which are transformed into graphs or a network and fed 
into GNN or GCN. This paradigm has been applied to DL models such as: struc2vec, GLUE, several GCN and 
CNN models; B as inductive bias when creating the neural network architecture, defining the connections 
between nodes in layers. In this case, DK impacts the training process as it affects the back-propagation. 
This paradigm has emerged mainly for the representation of multi-omic data, which are fed into sparsely 
connected Deep Neural Network, where connections are defined by biological relations. This paradigm has 
been applied to DL models such as: VNN, PNET, KPNN, VAE, CNN
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at a gene level is converted into pathway-level profiles, and then Principal Component 
Analysis is applied to extract 3 principal components (PCs). Then, vectors containing 
PCs of all pathways are represented as a pathway image of a sample (set of pixels) com-
bining all multi-omics data. Images are the input to the CNN model. As an explainability 
method, Grad-CAM [66] was used to identify pathways impacting cancer survival pre-
dictions by identifying the parts of an image that are most discriminative. The authors 
assumed that relevant pathways were more likely to be detected if they are grouped 
together on the pathway images. They managed to highlight the pathways (‘pixels’) that 
were of importance for the prediction of long-term survival of glioblastoma patients.

Another model which allows for integration of multi-omics data on pathway level 
was proposed by Lemsara et al. [67]. In the multi-modal sparse denoising autoencoder 
model, multi-omics features are mapped to NCI pathways. Each pathway is represented 
as a score obtained via autoencoder, then bi-clustering is applied. The model clusters 
patients based on three-omics data types, including gene expression, miRNA expression, 
DNA methylation and CNVs data. The SHAP method is used ‘to understand the impact 
of individual omics modalities and features on the autoencoded score [...] learned for 
each pathway’ [67].

Lee et al. [68] proposed a DL model for cancer subtype classification, which used 287 
pathways retrieved from KEGG database. Pathways were used to build a graph in which 
a set of nodes represents genes and a set of edges represents molecular interactions 
between genes in the pathway. Gene expression profiles from RNA-seq were mapped 
to nodes represented as a vector. To model each pathway, they used a graph convolu-
tional neural network (GCN), which can capture localised patterns in data and consider 
interactions among genes. In this way, they built multiple GCNs, one for each of the 
287 pathways. Then, a multi-attention based ensemble combines all the pathway models 
into a single one through two attention levels (pathway-level and ensemble-level). This 
is followed by a multi-layer perceptron (MLP) for a cancer subtype classification task. 
The attention mechanism allows for highlighting pathways that are important for the 
classification, and falls into the ARCH category as notion of pathways directly impacts 
the model’s architecture. In addition, DK is used POST-HOC to explain the differences 
between gene expression and interactions between different subtypes in terms of path-
ways. The authors used the network propagation method on a pathway-PPI network, 
where the PPI was derived from the BIOGRID database.

PPI networks as a prevalent type of graph based input. An example of a DL model for 
the integration and analysis of multi-omics data is DeepMOCCA [69]. DeepMOCCA is 
a survival prediction model, which integrates DK using PPI networks to transform the 
input data representation into a graph. The PPI networks are obtained from the STRING 
database. The multi-omics data is mapped into the nodes, which represent combina-
tion of genes, transcripts and proteins. The edges reflect physical and other functional 
interactions between them. Then, the graph is an input to a GCN with a graph atten-
tion mechanism. Additionally, as POSTHOC DK integration, cancer driver genes listed 
from the COSMIC database [70] are used to interpret the averaged rank derived from 
the attention mechanism. By looking at genes with repeatedly high scores across samples 
but not yet reported as cancer genes, the attention mechanism allows for the genera-
tion of new hypotheses. Therefore, DeepMOCCA allows for identification of prognostic 
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markers and cancer driver genes. The authors of DeepMOCCA [69] also investigated the 
sample representations in the hidden layer of the network (before the Cox regression) 
with t-SNE visualization [71] and compared their similarity between cancer types. They 
suggested that this kind of analysis in reduced dimensional spaces could support patient 
stratification.

Similarly, Chuang et al. [72] used the PPI network to change the input representation. 
However, their model maps the PPI network into 2D space by using spectral cluster-
ing and combines it with the gene expression data to generate images of cancer-related 
networks of different types of cancer for a CNN model. More specifically, the adja-
cency matrix (from the PPI network) is reduced to 2 eigenvalues and represented as 2D 
images. Then a CNN model is trained for cancer type classification. Unfortunately, spec-
tral clustering renders tracing the signal back to individual input features very difficult. 
This computational step makes significantly reduces the model’s interpretability.

Another DL model integrating PPI networks was developed by Chereda et  al. [73]. 
They use the PPI network from the HPRD database [74, 75] to structure the gene 
expression data. Input data is transformed into a graph and used in GCN model, which 
is trained to classify expression profiles from breast cancer patients into metastatic or 
non-metastatic. They developed a Graph Layer-wise Relevance Propagation to interpret 
the outputs of the GCN. They used this explainability method to build a patient-specific 
subnetwork containing the genes that contribute the most to a prediction.

Ramirez et al. [76] investigated four models for expression-based cancer type classi-
fication (into a cancer subtype or normal tissue gene) using a GCN-based model. The 
input graphs were generated based on: the co-expression (using Spearman correla-
tion), the co-expression+singleton, the PPI, and the PPI+singleton networks from the 
STRING database [77]. As an interpretability method, they use an in silico perturba-
tion procedure. Gene expression is successively set to 0 or 1 before passing through the 
model and examining how the prediction accuracy is affected by this manipulation. The 
more important for the classification the gene is, the greater the change in accuracy will 
be observed. This effect is captured with what the authors called a gene-effect or contri-
bution score, defined as ‘the larger prediction accuracy change of the labeled cancer type’, 
and calculated for each gene for all classification labels (33 tumor types plus normal).

Schulte-Sasse et al. [78] combined three omics data types, gene-gene interaction net-
work and PPI network from Consensus Path DB (CPDB). DK was integrated both in 
PRE and to assign labels in the dataset. First a gene-gene interaction network is created, 
where some weak correlations are discarded based on DK from PPI. Such graph is an 
input to a GCN which is trained to predict whether a gene is associated with the disease 
or not. To derive a collection of positive and negative labels for genes in the dataset (y - 
true labels), network of cancer genes (NCG), COSMIC, OMIM and KEGG are used. As 
the output of the model and true labels depend on the integrated DK, POSTHOC cat-
egory is also assigned to this model. The authors demonstrate that including the interac-
tion networks with a GCN classifier helps to classify and predict novel genes as well as 
entire disease modules. Using the Layer-Wise Relevance Propagation (LRP) [79], they 
are able to dissect which features drive the classification whether a gene is a driver gene 
or not and to identify, for each gene, neighboring interacting genes that most influence 
its classification. This results in building sub-modules consisting in a directed graph of 
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gene-gene LRP contributions. As an illustration, this revealed that important neighbor-
ing genes of the cancer gene SAPCD2 are enriched for other drivers, suggesting that PPI 
between these genes are important for the classification.

Liu et  al. [80] developed network-embedding based stratification method (NES). 
The method constructs the patient vectors based on the network-embedding of the 
PPI network. More specifically, a struc2vec [81] network embedding approach is used. 
Although this provides relatively good performance in classification of patient subtypes 
from large-scale patients’ somatic mutation profiles, the method lacks interpretability. 
The author do not attempt to analyse inner working of the model, which may be due to 
struc2vec embedding of the input graph, which makes the inference very difficult.

Liu and Xie [82] developed TranSynergy, to predict the synergistic drug combinations 
of cancer therapy. Information from the PPI network, gene dependency, and drug-target 
association are integrated into the model. They proposed a Shapley Additive Gene Set 
Enrichment Analysis (SA-GSEA) with the aim of deconvoluting ‘genes that contribute 
to the synergistic drug combination’. Their SA-GSEA method proceeds by ranking the 
features (i.e. genes) based on these values and then conducting a gene set enrichment 
analysis. This approach offers perspective for therapeutic approach and decisions in the 
context of personalized medicine.

Data enrichment and augmentation driven by relations in the input data. Apart from 
DK extracted explicitly from knowledge bases (e.g. specific pathways), the multi-omics 
data can be enriched or augmented by using relations derived from the input data, for 
instance by calculating correlations between gene expression. Studies described below 
utilise such data enrichment via: co-expression network, co-expression eigengene 
matrices, sample similarity networks or guidance graphs with GLUE (graph-linked uni-
fied embedding). Of note, expert knowledge is required to define or select appropriate 
method.

Huang et al. [83] proposed SALMON (Survival Analysis Learning with Multi-Omics 
Neural Networks). The input to the model consists of mRNA- and miRNA-seq co-
expression eigengene matrices. They are derived from lmQCM algorithm [84], PRE 
step. Patient features: diagnosis age, ER and PR status, copy number and tumor muta-
tion burdens are integrated at a later stage. The model predicts Cox proportional hazard 
ratio (survival) for the TCGA breast cancer dataset. As interpretation method, the per-
turbation procedure measures the importance of each input variable for survival prog-
nosis. Features are ranked according to how much the concordance index (a metric for 
quantifying how survival prognosis models perform) is decreased. In this POSTHOC 
interpretation, the authors performed Gene Ontology (GO) and cytoband enrichment 
from ToppGene Suite to inference the biological implication from the feature ranking. In 
this way, Huang et al. [83] identified that the diagnosis age and PR status along with five 
mRNA-seq co-expression modules are the most determinant features. Genes belonging 
to these leading co-expression modules were further functionally assessed with gene set 
enrichment analysis.

A similar way of determining the contribution of input features can be used to identify 
biomarkers, as illustrated by Wang et al. and their MOGONET model [85]. In MOG-
ONET, DNA methylation, mRNA- and miRNA-seq data are transformed into sam-
ple similarity networks. Each network enters a separate GCN. The omic-specific label 
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distributions are then concatenated and integrated with a view correlation discovery 
network (VCDN), which ‘can exploit the higher-level cross-omics correlations in the 
label space’ [85]. They identified distinct biomarkers for each of the investigated diseases 
and performed gene set enrichment analysis yielding results consistent with previous 
studies.

Another graph embedding of the input was proposed by Cao and Gao [86] in a mod-
ular framework, called GLUE (graph-linked unified embedding). GLUE utilizes prior 
knowledge via a knowledge-based graph, called ‘guidance graph’). The method combines 
omics-specific variational autoencoders with a ‘guidance graph’, which models regula-
tory interactions across omics layers. The method was used to integrate unpaired single-
cell triple-omics data. The nodes in the guidance graph correspond to the features of 
each omics layer, and edges represent signed regulatory interactions.

Xing et al. [87] proposed a multi-level attention graph neural network (MLA-GNN) 
for multi-task prediction. As a first step in the model, the omics data (unimodal, e.g. pro-
teomics or transcriptomics) are converted into a weighted correlation matrix (WGCNA; 
[88]). Built for the full dataset, the WGCNA represents a coexpression network, from 
which an edge matrix is derived. Next, a patient-specific graph can be constructed, 
where the node values are given by the gene expression level in a given sample, and 
edges between nodes are drawn according to the WGCNA analysis. The graph serves 
as input to the first (out of three) graph attention layer (GAT) of the DL model. Features 
from these 3 GAT are then vectorised after a linear projection, and finally fused into a 
single vector, which finally passes through sequential fully connected layers in the pre-
diction module. Finally, a full-gradient graph saliency (FGS) mechanism is implemented 
to interpret the predictions.

Mapping Domain Knowledge as a direct input to DL models. The degree to which a 
gene is essential for cancer cell proliferation is defined as gene dependency [89]. Chiu 
et  al. [90] proposed a DeepDEP autoencoder (AE) to predict gene dependency profile 
based on the representations learned from high-dimensional genomic data, including 
DNA mutation, gene expression, DNA methylation, and copy number alteration (CNA). 
The model includes molecular signatures of the chemical and genetic perturbations from 
MSigDB as unique functional fingerprints of a gene dependency of interest. First, five 
AEs (one for each type of input data) are trained on unlabeled tumor data, then the out-
puts from five encoders are combined and passed to DNN. As one of the AEs is trained 
on fingerprints from MSigDB, which is a DK, we considered the integration as PRE. 
Based on DeepDEP, the authors performed detailed post-hoc analysis including input 
data perturbation, exploration of the latent layers, signature scores and multi-variable 
linear regression.

Explicitly defined architecture

In this section we discuss DL models that use domain knowledge to modify a standard 
densely connected DL model’s architecture in order to improve both biological plausibil-
ity and interpretability (Fig. 3B).

Pathways are used to define connections. Elmarakeby et al. [91] combined ex ante and 
ex post interpretability approaches, proposing a novel neural network architecture - 
pathway-aware multi-layered hierarchical network (P-NET). It was built using a set of 
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3,007 curated biological pathways from the Reactome database. The model predicts dis-
ease state in prostate cancer patients on the basis of somatic mutations and copy number 
alterations data. Encoding the relationships that exist in the Reactome dataset focuses 
the network on interpretability at the design stage (ARCH).

P-NET comprises one layer to encode the genes and five for the pathways. The input 
layer corresponds to the features that can be quantified and passed through the network. 
Three nodes from this layer (representing mutations, copy number amplification and 
copy number deletion) are connected to one node in the subsequent layer. The connec-
tions of the second layer reflect gene-pathway relationships whereas those of the next 
layers are arranged according to parent–child relationships borrowed from Reactome. 
For a given patient, the trained NN will return its probability to have metastatic can-
cer. For each sample, features can be ranked by importance score in a layer-wise man-
ner using DeepLIFT, where sample-level scores are aggregated to obtain the global 
importance [92]. To gain additional insights into the information flow inside P-NET, the 
authors evaluated how a change in input sample label affects the activation of a node.

Deng et al. [93] proposed a pathway-guided deep neural network (DNN) framework 
to predict drug sensitivity in cancer cells, using known biological signaling pathways, the 
expression profiles of cancer cell lines, drug - protein interactions, and drug sensitivity 
datasets. The pathway maps were obtained from the KEGG database. DK was integrated 
into the DNN model via the layer of pathway nodes and their connections to input gene 
nodes and drug target nodes.

Zhao et al. [94] proposed a scalable, and interpretable DL model, called DeepOmix, 
for multi-omics data integration and survival prediction. DeepOmix incorporated prior 
biological knowledge defined by users as the functional module input (such as signaling 
pathways in this analysis). The pathway gene sets were downloaded from the Molecu-
lar Signatures Database (MSigDB) (KEGG and Reactome). DeepOmix integrated multi-
omics data as an input gene layer, where nodes of the gene layer are connected with a 
functional module layer based on the DK. Again, the pathways defined whether there is 
a connection between nodes.

Feng et al. [95] proposed a DL model, called DeepSigSurvNet, based on a set of (46 
selected) signaling pathways from the KEGG database for cancer patients’ survival pre-
diction and outcome. The model identifies the individual patterns of these signaling 
pathways to four types of cancer using gene expression and copy number data (multi-
omics data and clinical factors integrated into the model). Not-densely connected layers 
are followed by CNN with inception modules. For interpretability, Smoothgrad [96] is 
used to assess how perturbation added to the signaling pathways affects the model’s pre-
dictions. This allows scoring the relevance of each pathway for each cancer type. Then 
the distributions of the relevance scores of each pathway between different cancer types 
is compared. The authors noted that striking discrepancies arise among the cancer types 
and also that for a given cancer type only a small subset of the pathways have high rel-
evance scores. This latter observation could be of interest for prioritising drug or drug 
combinations that target these driver pathways.

Zhang et al. [97] used a DL architecture constrained by the 46 pathways, with a path-
way layer that follows the gene layer. Similarly to Feng et al. [95], connections between 
the two layers are sparse, and connect genes only to pathways to which they belong. 
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They trained the model (‘consDeepSignaling’) for predicting drug responses in cancer 
cell lines from the data of dose response and multi-omics (gene expression and copy 
number). The output from the last layer represents the predicted area under the experi-
mental dose-response curve value of the drug effect on a given cancer cell line. By using 
Smoothgrad, they analyze the distributions of the importance scores of the signaling 
pathways from all samples and highlight those important for drug response prediction.

Hao et  al. [98] proposed a Pathway-Associated Sparse Deep Neural Network (PAS-
Net) to accurately predict patient prognosis and describe complex biological processes 
related to prognosis by incorporating curated biological pathways from the MSigDB 
(Reactome). The sparse DL architecture of PASNet modeled a multilayered, hierarchi-
cal biological system of genes and pathways enabling for model interpretability. PASNet 
included a pathway layer where each node indicates an individual biological pathway 
(linked with input genes) and a hidden layer which represented hierarchical nonlinear 
relationships of biological processes into account. The associations between the gene 
layer and the pathway layer were established by well-known pathway databases (e.g., 
Reactome and KEGG).

Another sparsely connected DL model is a sparse Variational Autoencoder architec-
ture, VEGA (VAE Enhanced by Gene Annotations) proposed by Seninge et al. [99]. The 
decoder connections are informed by user-provided biological networks based on gene 
annotation databases (e.g., Reactome). VEGA performance was tested using pathways, 
gene regulatory networks and cell type marker sets as the gene modules that define its 
latent space. VEGA was shown to be useful in understanding the response of a popula-
tion of a specific cell type to a variety of perturbations.

To predict cell states from gene expression profiles, Fortelny and Bock [100] proposed 
Knowledge-Primed Neural Networks (KPNNs) aiming at providing a biologically inter-
pretable DL model. Their approach combines ex ante and ex post explainability methods. 
The fully connected NNs were replaced by networks derived from prior knowledge of 
biological networks, including the signaling pathways and gene-regulatory networks. To 
do this, the authors assumed that most of the regulatory relationships important for the 
biological system of interest had already been discovered in other contexts. In KPNNs, 
each node corresponds to a protein or a gene, and each network edge corresponds to a 
regulatory relationship that has been documented and annotated in biological databases. 
The model was trained based on single-cell RNA-seq data. Of note, contrary to previ-
ously described models, the KPNN architecture allows for skipping layers. As for the 
post-hoc analyses, they focused on the node weights applying a perturbation procedure. 
It quantifies, for each node, how the addition of small noise is reflected in changes in the 
outputs. In this way, they evaluated the global importance of the node. These informa-
tive weights (in absolute value) can therefore be used to identify likely relevant transcrip-
tion factors and/or signaling proteins.

Gene Ontology used to define architectural constraints. Based on terms extracted from 
Gene Ontology (GO), the system hierarchy can be structured. Each GO term is asso-
ciated with a number of genes and gene products, hence genes can be organised into 
a hierarchy of nested gene sets. Multi-scale hierarchical interactions among biological 
entities such as GO terms and genes can be encoded as a list of relations. Below, we 
describe two studies that make explicit integration of GO into ARCH.
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The response of cancer cells to therapy depends on biological as well as chemical fac-
tors [101]. To predict drug responses, Kuenzi et al. [102] developed a DL model, called 
DrugCell, a modular neural network with two branches. The model combines conven-
tional DNN that process compound chemical structures with a Visible Neural Network 
(VNN) processing binary encodings of individual genotypes. The DrugCell system hier-
archy was structured from a literature-curated database. The VNN was guided by a hier-
archy of molecular human cell subsystems, taken from 2,086 biological processes from 
the GO database. In DrugCell, RLIPP [103] analysis leads to the identification of the 
gene embedding network subsystems that most contribute to the cell response predic-
tion. Interestingly, Kuenzi et  al. [102] further exploited their approach and confirmed 
the validity of the hypotheses derived from it. Using cell line data, they demonstrated 
that subsystems identified as important (as evaluated with the RLIPP scores) for the 
response to a given drug can reveal synergy of drug combination. In addition, they fur-
ther showed, using patient-derived xenograft models (PDX) data from a public database, 
how DrugCell can be used to suggest drug combination treatments. DrugCell consti-
tutes a promising example of how analysis of the inner workings of a DL model could 
translate into therapeutic recommendations.

Another model using GO is Factor Graph Neural Network model proposed by Ma and 
Zhang [104]. Each node in the model corresponds to a biological entity such as genes or 
GO terms (i.e., gene nodes and GO nodes), which forms a bipartite graph. The model 
is based on the RLIPP analysis (‘relative local improvement in predictive power’) and 
is used to predict tumor stages of kidney and lung cancers and also to classify kidney 
samples in normal vs. tumor tissues. The method calculating attention matrices allows 
‘capturing multi-scale hierarchical interactions [by assigning] weights to connections 
between different layers’. By investigating the weights in the last hidden layer, the authors 
retrieved e.g. the gene ontologies that contribute most to sample classification.

Gene Regulatory Networks used as constraints for VAEs. In [105], Shu et al. developed 
Deep SEM, a VAE-based model which contains a Gene Regulatory Network (GRN) layer 
in the encoder and Inverse GRN in the decoder. Of note, the weights are shared between 
these layers. GRN consists of target genes and transcription factors and can be recon-
structed based on the representation learnt by the model. DeepSEM is an example of 
nonlinear mapping from the gene expression to GRN activities. Although no database is 
used as DK, certainly the GRN layers added to a VAE architecture can be considered as a 
step forward bio-centric interpretability.

POSTHOC explanations

Although in previous sections we already described models that use DK both in ARCH 
and in POSTHOC phases, here we provide examples that integrate DK only for POST-
HOC purposes, not impacting the model’s design.

A Cox-nnet [106] is an example of an attempt to link biological features or func-
tions to the (hidden) nodes of a DNN model solely via POSTHOC analysis. DK is not 
used in ARCH. Cox-nnet uses a Cox regression as the output layer, extending the Cox-
PH model [107]. The interpretation of the output includes mapping nodes’ weight to 
regression coefficients, t-SNE, the gene set enrichment analysis with KEGG pathways 
and computation of partial derivatives of the output. Results from Cox-nnet compared 
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favourably with those from Cox-PH from a biological perspective, revealing for exam-
ple the importance of the BAI1 gene in the p53 pathway or MAPK1 in several cancer-
related pathways. Importantly, POSTHOC interpretation is executed not only via expert 
(author) evaluation, but systematically using DK about known relations extracted from 
a database.

A frequently used POSTHOC interpretation method is the exploration of the asso-
ciation between latent representations with input covariates (e.g. phenotypic features of 
the patients) [108]. This approach is of particular interest for models such as autoencod-
ers (AEs) and variational autoencoders (VAEs). In these models the input data is com-
pressed into a reduced (latent) representation and then reconstructed back from the 
encoded representation with the least possible error. Due to appealing dimensionality 
reduction abilities, AEs and VAEs are frequently used within the oncology domain (e.g. 
[109–111]). They can be used together with PCA, UMAP [112], t-SNE [113] or other 
algorithms [114] for data visualization, and various clustering methods can be used on 
top of that. POSTHOC analyses can then be performed on the weight parameters and/
or on the compressed data for gaining biological insights on what the model learned. 
As an example, XOmiVAE was develop to solve supervised and unsupervised tumour 
classification tasks [115]. It uses DeepSHAP explanation [116] to explain novel clusters 
generated by VAEs. Results are compared with DK derived from i.a. Reactome and GO.

Similarly, Kinalis et al. [117] propose an AE for clustering analysis of scRNA-seq data. 
They used guided backpropagation (only positive gradients used for the backpass) for 
computing saliency maps. In their model, saliency values are obtained for each cell and 
each gene. Gene and gene set importance scores are then computed by averaging across 
the cells or the corresponding genes, respectively. They use DK in POSTHOC to inves-
tigate the latent space of the AE, comparing obtained representation with the pathways 
(i.e. hematopoietic signatures derived from the DMAP study [118]).

In contrast, some AE based models are being developed but no DK is used in PRE, 
ARCH nor POSTHOC [119–122]. The architecture proposed by Hira et  al. [111] can 
integrate multi-omics data (genomics, epigenomics, transcriptomics). Patient subtyping 
is obtained first by applying a clustering algorithm on the learned latent features. Clini-
cally relevant latent dimensions are identified by building a univariate Cox proportional 
hazards (Cox-PH) model for each of them and clustered into survival subgroups. Based 
on these labels, a Support Vector Machine was trained for allowing survival subgroup 
classification for new samples. With the aim of identifying biomarkers, a linear model 
(correlations) is used to map the embeddings of clinical relevance into the gene space.

Discussion
Prevalence of graph representations

Recent years have brought an increasing number of specialised DL architectures which 
encode the structure of biological relations (Fig. 4A, B). DL supports non-linear model-
ling, while encoding complex structures and relationships, in order to learn informative 
representations at multiple levels of abstraction [123]. Graph Neural Networks (GNNs, 
and Graph Convolution Networks - GCNs) based architectures provide a universal 
support for encoding structural biological knowledge into neural representations. In 
general, GNNs are a spectrum of models which capture graph dependency by passing 
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interaction between nodes that simultaneously take into account the scale, heterogene-
ity, and deep topological information of the input data (Fig. 3A). In a biomedical setting, 
GNNs demonstrate their applicability encoding of topological relations, and mapping 
them into a high-dimensional embedding space [124]. Compared to other DL models, 
the advantage of GNN is the ability to integrate relational data into the inference. With 
the increasing interest in GNNs, we observed a spectrum of new models which combine 
with explainability methods (Figs. 4C, D and 5).

Upward trend of graph representations

Many models were developed to use known gene-gene interactions for prediction, based 
on the assumption that interacting genes tend to produce similar phenotypes. This 
resonates with the development in the field of graph neural networks. We observe an 
increase of GCN/GNN application (1 in 2019, 3 in 2020 and 7 in 2021, Fig. 4D), which is 

Fig. 4  The trends in DL models for cancer. There is an upward trend in using multi-omics data (blue) 
compared to single-omic data (orange) (A) and in the integration of domain knowledge (DK) (orange, green, 
red) (B) based on recent studies for DL in cancer biology. The most frequently integrated domain knowledge 
are pathways (orange) and other DK (red) like functional modules with recent increase in the usage of PPI 
networks. C There are three main categories of DK integration as: input data pre-processing (PRE) (blue), 
architecture definition (ARCH) (orange) and post-hoc comparison (POST-HOC) (green). There is a trend in the 
use of DK in PRE step, i.e. DK is used to enrich or augment the input data, which results in a change of data 
representation; D In recent years, there is an increasing number of specialised DL architectures which encode 
the structure of biological relations. Graph Neural Networks (GNNs, and Graph Convolution Networks - GCNs) 
based architectures were the most prevalent used (green). There is an increase in the number of sparse DNN 
(red) and sparse AE/VAE (blue) models
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associated with integration of PPI networks as DK (1 model in 2020, 4 models in 2021, 
Fig. 4B).

32% of the models which used prior knowledge are GCN models

GNNs and GCNs models are able to combine heterogeneous omics data types with 
graph data representations into a predictive model and learn abstract features from both 
data types. Based on our study, it can be observed that GCNs are the prevalent archi-
tectural choice (Fig. 4D). This is due to the fact that the DK is usually represented as a 
graph (as the phenotype correlates with modules constituting a graph, i.e., sets of related 
nodes).

60% of the GNN/GCNs used PPIs as a DK

Due to non-reticular structure data such as graphs, GCNs are successfully used to 
encode protein-protein interaction networks (PPIs) to predict cancer subtypes, to iden-
tify and classify normal tissue and tumour samples for many types of cancer (60% of 

Fig. 5  Network of relations between key components of the bio-centric interpretability. Network 
representing the relations between domain knowledge (red nodes), DK databases (orange), DK integration 
type according to the proposed taxonomy of bio-centric interpretability(purple nodes), DL models (blue 
nodes) and explainability methods (green nodes). Node size is proportional to the no. occurrences of 
the entity, edge width is proportional to no. pairs observed in the reviewed papers. We observe strong 
connections between: ARCH-pathways-sparse DNN; VAE-latent space exploration; PRE-PPI network-GCN; 
KEGG-pathways
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the GCNs used PPIs as a DK, Fig. 5). GCNs can systematically determine which part of 
the pathway is useful for characterising the tumour. Whether neural networks encoding 
of biological relations as prior knowledge can accelerate biological discoveries remains 
largely unknown.

PPI networks used in PRE to obtain input to GNN

We observe a pattern that GNN/GCN models are associated with the PPI network appli-
cation in the pre-processing stage (PRE). Tabular data containing measured multi-omics 
features are transformed into graphs and then fed into the model. PPI networks are 
derived from databases such as: STRING, CPDB, HPRD, BioGRID (Fig. 5).

Sparse connections as a key design feature

Pathways encoded via sparse connections is an emerging architectural pattern. We 
observed an pattern in the approaches towards which employ sparse connections map-
ping to layers and nodes which have a grounded biological meaning. Domain knowl-
edge integration allows for explicit definition of connections between nodes of DNN. 
To achieve this, the relational biases of pathways is exploited, where relations are 
obtained from knowledge bases (KEGG, Reactome, SIGNOR) and used as a mask within 
the model for removing connections which are not represented. Thus, DK integra-
tion in ARCH allows for better, more efficient and meaningful POSTHOC interpreta-
tion (Fig. 5) as well as biological plausibility. As a result, a new architectural paradigm 
emerges (Fig. 3B), which conforms the architecture to reflect biological relations.

As the organisation of genes in pathways shapes the high heterogeneity of cancers, 
taking into account the topology of gene interactions may further help to characterize 
new gene or disease modules. This is reflected in the prevalence of pathways in DL mod-
els: 48.4% models that integrated DK used pathways (Fig.  4B, C). This corresponds to 
increase in popularity of sparse DNN and sparse AE/VAE models, as the sparsity comes 
from limited connections between layers defined by the pathways (4 in 2020, 5 in 2021, 
Fig. 4D).

Improved support for biomarker discovery

From a machine learning (ML) perspective, predicting clinical outcome can be framed 
as a classification or regression task, and patient or tumor specific subnets can be iden-
tified as distinguishing features. However, the high dimensionality of multi-omics data 
drives an instability in the feature selection process. In this context, stability means that 
with minor data perturbations, the process is able to preserve the same features [125, 
126]. Thus, for minor changes in samples, the biomarker detection method should select 
a consistent/similar gene set. Ideally, the biomarkers can be applied to any sample in 
the dataset. In general, finding the relevant features remains a major challenge in the 
high-dimensional, low sample-size setting, in which features are correlated, either by 
nature (and this is the case in most molecular datasets) or merely by chance (as the num-
ber of samples is relatively small). Finding these truly relevant features is significantly 
more challenging than finding features that provide optimal predictivity. In practice, 
current algorithms tend to focus on the prediction error of the models and usually are 
highly unstable, which limits its applicability in a clinical setting and creates barriers 
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for the interpretation of biomedical insight. Stability of the biomarker discovery can be 
improved by including prior knowledge (i.e. DK) of molecular networks (e.g., pathways 
or PPI networks; [125, 126]).

Research questions ‑ summary

What are the perspectives of interpretability across different DL‑based frameworks 

within the cancer research domain?

Based on our proposed taxonomy we argue that to provide biological interpretability to 
a DL model used in cancer biology, is to enable the domain expert to contemplate the 
data flow in the entire model and decompose its architectural elements into elements 
which maps to a biological reasoning and to the structure of the underlying biological 
mechanisms. We argue that the key explainability property for this class of models is 
decomposability. Each component can be also viewed as a computational step which 
transforms the data representation, e.g. in both an explicit or latent form. Although indi-
vidual computational steps may be mathematically complex, which is inherent to model-
ling a biological system, they should be organised in the models’ architecture in a way 
that supports the decomposability of the inference process. This will build the represen-
tational foundations to deliver bio-centric interpretability.

What are the methods that deliver biological interpretability?

We argue that a promising category of methods are grounded on sparse connections 
between neurons (e.g. KPNN), that include skip-connections between hidden layers and 
that this mechanism supports both bio-centric interpretability and improves the bio-
logical plausibility of the inference. Such architecture combined with state-of-the art 
DL explainability methods allow for tracking back in the network the contribution of 
biologically grounded components to individual outputs. We argue that designing for 
bio-centric interpretability, i.e. performing architectural choices which minimise the 
construction of latent representations which are not easily linked to biological primitives 
should be at the center of any application of DL for cancer.

What are the desirable approaches to integration of domain knowledge in the models’ 

architecture?

DL models can induce a lack of parsimony in data representation (excessive latent fea-
tures) delivering models which are intrinsically opaque. The application of explainability 
methods cannot fully circumvent this limitation, limiting the ability of these models to 
deliver meaningful biological insights. Post-hoc interpretation often leads to confirma-
tion of known existing relations, which is presented as the evidence of the biological 
plausibility of a model. However, it has been documented that even untrained neural 
networks can produce saliency maps that appear meaningful [127]. Thus, we argue 
that bio-centric interpretability may manifest as the ability of the model’s architecture 
to reflect an isomorphism with regard to known biological structures and processes, 
so that these can be explicitly investigated. Integration of DK allows for the definitions 
of these architectures. These elements allows for a better use of explainability methods 
which can rank network components (e.g. nodes activation or edge weights), and return 
references to biologically grounded elements.
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What are the emerging representation paradigms within these models?

Based on our Review we identify two main trends:

•	 Input data is transformed into graphs or network and fed into GNN or GCN
•	 Input data is fed into sparsely connected Deep Neural Network, where connec-

tions are defined by biological relations

We observed that frequently the multi-omics data is transformed prior to the model 
input. The transformation extends beyond computational techniques such as the 
enrichment analysis, and impacts the data representation: tabular data becomes a 
graph or network (Fig. 3). They can be constructed in data-driven manner, e.g. based 
on the correlation within the data, like gene-gene interaction networks, or con-
structed through database DK integration, e.g. input data expressed in nodes and 
edges of known PPI networks (Fig. 3A). Then, the graph representation is processed 
in a GNN or GCN. We observe an upward trend in the usage of such models, in most 
cases using PPI networks as DK.

The second trend focuses more on the architecture of the model, i.e. on the connec-
tion between neurons on the network. The input data still can have tabular represen-
tation and, because the bio-interpretability comes from carefully crafted architecture, 
the ability to track back the signal between output and input is not lost. Intuitively, 
the more times the representation of the data changes in the model, the less inter-
pretable the data flow appears to be. Despite the advantages of graphs in describ-
ing biological relations, they might be not the best solution for a DL model, because 
transforming input data into a graph makes the data flow less transparent (e.g. graph 
to PCA, then to 2D image; convolutions on graphs). Preserving tabular input data 
representation may allow for more transparent post-hoc explanations, provided that 
the model’s architecture reflects biological relations. For such models, pathways and 
functional modules derived from knowledge bases are used for defining the the sparse 
connections (Fig. 3B).

Conclusions
In this systematic review we focused on the biological interpretability of Deep Learn-
ing models that target omics data developed in the domain of cancer biology. We 
introduced the new concept of bio-centric interpretability and defined its key proper-
ties and components. According to a taxonomy centered around this notion, we criti-
cally reviewed recent studies in the context of model architecture, domain knowledge 
integration and biological interpretability methods.

We found that the convergence between the use of external domain knowledge and 
the design of architectures which reflect the structure of known biological mecha-
nisms can deliver: (i) the model explainability required by domain experts, (ii) the 
improvement of the biological plausibility of these models, (iii) the improvement of 
the explanation quality delivered by post-hoc methods and more fundamentally (iv) 
the repositioning of DL models from opaque pure-predictors to explainable mod-
els which can support new biological insight. The two most common approaches to 
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incorporate DK into the model are to use pathways or PPI networks (Figs. 3 and 4). 
They can be used for (i) data augmentation, (tabular mRNA data → graphs based on 
gene interactions) and (ii) to biologically ground the architecture of the model (e.g. 
mapping the connections between nodes). Domain knowledge is most frequently 
represented as pathways and PPI networks, which are derived from public databases, 
such as KEGG and Reactome, exploiting the existing curated biological knowledge. 
The vast majority of reviewed models attempt to interpret the output by post-hoc 
analyses, with a clear pattern: the more domain knowledge is reflected in the model 
design, the more interpretable is the post-hoc analysis. Although expert knowledge is 
always required to interpret the results, we assert that only the integration of explicit 
domain knowledge in the model design may lead to the improvement in understand-
ing the underlying biological mechanisms. As the notion of biological interpretability 
is still largely unformalised, we highlight the need for universal bio-centric interpret-
able methods, so the developed methods are less problem- or application-specific.

In recent years we observe a significant increase of the amount of DL models devel-
oped for cancer research. Gradual improvement of their performance and better 
interpretability will facilitate the adoption of these models to support biomedical infer-
ence. Still there are challenges that need to be systematically addressed. First, with the 
decrease of costs for the acquisition of molecular-level data and accessibility of patients 
screening improving, more data will become available, often most likely as multi-omics. 
Commonly, there will be an imbalance between the feature set p and the sample size n 
(high dimensionality low sample size). DL models in oncology will in many cases need 
to integrate various data modalities in a efficient and traceable manner, at the same time 
handling the p >> n regime.

Second, we emphasise the need for reproducibility and benchmarking for DL mod-
els in cancer. Although publicly available datasets are often used, the selection of sub-
datasets (e.g. only one tumor type selected for modelling), modelling approaches and 
explainability methods vary. As the consequence, the biomarkers and biological relations 
indicated by the models as predictors or important are inconsistent, containing already 
well-known biological facts, potential new discoveries and spurious, false biomarkers. 
At this point, it is challenging to resolve the difference between the last two. The bench-
marks, i.e. datasets with expected interpretations, will allow for the model verification 
and reliable comparison between developed models.

Third, there is a clear direction is set towards domain prior knowledge integration. All 
the studies we reviewed accredit the improved interpretability to the incorporation of 
any form of biological knowledge into the model. We anticipate that the future models 
will exploit known biological relation to the greater extend by combining DL expressivity 
and flexibility with mechanistic modelling methods.

Methods
In this systematic review, we summarise emerging DL models in cancer biology covering 
the representation of biological processes, diagnosis and prognosis, and recent progress 
in biologically informed models. To this end, we started by searching electronic biblio-
graphic databases (PubMed and Web of Science) for relevant studies published between 
Jan 1, 2018, and Jan 1, 2022. We used the following terms: multi-omics and deep learning 
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or computer science or neural networks or network analysis or machine learning and can-
cer or cancer biology. The same search was repeated just before the final experimental 
analysis for completeness (Mar 1, 2022).

We concentrated on deep learning methods applied to cancer or at least to those that 
are linked to straightforward applications in cancer biology using multi-omics data con-
ducted in humans or human cell lines. Furthermore, we also searched the reference lists 
of published trials and the relevant review articles. At last we only concentrated on DL 
applications for omics data including: genomics, transcriptomics and epigenomics data 
from cancer in humans. We excluded studies published in languages other than English, 
studies with insufficient data (i.e., studies where full texts were not available or irrelevant 
studies), case reports, editorial materials, comments and meeting abstracts. Similarly, all 
pre–clinical studies conducted either in animal cell lines or murine models, review arti-
cles, meta-analyses or studies performed on animals and animal cell lines were excluded. 
Papers providing methods that are not directly linked to cancer and functional analysis/
insights on biological processes were excluded. Papers centered around medical imaging 
were excluded (e.g. histopathology and computed tomography) as well papers provided 
models based on DL and ML using clinical/laboratory data alone. Studies based on micro-
array data or developed a sequence-based algorithmic framework were excluded as well.

Using the search strategy, we obtained titles and abstracts of retrieved studies and 
imported them to an endnote. Two authors independently screened identified studies 
on the basis of prespecified inclusion criteria. All potentially relevant articles were read 
in full text and a list of eligible studies was created. Data were manually extracted using a 
structured template and any disagreements were resolved by mutual agreement between 
these two authors during the process of screening and data extraction, or by intervention 
of a third author. A standardised data extraction form was used to extract the follow-
ing fields: authors’ names, year of publication, type of omic data, model’s output, type 
of prior knowledge, prior knowledge databases, type of domain knowledge integration, 
type of deep learning model/architecture and interpretability method used.

The multi-omics data can be represented in various ways in the subsequent compo-
nents of the model. This representation can be changed into a another representation 
in a series of computations steps. It is crucial to understand these representations, how 
they are transformed, and how to communicate such transformation during post-hoc 
inference. We distinguished four bio-centric interpretability components: the integra-
tion of different data modalities, the schema level representation of the model, the inte-
gration of domain knowledge, post-hoc explainability methods. We took the concept of 
interpretability and distinguished three categories: architecture-centric interpretability, 
output-centric interpretability, and post-hoc evaluation of biological plausibility. The 
association of the model to each of the identified groups was done manually based on 
the authors’ expertise.

The selection criteria resulted in 42 studies (see footnote 1). We elaborate on the com-
ponents involved in bio-centric interpretability within DL models, focusing on emerging 
architectural and methodological advances, the encoding of biological domain knowl-
edge and the integration of explainability methods. The dimensions of bio-centric inter-
pretability for recent studies are presented in Additional file 1: Table S1.
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