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Abstract 

Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’ anatomy. 
However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. 
Moreover, some potentially useful quantitative information in medical images, especially that which is not visible 
to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature 
extraction from medical images, which enables quantitative analysis of medical images and prediction of various clini‑
cal endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treat‑
ment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medi‑
cine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, 
especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics 
by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in 
patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature 
engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we 
introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of 
models. Finally, we offer possible solutions to current challenges in radiomics research.

Keywords  Artificial intelligence, Radiomics, Feature extraction, Feature selection, Modeling, Interpretability, Multi-
modalities, Head and neck cancer

Background
Cancer is a devastating disease that affects many people 
worldwide [1]. Cancerous tumors start as a small cluster 
of neoplastic cells that may be located within an intricate 
network of internal tissues and organs, which makes it 
difficult to diagnose such cancers (e.g., nasopharyngeal 
carcinoma) in their early stages [2]. In addition, cancers 
of the same type and stage may behave remarkably dif-
ferently in different patients, so it is critical that methods 
are available to monitor tumor growth, to assist clinicians 
in prescribing anti-cancer treatment, and to assess treat-
ment responses in individual patients [3].
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In this regard, medical imaging, such as computed 
tomography (CT), magnetic resonance imaging (MRI), 
positron emission tomography (PET), and ultrasonogra-
phy (US), is indispensable for detecting the presence and 
monitoring the growth of cancer, and assessing treatment 
responses. Different imaging modalities capture different 
properties of internal organs. For instance, CT detects 
anatomical changes in organs, such as arterial calcifica-
tion [4]; MRI visualizes soft-tissue contrast and the mus-
culoskeletal system [5]; and PET captures functional 
and metabolic changes in tissues or organs [6]. Contrast 
agents are often employed to enhance visualization of 
the contrast between signal intensities in images of nor-
mal and abnormal tissues (such as tumors). Nonetheless, 
clinical judgement based on unaided visual inspection of 
images can be resource intensive, is dependent on physi-
cians’ experience, and may fail to detect all of the infor-
mation within the three-dimensional (3D) volume of a 
tumor.

Radiomics has recently emerged as a promising solu-
tion to these problems, as it involves high-throughput 
extraction and analysis of high-dimensional quantitative 
features from multi-modal medical images [7], which 
enables it to non-invasively capture intratumoral het-
erogeneity [8]. Radiomics-based studies consist of the 
following six steps: image acquisition, image preproc-
essing, image segmentation, feature extraction, feature 
selection, and model construction and evaluation [9]. The 
key steps are those involved in feature engineering (i.e., 
feature extraction and feature selection) and statistical 
modeling (i.e., model construction and evaluation) and 
are the current focus of most researchers’ efforts. Moreo-
ver, good progress in feature engineering and statistical 
modeling has been made in recent years. For example, 
radiomics features are now known to be correlated with 
tumor diagnosis and prognosis, so researchers have used 
the minimal redundancy maximal relevance (mRMR) 
method, the least absolute shrinkage and selection opera-
tor (LASSO), and other technologies to select predictive 
radiomics features. They have also used classifiers such as 
support-vector machine (SVM) and random forest (RF) 
to construct radiomics-based models. Numerous stud-
ies have also constructed radiomics-based models to, 
for example, aid in cancer diagnosis, prognosis, and the 
prediction of treatment responses. These models have 
demonstrated the possibility of developing risk stratifica-
tion and personalized treatment for patients, which could 
lead to the realization of precision medicine. However, 
despite this progress in radiomics, several key problems 
remain to be solved.

In this review, we summarize recent literature on appli-
cations of radiomics for the investigation of tumors, with 
a particular focus on feature engineering and statistical 

modeling methods. We also review aspects that may 
influence model performance, such as feature stability 
and model generalizability; highlight the problems that 
remain to be comprehensively solved (such as imbal-
anced datasets and multi-modality fusion); and make rec-
ommendations to the community for future research and 
development.

Clinical applications based on radiomics
Radiomics‑based cancer diagnosis
Traditional medical imaging plays an important role in 
the diagnosis of cancer, but misdiagnoses and missed 
diagnoses nevertheless occur. These are major problems, 
as they prevent early diagnoses and thus timely clinical 
intervention, thereby decreasing cancer patients’ survival 
rates and cure rates [10, 11]. This problem can potentially 
be addressed by the augmentation of traditional medical 
imaging with radiomics, which can capture phenotypic 
information of tumors [12] and has shown promise in 
differentiating benign and malignant tumors and pre-
dicting treatment responses. Radiomics analysis relies on 
artificial intelligence (AI) algorithms, which can improve 
the accuracy (Acc) of predictive models used for the 
diagnosis and evaluation of treatment responses. In par-
ticular, radiomics applies feature engineering to detect 
intra-tumoral properties in medical images that are typi-
cally undetected during visual inspection of such images 
by physicians. In the following, we provide a comprehen-
sive overview of the utilization of radiomics-based meth-
ods for cancer diagnosis, with a particular focus on three 
distinct perspectives: tumor grading, tumor staging, and 
the classification of malignant vs. benign tumors.

Radiomics‑based tumor grading
Reliable pre-surgical radiomics-based evaluation of 
tumor grading can help to formulate treatment plans for 
patients and can also reduce the recurrence rate and inci-
dence of adverse effects. As shown in Table  1 [13–16], 
radiomics analysis has been explored for tumor grad-
ing (i.e., describing the magnitude of tumor atypia) in 
various cancers like head and neck cancers (HNCs) and 
lung cancers, as it is an efficient non-invasive method 
for pathological examination. Specifically, Wu et al. [13] 
constructed a radiomics signature with kernel principal 
component analysis (KPCA), a RF classifier, and a vari-
ance-threshold, which they used to develop a radiom-
ics model. They then compared the performance of this 
model against that of a clinical model and a combined 
clinical-radiomics model in the analysis of CT images for 
the grading of head and neck squamous cell carcinoma 
(HNSCC) tumors. They found that the combined model 
outperformed the other two models, as their respective 
areas under the receiver operating characteristic curve 
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(AUCs) were 0.97, 0.96 and 0.63. Mukherjee et  al. [14] 
used CT-based radiomics features to develop models for 
HNSCC tumor grading, predicting perineural invasion, 
and lymphovascular invasion, and these models’ AUCs 
were 0.66, 0.70, and 0.65, respectively. Although these 
performances suggest that these models are unsuitable 
for clinical adoption, they may be sufficient to demon-
strate the potential of CT-based radiomics features for 
predicting histopathologic characteristics.

Radiomics‑based tumor staging
Some studies have focused on developing radiomics-based 
models for tumor staging as shown in Table  2 [17–20],  
which classifies the severity of a malignancy accord-
ing to the size of the primary tumor and the extent  
of its spread throughout the body. Traditionally, tumor 
staging information is obtained by performing imag-
ing examinations and pathological biopsies; in contrast, 
radiomics can be applied for preoperative tumor stag-
ing and thus may be more effective. For example, we 
included three radiomics studies [17–19] that addressed  
preoperative tumor staging of different cancers. Ren et al. [17]  
preoperatively distinguished I–II and III–IV stage 
HNSCC tumors by analyzing the radiomics features of 
T2-weighted (T2W) and contrast-enhanced T1-weighted 
(ceT1W) MR images. They found that the radiomics 
signatures based on the ceT1W images (AUC = 0.853) 

best discriminated between stage I–II and stage III–IV 
HNSCC tumors, followed by models based on T2W and 
ceT1W combined images (AUC = 0.849). In the study by 
Gao et  al. [20], a radiomics model based on 30 US fea-
tures was constructed to evaluate tumor staging. The 
study employed ten classifiers and observed that the 
Naive Bayes model attained an AUC of 0.84 in the vali-
dation cohort. Furthermore, tumor staging can be per-
formed using CT imaging, MR imaging, and US imaging. 
It is notable that CT imaging is a less time-consuming 
and less costly option compared to MR imaging; how-
ever, MR imaging is superior in distinguishing soft tissue 
changes from cartilage abnormalities. Notably, US imag-
ing is less expensive than both CT and MR imaging, but 
its resolution is inferior to that of CT imaging. Therefore, 
an appropriate imaging mode should be selected accord-
ing to the research objectives of a given situation.

Radiomics‑based classification of malignant vs. benign 
tumors
Pathological examination is the gold-standard approach 
for the diagnosis of benign and malignant tumors. How-
ever, it is an invasive approach, and radiomics can serve 
as a non-invasive alternative. Table  3 [21–23] summa-
rizes the application of radiomics-based classification of 
benign and malignant tumors. Ho et al. [21] identified 89 
features in MR images that can be used to discriminate 

Table 1  Applications of radiomics-based tumor grading

CT computed tomography, ML machine learning, SM statistical method, HNSCC head and neck squamous cell carcinoma, HNC head and neck cancer, KPCA kernel 
principal component analysis, RF random forest, VT variance-threshold, PCA principal component analysis, LR logistic regression, LASSO least absolute shrinkage and 
selection operator, CV cross validation, SVM support vector machine, ICC intraclass correlation coefficients

Image 
modality

Number 
of 
patients

Cancer Target Number of 
radiomics 
features

Commercial or open-
source software

Method References

CT 206 HNSCC Tumor grading 74 Matlab, Python, IBM 
SPSS software

ML: KPCA, RF, VT selec‑
tion
SM: DeLong test, t-test, 
Chi-square test

[13]

CT 284 HNSCC Tumor grading, 
extracapsular spread, 
perineural invasion, 
lymphovascular inva‑
sion, human papilloma‑
virus status

25–35 Matlab, R ML: PCA, LR, LASSO, 
Hierarchic clustering, 
tenfold CV
SM: Fisher exact test

[14]

CT 878 Lung cancer, HNC Tumor grading Unspecified Matlab, R ML: LR, consensus 
clustering, hierarchical 
clustering
SM: Jaccard index, 
Pearson correlation 
analysis

[15]

CT 211 Laryngeal cancer Preoperative T category 
(T3 vs. T4)

8 ITK-SNAP, PyRadiomics, 
R, Python

ML: LASSO, SVM,
Grid search, CV
SM: t-test (or Mann–
Whitney U test), 
Chi-square (or Fisher’s 
exact) test, ICC

[16]
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between benign and malignant lymph nodes. The most 
discriminating of these 89 features is “Original_glcm_
DifferenceAverage”, which measures the relationship 
between occurrences of pairs with similar intensity values 

and occurrences of pairs with different intensity values. 
In order to identify benign/malignant liver tumors, Yin 
et al. [22] developed a CT-based radiomics model, which 
achieved an average AUC of 0.87.

Table 2  Applications of radiomics-based tumor staging

MRI magnetic resonance imaging, CT computed tomography, US ultrasonography, ML machine learning, SM statistical method, HNSCC head and neck squamous cell 
carcinoma, LASSO least absolute shrinkage and selection operator, LR logistic regression, CV cross validation, ICC intraclass correlation coefficients, SVM support vector 
machine, RFE recursive feature elimination, DT decision tree, KNN K-nearest neighbors, RF random forest, AdaBoost adaptive boosting

Image 
modality

Number 
of 
patients

Cancer Target Number of 
radiomics 
features

Commercial or 
open-source 
software

Method References

MRI 127 HNSCC Preoperative staging 
(stage I–II from stage 
III–IV)

6 ITK-SNAP, Matlab, R, 
SPSS

ML: LASSO, LR
SM: Mann–Whitney U 
test, McNemar test

[17]

CT 154 Esophageal cancer Preoperative staging 10 Matlab, R ML: LASSO, fivefold 
CV
SM: Mann–Whitney 
U test, DeLong test, 
Net reclassification 
improvement, Chi-
square test, ICC

[18]

CT 494 Primary colorectal 
cancer

Preoperative staging 16 Matkab, SPSS ML: LASSO, LR
SM: Mann–Whitney U 
test, DeLong test

[19]

US 157 Bladder cancer Tumor staging 30 ITK-SNAP, Intelligence 
Foundry, SPSS

ML: SVM-RFE, L1-reg‑
ularized LR, Random 
forests, DT, Naive 
Bayes, KNN, Bagging, 
Extremely RF, Ada‑
Boost, Gradient
boosting regression 
trees, fivefold CV
SM: t-test, Chi-square 
test, Z-score, Spear‑
man correlation 
analysis, Mann–Whit‑
ney U test

[20]

Table 3  Applications of radiomics-based classification of malignant versus benign tumors

MRI magnetic resonance imaging, CT computed tomography, ML machine learning, SM statistical method, DL deep learning, HNSCC head and neck squamous cell 
carcinoma, HCC hepatocellular carcinoma, ENE extra-nodal extension, LR logistic regression, LASSO least absolute shrinkage and selection operator, SVM support 
vector machine, NCA neighborhood component analysis, CV cross validation

Image 
modality

Number 
of 
patients

Cancer Target Number of 
radiomics 
features

Commercial or open-
source software

Method References

MRI 130 HNSCC Classify benign and 
malignant tumors, differ‑
entiate ENE

89/6 3D Slicer, Segmentation 
Wizard, Python

ML: Adam optimization 
algorithm
SM: t-test
DL: Multilayer percep‑
tron neural network

[21]

CT 285 HCC and 
hepatic 
hemangioma

Classify benign and 
malignant tumors

13 Matlab ML: LR, LASSO, SVM, 
Multiple-regression

[22]

MRI 69 Parotid lesions Classify benign and 
malignant tumors

4 Matlab, S-IBEX ML: SVM, NCA, CV
SM: Chi-square test, 
Mann–Whitney test, 
Spearman correlation 
coefficient, Z-score

[23]
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The above-described studies have accumulated evidence 
that radiomics analysis has the potential to serve as a non-
invasive diagnostic tool prior to the treatment of cancer. In 
particular, radiomics analysis can increase the Acc and the 
objectivity of tumor staging and grading, thereby serving 
as an auxiliary decision tool for personalizing treatment.

Radiomics‑based cancer prognosis prediction
Radiomics may be a better predictor of treatment 
response, survival, tumor recurrence, or metastasis than 
other conventional methods [24–27]. Therefore, radiom-
ics could assist clinicians to accurately stratify the nega-
tive prognosis risks of patients before treatment, select 
appropriate treatment plans, support the development 
of personalized medicine, and thereby substantially 
improve cancer prognosis. Here, we review the applica-
tions of radiomics-based prognosis prediction from the 
aspects of survival, local recurrence, and metastasis.

Radiomics‑based survival prediction
Table 4 [15, 28–35] summarizes recent radiomics-based 
survival studies that have investigated aspects such as 
death prognosis, all-cause mortality progression-free sur-
vival (PFS), and disease-free survival (DFS). Fh et al. [28]  
developed deep learning models based on radiom-
ics features from planning target volumes (PTVs) and 
gross tumor volumes (GTVs) to simultaneously pre-
dict patients’ death and tumor recurrence. Their model 
based on GTV radiomics features predicted death 
and tumor recurrence with Accs of 85.9% and 72.4%, 
respectively, and overall AUCs of 0.947 and 0.956, 
respectively, whereas their model based on PTV fea-
tures predicted these two endpoints with Accs of 77.7% 
and 74.3%, respectively, and overall AUCs of 0.934 and 
0.932, respectively. A 2020 study [30] predicted the 
PFS time and overall survival (OS) time of oropharyn-
geal squamous cell carcinoma (OPSCC) by using the 
American Joint Committee on Cancer (AJCC) stag-
ing model [which the AJCC built based on their stag-
ing scheme for human papillomavirus (HPV)-related 
and -unrelated OPSCC] as the baseline model and con-
structing a PET/CT-based radiomics model. This study 
found that the average concordance index ± standard 
deviation of its radiomics model was generally higher 
than that of the AJCC model in both HPV-related and 
-unrelated cohorts, which proved that PET/CT radi-
omics features can add prognostic value beyond that 
offered by the AJCC staging scheme. Studies [31–35]  
have also developed radiomics models to predict aspects 
such as DFS, OS, long-term survival, and recurrence-free 
survival, further underscoring the utility of radiomics 
features for predicting cancer survival.

Other studies have focused on determining whether 
associations exist between selected radiomics features 
and specific outcomes of patients following chemoradi-
otherapy. Selecting such features before modeling helps 
to reduce redundancy and improve the predictive per-
formance of models. Parmar et  al. [15] investigated the 
prognostic features of lung cancer and HNC by applying 
consensus clustering to generate 11 and 13 radiomics fea-
ture clusters of lung cancer and HNC, respectively, and 
then located the clusters that were highly correlated with 
cancer prognosis. Subsequently, they constructed mod-
els and evaluated their prognostic performance, which 
revealed that the models generated inconsistent prog-
noses for the two diseases because the clusters were site 
specific.

Radiomics‑based recurrence prediction
Folkert et  al. [29] constructed a multivariable predic-
tive model of tumor-related endpoints (all-cause mor-
tality, local failure and distant metastasis) by integrating 
clinical parameters and fluorodeoxyglucose (FDG)-PET-
based radiomics features; this model revealed that meta-
bolic tumor volume (MTV) was correlated with all three 
endpoints. However, in an independent cohort valida-
tion, the multivariable model with local failure (local 
recurrence) as the endpoint had the highest AUC [0.73 
(P = 0.026)] and was thus the most predictive; in contrast, 
the models with all-cause mortality and distant metas-
tasis as endpoints, respectively, had lower AUCs [0.65 
(P = 0.004) and 0.66 (P = 0.015), respectively] and were 
moderately predictive. There are also radiomics studies 
about cancer recurrence, which are summarized together 
with the above study in Table 5 [28, 29, 36–38].

Radiomics‑based metastasis prediction
Regarding distant metastasis of cancer, one study [39] 
investigated a distant metastasis model based on MRI 
features, extracting a total of 2803 radiomics features 
from the MR images of 176 patients. They then screened 
these features to yield seven features that were used with 
a logistic regression algorithm to form a distant metas-
tasis model that was superior to a clinical factor-based 
model. Subsequently, they constructed a nomogram that 
can help to determine the risk of metastasis for a patient 
and develop personalized treatment plans.

Lymph node metastasis (LNM) is traditionally adopted 
to guide decision-making on prescribed treatments for 
cancer [40]. The occurrence of LNM usually indicates a 
poor prognosis, so it is essential to count in LNM when 
treating tumors. Wang et  al. [34] extracted radiomics 
features from T2W MR images of primary tumors with 
and without 3D peritumoral extensions (3, 5, 10, and 
15  mm, respectively) and incorporated these features 
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with clinicopathological features. They then constructed 
combined models using an SVM classifier and found that 
with the test set, the combined model based on 10‐mm 
peritumoral extensions achieved a higher AUC (0.872) 
in predicting LNM than the combined models based on 
no peritumoral extensions (AUC = 0.720), 3-mm peri-
tumoral extensions (AUC = 0.787), 5-mm peritumoral 
extensions (AUC = 0.793), and 15-mm peritumoral 
extensions (AUC = 0.808). A study published in 2020 [41] 
analyzed the relationship between radiomics features 
extracted from US images and LNM of thyroid cancer. 
This showed that only an irregular shape and microcal-
cification were effective predictors of LNM, with AUCs 
of 0.591 (P = 0.059) and 0.629 (P = 0.007), respectively. 
Table 6 [29, 34, 35, 39, 41–43] shows the main content of 
recent radiomics studies of cancer metastasis.

Radiomics‑based cancer treatment responses prediction
As treatment responses are closely related to OS, seven 
studies [44–50] have investigated the application of 
radiomics for constructing models to predict treat-
ment responses to radical radiotherapy, chemotherapy 
or chemoradiotherapy. For example, one of these stud-
ies [44] used quantitative US (QUS) delta-radiomics to 
monitor the response of HNC to radical radiotherapy. 
K-nearest neighbors (KNN) and Naive Bayes algorithms 
were both used to construct single-, two-, and three-fea-
ture models. The results showed that the single-feature 
Naive Bayes model had the highest Acc in predicting 
responses after 3 months of treatment: its Acc based on 
the QUS characteristics at 24 h after chemoradiotherapy 
was 80%, and increased to 85% when the QUS character-
istics obtained at the fourth week were included.

Table 5  Applications of radiomics-based recurrence prediction

CT computed tomography, MRI magnetic resonance imaging, FDG fluorodeoxyglucose, PET positron emission tomography, US ultrasonography, ML machine learning, 
SM statistical method, DL deep learning, HNSCC head and neck squamous cell carcinoma, OPC oropharyngeal cancer, LOOCV leave one out cross validation, LR logistic 
regression, CV cross validation, DT decision tree, LASSO least absolute shrinkage and selection operator, KNN K-nearest neighbors, SVM support vector machine

Image modality Number 
of 
patients

Cancer Target Number of 
radiomics 
features

Commercial or open-
source software

Method References

CT 188 HNSCC Cancer recurrence rate 107 PyRadiomics, 3D Slicer, 
Matlab

ML: LOOCV
SM: Chi-square test
DL: Deep learning arti‑
ficial neural networks

[28]

FDG-PET 174 OPC The risk of local failure 2–3 Matlab, Stata/MP ML: LOOCV, Cox 
proportional-hazards 
regression, Fine and 
Gray’s proportional 
sub-hazards model, 
LR, fivefold CV
SM: Kaplan–Meier 
analysis, log-rank test, 
Spearman correlation 
analysis

[29]

CT 465 OPC Local recurrence 2 Matlab ML: Bootstrap 
resampled recursive 
partitioning analysis, 
Regression model, 
DT, Cox proportional 
hazards model
SM: Log-rank and 
Wilcoxon test, Effect 
likelihood ratio test, 
Wald test

[36]

MRI 285 HNSCC Local tumor recur‑
rence

20 MITK, SPM, Matlab, R ML: LASSO, tenfold CV
SM: t-test, Chi-square 
test or Fisher’s exact 
test, Delong test, 
Spearman correlation 
analysis

[37]

US 83 Breast cancer Recurrence 4 Matlab, SPSS ML: KNN, SVM
SM: Shapiro–Wilk test, 
t-test, Mann–Whitney 
test, Kaplan–Meier 
product-limit method

[38]
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In addition, a dual-center retrospective study [47] 
was performed to extract radiomics features from the 
MR images of 221 patients before induction chemo-
therapy (IC) and 96 patients after IC, and then calculate 

the delta-radiomics feature values (by subtracting the 
feature values from MR images obtained after IC from 
those obtained before IC) and process them. Subse-
quently, a pre-treatment MRI radiomics model and a 

Table 6  Applications of radiomics-based metastasis prediction

CT computed tomography, MRI magnetic resonance imaging, FDG fluorodeoxyglucose, PET positron emission tomography, US ultrasonography, ML machine learning, 
SM statistical method, OPC oropharyngeal cancer, NPC nasopharyngeal carcinoma, DM distant metastasis, LNM Lymph node metastasis, LOOCV leave one out cross 
validation, LR logistic regression, CV cross validation, mRMR maximum relevance minimum redundancy, LASSO least absolute shrinkage and selection operator, ICC 
intraclass correlation coefficients, PCA principal component analysis, SVM support vector machine, DT decision tree, KNN K-nearest neighbors, RF random forest, 
AdaBoost adaptive boosting

Image modality Number 
of 
patients

Cancer Target Number of 
radiomics 
features

Commercial or open-
source software

Method References

FDG-PET 174 OPC The risk of DM 2–3 Matlab, Stata/MP ML: LOOCV, Cox 
proportional-hazards 
regression, Fine and 
Gray’s proportional 
sub-hazards model, 
LR, fivefold CV
SM: Kaplan–Meier 
analysis, log-rank test, 
Spearman correlation 
analysis

[29]

MRI 176 NPC DM 7 PyRadiomics, Python, 
ITK-SNAP, R, SPSS

ML: mRMR, LASSO, LR, 
Mutual information, 
Bootstrap-resampling
SM: ICC, t-test, 
Kaplan–Meier analysis, 
log-rank test, Fisher’s 
exact test, Chi-square 
test, or Mann–Whit‑
ney U test

[39]

MRI 236 Tongue cancer LNM 15/17/18/25/10 ITK-SNAP, AIMT, 
Python, R, SPSS

ML: PCA, SVM, Cox 
regression analysis, 
fivefold CV
SM: DeLong test, 
Spearman correlation 
analysis, Kaplan–Meier 
analysis, log-rank test

[34]

MRI 346 Rectal cancer LNM 4/5/10 GE Healthcare, 3D 
Slicer, R, SPSS

ML: LASSO, LR, Cox 
analysis
SM: ICC, Wilcoxon test, 
Hosmer–Lemeshow 
test, t-test, Nonpara‑
metric test, Chi-square 
test, and Fisher’s exact 
test, DeLong test

[35]

US 126 Thyroid cancer LNM 91 ITK-SNAP, Ultrosomics, 
SPSS

ML: LASSO, PCA, DT, 
Naive Bayes, KNN, 
LR, SVM, Bagging, 
RF, Extremely RF, 
AdaBoost, Gradient 
boosting DT
SM: t-test, Chi-square 
test or Fisher’s exact 
test

[41]

US 205 NPC LNM 7 GE Healthcare, R, 
Python

ML: mRMR, LR, LASSO
SM: ICC, DeLong test

[42]

PET 76 Primary prostate 
cancer

LNM, DM 22 RaCaT, Python ML: RF, CV, PCA
SM: Chi-square test, 
DeLong test, ICC, 
Z-score

[43]



Page 9 of 33Zhang et al. Military Medical Research           (2023) 10:22 	

delta-radiomics model were generated and trained using 
pre-treatment MRI radiomics features and delta-radiom-
ics features, respectively, to predict the tumor retraction 
response to IC plus concurrent chemoradiotherapy. The 
trained models were then applied to an external valida-
tion set and afforded AUCs of 0.983 and 0.818, respec-
tively, demonstrating their potential utility as references 
for devising cancer-treatment plans. Table  7 [44–50] 
summarizes recent radiomics-based treatment response 
studies.

Radiomics‑based cancer treatment complications 
prediction
Radiation toxicity is an important consideration for treat-
ment optimization, and its accurate prediction allows 
enhanced personalization of treatment plans. Many stud-
ies have investigated adverse effects of radiotherapy and 
chemotherapy on tissues. For instance, radiotherapy for 
nasopharyngeal carcinoma may cause cervical spine oste-
oradionecrosis [51], which is difficult to distinguish from 
bone metastasis by visual inspection of images. However, 
radiomics was demonstrated to have great potential for 
the accurate detection of cervical spine osteoradione-
crosis. For example, Zhong et  al. [52] used a LASSO 
logistic regression algorithm based on tenfold cross-val-
idation of the minimum criteria to select eight relevant 
features, which they used to develop a radiomics nomo-
gram that can distinguish osteoradionecrosis from can-
cer bone metastasis. The AUC of this nomogram reached 
0.72 in the validation cohorts. Xerostomia is the most 
common side-effect of radiotherapy for HNC, and its 
prediction based on radiomics features has been exten-
sively investigated. In a study published in 2018 [53], the 
lesion regions of interest (ROIs) on MR images of parotid 
glands were delineated using the target contour of CT 
images. Then, a reference model that predicts xerostomia 
based only on the parotid gland radiotherapy dose and 
patient-reported xerostomia at the start of radiotherapy 
was fitted. The reference model had an AUC in the exter-
nal validation of 0.65, which was increased to 0.83 by the 
addition of quantified MRI features, thereby improving 
its ability to predict the occurrence of xerostomia.

Most of the radiomics studies conducted to date have 
been retrospective, which can lead to overestimation 
of the performance of radiomics models. In contrast, 
applying these models to prospective studies requires 
a sufficiently large training cohort and strong perfor-
mance. Prospective studies also involve recruiting par-
ticipants in advance without relying on existing patients’ 
data, and conducting long-term follow-ups to evaluate 
the results predicted by the model. While the results of 
these studies cannot be communicated to clinicians and 
participants, they provide a more reliable estimate of 

model performance. The excellent results obtained in 
these studies demonstrate the high generalizability and 
robustness of radiomics, making it a viable tool for clini-
cal applications. The six prospective studies we reviewed 
[35, 38, 43, 48–50] showed acceptable performance of the 
radiomics model, with AUCs ranging from 0.688 to 0.871. 
Although the lowest AUC value of 0.688 [35] suggests 
that the model has limited classification performance, it 
still demonstrates predictive power. The study with the 
highest AUC value of 0.871 [48] also had an acceptable 
number of participants in the prospective cohort.

AI‑driven radiomics studies
The workflow and challenges of radiomics-based stud-
ies are illustrated in Fig.  1, based on which we discuss 
feature engineering and statistical modeling. Feature 
engineering focuses on the reproducibility, and interpret-
ability of features, whereas statistical modeling focuses 
on the generalizability of a given model, imbalanced data 
classification, multi-modality fusion of the model, and 
interpretability of the model. In addition, feature repro-
ducibility is one of the factors influencing model general-
izability. Thus, an improvement in feature reproducibility 
can enhance model generalizability, which means that 
the model can be popularized better in clinical practice.

In this section, we review studies that have offered 
insights into and suggestions on how to solve fea-
ture engineering and statistical modeling challenges in 
radiomics.

Feature engineering
Feature extraction
Feature extraction involves comprehensively quantifying 
the tumor phenotypes based on high-throughput features 
that are hypothetically associated with the tumor micro-
environment. Specifically, after completion of some steps 
of the radiomics workflow defined above, such as image 
acquisition, preprocessing, and segmentation, radiom-
ics features associated with a given research purpose are 
extracted from within two-dimensional (2D) or 3D ROIs 
in images. The selection of ROIs is diverse. The majority 
of radiomics studies discussed non-metastatic carcinoma 
(M0) population, so the primary tumor generally is the 
ROI for feature extraction. On the other hand, there are a 
few radiomics articles that studied the metastatic popula-
tion (M1) [54], therefore it is possible for them to select 
the metastasis site as the ROI for feature extraction. In 
addition, the intra-tumoral region and the peritumoral 
region can also be ROI for feature extraction, and the fea-
tures of the peritumor region may show better prognostic 
performance [55]. Therefore, the selection of ROIs pri-
marily depends on the study population.
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These are generally distinctive types of radiomics fea-
tures of ROIs, such as shape, first-order, and texture 
features (Fig.  2). Shape features define the shape of an 
ROI, such as its sphericity, volume, and surface area. 
First order features describe the properties of histo-
gram, regardless of the spatial relationship [56]. such as 

mean value, median value and entropy. Texture features 
describe the properties of secondary matrix, such as 
gray level co-occurrence matrix features [57], gray level 
run-length matrix features [58], gray level dependence 
matrix features [59], gray level size zone matrix features, 
and neighboring gray tone difference matrix features. 

Fig. 1  Workflow and challenges of radiomics-based studies. The workflow of radiomics involves several key stages including image acquisition, 
image reconstruction and preprocessing, image segmentation, feature extraction and selection, model construction, and internal and 
external validation. However, there are still several challenges that need to be addressed in this workflow such as ensuring feature stability and 
reproducibility, improving model generalizability and interpretability, addressing imbalanced data classification, and improving multi-modality 
fusion in statistical modeling. It is worth noting that feature engineering and statistical modeling are two important components of radiomics

Fig. 2  Categories of radiomics features. Radiomics features including shape features, first order features and texture features. a Shape features 
describe the shape of ROI such as sphericity and volume. b First order features, such as mean value, median value and entropy, are calculated based 
on the histogram to describe the distribution of individual voxels values, regardless of the spatial relationship. c Texture features quantify the spatial 
relationship between voxels, which obtained from various matrix types, such as gray level co-occurrence matrix features, gray level run length 
matrix features, gray level dependence matrix features, gray level size zone matrix features, and neighbouring gray-tone difference matrix features
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It follows that textural features can quantify the spatial 
relationships between voxels. Furthermore, radiom-
ics features can be extracted from original images, log-
sigma-filtered images, and wavelet-filtered images, with 
those extracted from the latter two types of images gen-
erally referred to as higher-order features.

Generally, 2D features are extracted from single-layer 
images containing the most typical or largest cross-sec-
tion of a lesion, whereas 3D features are calculated from 
an entire ROI volume. Thus, compared with 2D features, 
3D features contain more tumor information but may also 
contain more interference due to, for example, noise and 
variations in slice thickness, and are less easy to obtain, 
slower to calculate, and more labor-intensive to generate 
(due to multiple-layer contouring being required) [60].  
As a result, whether to use 2D or 3D image features 
remains a topic of debate. Wan et al. [61] evaluated the 
diagnostic performance of 2D and 3D radiomics features 
based on MR images of solitary pulmonary lesions (SPL). 
They found that the latter features performed better than 
the former features (AUCs: 0.824 vs. 0.740) and that 
combined features did not show better performance than 
either type of features alone (AUC = 0.813). Xu et al. [62] 
found that 3D radiomics features showed better predic-
tive performance than 2D radiomics features in a study 
of multi-organ cancer, as unlike the latter, the former was 
significantly correlated with total lesion glycolysis, tumor 
volume, and staging [63]. However, Shen et al. [60] dem-
onstrated that compared with 3D radiomics features, 2D 
radiomics features of CT images of non-small cell lung  
cancer (NSCLC) performed slightly better, and Zhu et al. [64]  
reached the same conclusion. Both studies have attrib-
uted these performance discrepancies between 2 and 3D 
radiomics features to the inconsistent resolution of CT 
images. However, there is no conclusive evidence that 2D 
features are superior to 3D features.

Researchers have also been searching for new quantita-
tive imaging features to enrich radiomics investigations. 
Beichel et  al. [65] evaluated the ability of 17 features of 
PET images, such as standardized added metabolic activ-
ity and rim average (RA; the mean of uptake in a two-
voxel-wide rim region around an ROI), to predict the 
DFS of HNC patients. They found that RA may help dif-
ferentiate between true- and false-positive recurrences 
of HNC. Buizza et al. [66] devised a new set of PET/CT 
image radiomics features (longitudinal patterns) to cap-
ture changes in the intensity at various distances from 
the border of a tumor. This set of radiomics features is 
superior to traditional radiomics features, as the latter 
are extracted from a defined ROI, meaning that useful 
information elsewhere in a tumor is often undetected. 
Moreover, there are two studies [44, 47] that developed 
a new form of radiomics features. That is, the researchers 

extracted features from images before and after treat-
ment and then subtracted the post-treatment features 
from the pre-treatment features to obtain the radiomics 
features that were used to predict treatment response. 
These features can help to quantify peritumoral infor-
mation that is complementary to intratumoral radiomics 
features. However, these quantitative imaging features 
are modality-dependent and have not been standardized, 
so they cannot yet be used as conventional radiomics 
features.

At present, radiomics studies typically extract large 
numbers of features from images using commercial or 
open-source software or software package, such as PyRa-
diomics [67], 3D Slicer [68], and Imaging Biomarker 
Explorer [69]. These radiomics features can be calculated 
by corresponding formulas. The Image Biomarker Stand-
ardization Initiative [70] was established to standard-
ize the extraction of image features and thereby ensure 
the repeatability of feature extraction across different 
platforms.

Feature selection
Typically, hundreds of radiomics features are extracted as 
modeling candidates, and if all of these were used to con-
struct a model, it would have excessive feature dimen-
sions and be too complex, meaning that it would over-fit 
data and thus have low generalizability. Furthermore, 
most extracted radiomics features are highly correlated 
with each other, so reduction and feature selection must 
be performed before modeling. This is achieved using 
radiomics feature-selection methods, which select the 
most relevant features and remove the redundant fea-
tures from a large number of features. Feature reproduc-
ibility should be considered during feature selection, as 
the aim of the latter is to obtain the optimal feature sub-
set or feature representation that has the maximum cor-
relation with the endpoints and the minimum correlation 
with other features [71].

Feature selection methods comprise filtering, embed-
ded, and wrapper methods (Fig.  3). Filtering methods 
rank features according to the repeatability and their 
relevance to the endpoints. Then, the top ranked fea-
tures or those that are above a specified threshold 
value are selected or excluded. Independent features 
are filtered by using the Pearson correlation method 
to exclude features with, for example, correlation coef-
ficient > 0.75 (or some other pre-determined thresh-
olds of correlation coefficient). Thus, in studies (e.g., 
[72]) that have used the Pearson correlation method to 
assess the correlation between tumor volume and radi-
omics feature values, highly volume-correlated features 
that meet a Pearson’s correlation threshold have been 
removed. Another filtering method is mRMR method 
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[73], which aims to identify the best subset of fea-
tures, maximize the relevance between subset and tar-
get variables, and minimize the redundancy between 
features based on mutual information. Hu et  al. [74]  
used the mRMR method for dimensionality reduction in 
a radiomics study of nasopharyngeal carcinoma. Other 
filtering methods that have been used are Relief [75],  
Student’s t-test [76], and Chi-square test [77]. In addi-
tion, Parmar et  al. [78] examined 14 filtering methods 
and found that features selected using the Wilcoxon 
test showed high stability (stability = 0.84 ± 0.05) in their 
training cohort. Wrapper methods employ model per-
formance as a criterion to judge the quality of features or 
a feature subset; that is, they gradually retain or remove 
several features and finally select the feature subset that 
enables a given model to achieve optimal performance. 
For instance, recursive feature elimination (RFE) is widely 
used in radiomics: it generates a subset of features, itera-
tively constructs a model from the current feature sub-
set, obtains the degree of importance of each feature, 
removes unimportant features, and retains the features 
with the best performance [79]. Yu et  al. [80] adopted 
RFE for feature selection in their multiphasic CT-based 
radiomics analysis to differentiate benign and malignant 
parotid tumors, and used multiple methods for feature 
dimensionality reduction. In contrast to filtering methods 

and wrapper methods, embedded methods perform fea-
ture selection and model training simultaneously. First, 
a classifier obtains the weight coefficient of each feature 
after training, and then these coefficients are evaluated 
by a specific model to select the best feature, i.e., the 
feature is directly selected by the model. LASSO [81] is 
a commonly used embedded method that applies regu-
larization to remove redundant features and retains the 
most relevant features. However, LASSO tends to ignore 
the pairwise correlations of features [82], so it must be 
combined with other feature redundancy elimination 
methods to enhance model reliability. In most radiomics 
studies, feature selection has been conducted via mul-
tiple steps using a combination of methods focused on 
different feature characteristics. For example, in a study 
of nasopharyngeal carcinoma [83], intraclass correlation 
coefficients (ICC) were first used to evaluate inter- and 
intra-observer agreement, and features with high repro-
ducibility were selected. Then, the Wilcoxon rank sum 
test was used to select the radiomics features that statis-
tically differed between regions of lymphatic infiltration 
and regions of non-lymphatic infiltration. Finally, LASSO 
was used to select the most relevant and independent 
features from a training set.

The feature selection methods described above are 
supervised methods. However, researchers have also 

Fig. 3  Feature selection. Feature selection methods including filtering, wrapper, and embedded. a The filtering methods rank the features 
according to a certain characteristic or correlation, and specify a threshold value or directly select the top ranked features. b The embedded method 
adopts the way that the feature is directly selected by the model. The model obtains the weight coefficient of each feature after trainings and 
selects the best feature according to the coefficient. c The wrapper methods take model performance as a criterion to judge the quality of features 
or feature subsets, and gradually retain or remove several features
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employed unsupervised methods, such as principal com-
ponent analysis (PCA) [84], and t-distributed stochas-
tic neighbor embedding [85]. However, most radiomics 
studies have implemented supervised methods, so unsu-
pervised methods are not reviewed here.

Feature reproducibility
Reproducibility is a measure of the variability of repeated 
measurements of the same or similar quantitative imaging 
biomarkers in a real clinical environment and is affected 
by external factors that cannot be strictly controlled, such 
as operators, measurement systems, and measurement 
equipment [86, 87]. Thus, reproducibility represents 
stability, so radiomics studies must ensure that the radi-
omics features they use have high reproducibility, such 
that their models generate similar classification results 
in different clinical environments. The values of features 
are affected by all of the steps prior to radiomics analy-
sis, including image acquisition and preprocessing [88].  
Therefore, during research, appropriate treatment should 
be performed as far as possible from the source of vari-
ation to obtain stable features with high reproducibility. 
Based on the radiomics workflow, we discuss the stability 
of features in terms of image acquisition, image preproc-
essing, characterization or segmentation of tumor areas 
of interest, and feature selection (as shown in Fig. 4).

Features are extremely sensitive to changes in acquisition 
details, even two images of the same tissue may yield dif-
ferent results due to differences in acquisition details [89].  
This sensitivity usually affects the generalization per-
formance of a final model. Balagurunathan et  al. [90]  
conducted a test–retest study of lung CT images and found 
that the concordance correlation coefficient (CCC) ≥ 0.9 
of radiomics features was only 30.14%. As it is unlikely 
that a tumor changes within a short period, these unsta-
ble radiomics features might have been due to the different 
postures of patients during rescanning. Midya et  al. [91]  
found that image acquisition parameters (i.e., tube cur-
rent and noise index) and reconstruction techniques 
strongly affected the reproducibility of CT-based radiom-
ics features. There is inevitable noise interference in image 
acquisition, and Tu et al. [92] found that in the presence of 
the quantum noise inherent in CT images, the “ShortRun-
HighGrayLevelEmpha”,  “ShortRunLowGrayLevelEmpha”, 
“LowGrayLevelRunEmpha”  and  “LongRunLowGrayLev-
elEmpha” features were the most stable, whereas the cluster 
shadow and maximum probability features were the most 
unstable. Image noise can also be reduced by increasing the 
tube current, as this increases the reproducibility of radi-
omics features [91].

Image reconstruction has a strong influence on  
the stability of radiomics features. For example, the 

filtered back-projection and iterative methods com-
monly used in radiomics research decrease the stabil-
ity of radiomics features. Abundant noise is generated 
by filtered back-projection methods, but this can be 
removed (without changing noise texture) by recon-
struction using deep-learning neural networks [93]. 
Yan et al. [94] explored the influence of reconstruction 
settings on textural parameters and found that they 
were influenced more by grid size than by the number  
of iterations or the full width at half maximum.  
Galavis et al. [95] determined that in different acquisi-
tion modes and using different reconstruction param-
eters, entropy-first order, energy, maximal correlation 
coefficient, and low-gray level run emphasis parameters 
exhibited small variations, which means that they have 
good reproducibility and can be considered good candi-
dates for automatic tumor segmentation. Prayer et al. [96]  
explored the reproducibility of CT radiomics features 
of fibrosing interstitial lung disease (fILD) and found 
that slice thickness had a more significant impact than 
reconstruction kernels on the reproducibility of fea-
tures between and within scanners. Compared with 
thin slices, thick slices are more appropriate for meas-
uring tumor volume and volume changes [97], as thin 

Fig. 4  Influencing factors of feature reproducibility. The alteration 
of image acquisition details among the five influential factors 
can significantly affect the extracted features, resulting in varying 
outcomes. The stability of radiomics features is highly influenced 
by image reconstruction techniques. The commonly used filtered 
back-projection and iterative methods in radiomics research tend to 
decrease the stability of radiomics features. The test–retest strategy 
can be an effective tool in reducing the variability caused by image 
acquisition and reconstruction. The choice of ROI segmentation 
methods such as manual, semi-automatic, and automatic, and the 
size of ROI can contribute to different levels of feature reproducibility. 
Moreover, inter-machine reproducibility has a substantial influence 
on the degree of feature variation. ROI region of interest
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slices increase noise levels, which can obscure texture 
features. However, thick slices reduce noise levels, but 
it also blurs the image.

Table  8 [95, 96, 98–102] lists studies that have inves-
tigated the reproducibility of radiomics features from 
the perspectives of scanner models or reconstructed 
environments and have focused on the identification of 
reproducible features. However, the reproducibility of 
these radiomics features cannot be directly compared or 
used.

Voxel-size resampling is a preprocessing step in image 
acquisition and reconstruction. It is important in CT, 
where voxel sizes affect a considerable proportion of 
radiomics features [103]. Voxel-size resampling can be 
accomplished using various interpolation algorithms, but 
these may use different resampling voxel sizes and box 
widths and thus may modify radiomics feature estimates 
in different ways [104]. Therefore, image interpolation 
should be performed at the same voxel size as much as 
possible. In addition, resampling may not be sufficient  
for some texture features. Thus, Shafiq-Ul-Hassan et al. [105]  
enhanced feature robustness through voxel size normali-
zation, and Jensen et al. [106] corrected variability across 
different volumes of interest by converting CT images 

into parametric maps with a fixed voxel size. Bologna 
et al. [107] examined MR image radiomics and found that 
image preprocessing methods (Z-score normalization, 
resampling, Gaussian filtering, and bias field correction) 
significantly increased the robustness of radiomics fea-
tures to different sources of variability (time of repetition 
and echo, voxel size, random noise, and intensity non-
uniformity). However, Li et  al. [108] found that image 
resampling, intensity normalization, and N4 bias field 
correction did not significantly affect the reproducibility 
of radiomics features, but the ComBat harmonization 
method removed most scanner effects and improved the 
reproducibility of features.

ComBat harmonization is a normalization technique 
that is widely used in radiomics, as radiomics features are 
easily affected by differences in acquisition equipment 
and reconstruction parameters, especially in multicenter 
studies. ComBat harmonization reduces these differ-
ences to lessen their impact on features, which enhances 
feature reproducibility [109]. For example, ComBat 
harmonization effectively eliminated the differences in 
MR radiomics feature values caused by heterogeneity 
of multicenter techniques, thus preventing reproduc-
ibility being affected [110]. As ComBat harmonization 

Table 8  The summary table of literature focused on extracting reproducible features

fILD fibrosing interstitial lung disease, ICC intraclass correlation coefficients, CCC​ concordance correlation coefficient, AUC​ area under receiver operating characteristic 
curve, COV coefficient of variation, GLCM grey level co-occurrence matrix

Modality Disease Variability Statistical indicators Reproducibility summary of 
radiomics features

References

PET Drenal gland carcinoma, Lung, 
Epiglottis, and esophagus 
cancer

Acquisition modes
Reconstruction parameters

% Diff =
100×(X−Xmean)

Xmean

Entropy-first order, energy, 
maximal correlation coef‑
ficient, low gray level run 
emphasis

[95]

CT fILD Scanners
Reconstruction settings 
(reconstruction kernels, slice 
thicknesses)

ICC Radiomics of fILD are highly 
repeatable for constant 
reconstruction parameters in 
a single scanner, intra- and 
inter-scanner reproducibility 
are severely impacted by 
alterations in slice thickness 
more than reconstruction 
kernel

[96]

CT Lung, liver and kidney tumors Segmentation variability ICC Reproducibility: shape 
features > first order fea‑
tures > GLCM

[98]

CT (Phantom) Lung cancer CT acquisition parameters
Scanners

CCC, AUC​ Tumor-mass, sigmoid-offset-
mean, gabor-energy

[99]

CT Liver tumor CT radiation dose
Reconstruction settings 
(reconstruction section thick‑
nesses, reconstruction kernels, 
reconstruction algorithms)

Hierarchical clustering Reproducibility: shape features 
(including the maximum axial 
diameter and volume) > other 
features

[100]

MRI Cervical cancer Scanners
Segmentation readers

ICC Reproducibility: shape fea‑
tures > other features

[101]

MRI (phantom) Tumor Scanners ICC, COV Reproducibility: first-order 
features > other features

[102]
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is a data-driven approach, it can be applied directly to 
extracted image features (i.e., without the need for 
retrieval of images), but it is recommended to be applied 
only after careful examination of the distribution of 
eigenvalues at the sites to be aggregated [111]. Crucially, 
ComBat harmonization eliminates the center effect while 
preserving some biological information associated with 
radiomics features [56, 112]. ComBat harmonization 
techniques have also been used in PET or CT radiom-
ics studies. Figure 5 shows the basic workflow of ComBat 
harmonization.

Apart from applying ComBat harmonization, apply-
ing the same and appropriate reconstruction methods 
as much as possible and conducting test–retest studies 
are other ways to reduce variability in image acquisi-
tion and reconstruction. Manual segmentation remains 
the first choice in radiomics research; however, it may 
be replaced gradually by automatic and semi-automatic 
segmentation, given the continuous improvements in 
the Acc of the latter methods. Compared with manual 
segmentation, automatic segmentation reduces inter-
observer variability, leads to better reproducibility and 
robustness, and is faster [113, 114]. The reproducibility of 
manual segmentation can be increased by using multiple 
experts to perform segmentation. Usually, segmentation 
was performed by two or three experienced experts and 
then evaluated by comparing ICC. In addition, contour-
ing protocols or guidelines can be used to reduce inter-
expert variation in target volume delineation [115]. Gitto 
et al. [116] used a time-saving method based on geomet-
ric transformations of an ROI, which can simulate multi-
ple manual delineations, to evaluate PET/CT radiomics 
feature stability. They found that over 76% of radiomics 
features were stable to ROI transitions. However, Jensen 

et al. [88] emphasized that ROI size must be considered 
in radiomics, as MR-derived features are more robust 
than CT-derived features to changes in ROI size. Denzler 
et  al. [117] found by examining phantoms that a larger 
ROI corresponded to a higher percentage of intensity fea-
ture stability and suggested that non-contrast-enhanced 
CT lung images exhibit tissue- and disease-specific radi-
omics feature stabilities.

New feature-selection methods have also been devel-
oped to improve stability. Bologna et al. [118] developed 
a method that can be used to assess feature stability and 
perform preliminary feature selection based on a single 
acquisition and an ROI. Yan et al. [119] devised a novel 
method, named stability selection supervised PCA, that 
identifies stable features from radiomics big data and 
applies dimension reduction to achieve right-censored 
survival outcomes. Lam et al. [120] constructed a selec-
tion algorithm that determines optimal feature selec-
tion combinations. This algorithm also ensures selected 
features to have good AUCs and stability scores. Feature 
output stability is assessed on the basis of 10 iterations, 
and the stability scores are quantified by a frequency-
based criterion. The retained test dataset for each itera-
tion is used to evaluate the AUC. The product of the two 
scores for each feature selection combination is deter-
mined, and the combination with the highest score prod-
uct represents the optimal feature selection combination. 
Flouris et al. [89] developed a CT simulator that recon-
structs images under different noise levels using different 
reconstruction algorithms, which may have novel appli-
cations in automatic processing of multicenter datasets.

Compared with features with low reproducibility, fea-
tures with high reproducibility exhibit greater resilience 
to environmental changes. Radiomics studies usually 

Fig. 5  Workflow of ComBat harmonization. The multicenter data is obtained, and then the features in the images are extracted. The differences of 
the feature values are harmonized to obtain the normalized features
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quantify the reproducibility or stability of features using 
several types of indicators, such as ICC, coefficient of 
variation (COV), or CCC. These indicators are commonly 
used to measure the inter-observer stability of radiom-
ics features but may also be used to perform dimension 
reduction for feature selection (as mentioned in the 
subsection: Feature engineering). ICC and CCC are the 
most commonly used indicators, for which threshold val-
ues are typically assigned to allow the relative stability of 
features to be determined. However, there is no consen-
sus on the threshold values for these two indicators, and 
ICC values obtained from a test–retest analysis cannot 
be directly compared with those obtained from an inter-
observer analysis [121]. Furthermore, the COV index is 
often used to provide information on the variability of a 
feature measurement unit [121].

Feature interpretability
Radiomics mining is entirely data-driven and interprets 
imaging data quantitatively rather than qualitatively, 
meaning that it can obtain much information that is dif-
ficult to obtain visually. Radiomics features can also be 
well defined at a mathematical level, which endows them 
with a certain level of interpretability. However, there is 
a lack of interpretability of radiomics features at the bio-
logical level, which may limit the application and devel-
opment of radiomics in medicine. In recent years, there 
has been an increase in radiomics studies based on deep 
learning, and deep learning-based radiomics models can 
outperform conventional radiomics models [122, 123]. 
However, deep learning-based radiomics is a “black box”, 
as deep features do not have accurate formulations and 
definitions and thus cannot be conceptualized. Moreover, 
although deep features can be explained at the feature 
level by methods that link them to traditional radiomics 
features and semantic features [124], the interpretability 
of deep features remains low. In this part, we focus on the 
interpretability of traditional radiomics features.

Although some studies (such as those described in the 
clinical applications based on radiomics section) have 
demonstrated the predictive and diagnostic power of 
radiomics in applications related to cancer, the interpret-
ability of radiomics features is limited and does not meet 
the needs of clinical experts. Therefore, associated bio-
logical backgrounds must be supplied with radiomics fea-
tures to increase their interpretability. As shown in Fig. 6, 
this is generally achieved via three approaches: by deter-
mining the biological significance of features, by quanti-
fying tumor heterogeneity, and by developing methods to 
improve feature interpretability.

Radiomics features provide information about a can-
cer’s phenotype and a tumor’s microenvironment that 
is distinct from and complementary to other data, such 

as clinical and genomic data [8]. Aerts et al. [125] used 
gene set enrichment analysis to compare radiomics 
features with gene expression profiles and found that 
the features were significantly correlated with differ-
ent biologic gene sets. Moreover, Rifi et al. [126] found 
that there were significant differences in the radiom-
ics features between different cell lines, suggesting that 
features can be grouped according to their behaviors. 
As radiomics features themselves contain information 
relevant to a given research objective, and this informa-
tion may be related to gene expression, identification of 
this information can offer biological perspectives that 
are not offered by traditional imaging.

Identification of tumor heterogeneity during tumor 
treatment can help evaluate the effectiveness of treat-
ment and thus guide treatment planning, and also 
reveals the individuation of a patient’s tumor. Therefore, 
exploring the association between tumor heterogene-
ity and texture features can enhance the interpretabil-
ity of radiomics features. Some first-order histogram 
features such as kurtosis, skewness, percentiles, and 
their respective changes are reliable quantitative prox-
ies of tumor heterogeneity and more directly corre-
lated than other features with potential physiological 
structural changes that occur during the progression of 
both treated and untreated tumors [127]. However, one 
disadvantage of histogram-based estimation of tumor 
heterogeneity is that it ignores the spatial structure of 
a tumor [128]. Wang et  al. [129] divided patients into 
groups according to their radiomics scores and found 
that the tumor immunity and tumor microenvironment 
of the high- and low-scoring groups were different, 
indicating that radiomics could reflect the heterogene-
ity of tumors. Similarly, other researchers found that 
CT features based on the fourier transform are poten-
tially useful for quantifying tumor heterogeneity in 
lung cancer patients and that radiomics features asso-
ciated with tumor heterogeneity are correlated with 
OS [130]. Moreover, texture features describe the dis-
tribution pattern of voxels and can be used to quantify 
intra-tumor heterogeneity [131]. Thus, radiomics fea-
tures can be employed to quantify tumor heterogeneity, 
and the correlation features of histograms can enhance 
understanding of tumor heterogeneity.

Several methods have been developed to improve the 
interpretability of radiomics analyses. Vuong et al. [132] 
devised a method for creating radiomics feature-activa-
tion maps that allows identification of spatial-anatomical 
locations responsible for signature activation based on 
local radiomics. Kuthuru et  al. [133] adopted a diction-
ary learning approach to derive visually interpretable 
imaging features. In addition, Luo et  al. [134] proposed 
an approach which enables exploration of hierarchical 
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relationships between biophysical features based on a 
Bayesian network.

In addition to the above-described three approaches, 
the literature suggests another approach that can be 
used to improve the interpretability of radiomics features 
from a biological or clinical-physiological perspective. 
This approach is based on the fact that the semantic fea-
tures of clinical reports may be more explanatory than 
traditional radiomics features. Therefore, quantifica-
tion of explanatory semantic features and integration of 
the resulting quantities into a radiomics framework may 
improve the overall interpretability of radiomics from a 
clinical-physiological perspective. For example, in a 2021 
paper by Choi et  al. [135], an interpretable spiculation 
feature based on spiculation quantification was used for 
radiomics modeling. The model achieved an AUC of 0.82 
on the Lung Image Database Consortium dataset and an  
AUC of 0.76 on a LUNGx dataset. In 2022, Choi et al. [136]  
released a large-scale dataset, the Clinically-Interpretable 
Radiomics Dataset, which focuses on features on the sur-
face of pulmonary nodules such as spiculation or lobula-
tion and sharp or curved spikes, as these features can be 

clinically explained. For example, the formation of spic-
ulation can be explained by the proliferation of fibrous 
connective tissue caused by the infiltration of or stimula-
tion of surrounding tumor cells.

Statistical modeling
After feature engineering, a suitable model is devel-
oped based on the selected features. Researchers can 
choose a single machine learning algorithm to gener-
ate a model and then evaluate its performance, or use 
several algorithms to generate various models and then 
compare their performance to identify the best model. It 
is currently believed that no algorithm is the best in all 
scenarios, so researchers must choose the appropriate  
algorithm for a given scenario, which may be an SVM [137],  
a logistic regression [138], a KNN [139], a decision tree 
(DT) [140], a RF [141], or an extreme gradient boost-
ing (XGBoost) algorithm [142]. In recent years, due to 
advancements in deep learning technology, researchers 
have increasingly used deep learning methods to con-
struct models.

Fig. 6  Three pathways of improving feature interpretability. The interpretability of radiomics features at the biological level can be enhanced by 
providing information about cancer phenotypes and tumor microenvironment, quantifying tumor heterogeneity, and a number of methods of 
improving interpretability
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We summarize the strengths and limitations of some 
algorithms and classify them into machine learning 
methods, deep learning methods and statistical meth-
ods. In the second part of this paper, we extract vari-
ous algorithms from the references. Table  9 focuses on 

some common algorithms in these references. Statistical 
methods are often used to evaluate the data differences 
between training sets and validation sets, and the dif-
ferences between survey groups. In addition, Kaplan–
Meier analysis and log-rank test are generally combined 

Table 9  Strengths and limitations of commonly-used models

ML machine learning, SM statistical method, DL deep learning, PCA principal component analysis, mRMR maximum relevance minimum redundancy, LASSO least 
absolute shrinkage and selection operator, CV cross validation, SMOTE synthetic minority over-sampling technique, LR logistic regression, SVM support vector 
machine, KNN K-nearest neighbors, DT decision tree, RF random forest, CNN convolutional neural network, ANN artificial neural network, Acc accuracy

Type Method Strengths Limitations

ML PCA It remains most of the main information and has 
simple calculation process

It would lose some important information and the 
Interpretation is poor

mRMR It is suitable for handling multiple classification tasks The correlation between feature crosses and target 
variable is ignored

LASSO It is a good solution for solving multicollinearity prob‑
lems, and the results are easy to interpret

It tends to select one of a set of highly correlated 
features

CV It can evaluate the model more reasonably and 
accurately and obtain more useful information from 
limited data

The computation is increased

SMOTE The overfitting problem of simple over-sampling is 
overcome

It requires repeated adjustment of important param‑
eters

LR It has low computation cost, fast computation speed, 
and is easy to understand and implement

It only handles binary classification tasks and is easy to 
underfit

SVM It can solve high-dimensional problems and has 
strong generalization ability

It can only handle binary classification tasks (conven‑
tional SVM) and the efficiency of training large sample 
is low

KNN It is suitable for nonlinear classification, and has high 
Acc

It requires a lot of memory, and when the sample is 
imbalanced, the deviation of prediction is large

DT It can be analyzed visually, and the running speed is 
fast

It is easy to overfit and overlook the correlation of 
attributes in a dataset

RF It is suitable for handling high dimensional data, and 
the ability to adapt to datasets is strong

It is not good at dealing with low dimensional data, and 
it is much slower than DT

Cox regression model It has great flexibility and no requirement on data 
distribution

The best fitting effect for each data may not be 
achieved

Naïve Bayes It is easy to understand the interpretation of the 
results, and performs well on small datasets

It is sensitive to the form of input data

DL 3D-CNN It is easy to handle high-dimensional data, and the 
feature extraction process is automatic

It is difficult to interpret results and lots of valuable infor‑
mation may be lost

ANN It has high classification Acc and strong robustness 
and fault tolerance

It is difficult to interpret results and requires a lot of 
parameters

SM t-test It is easy to explain, has strong robustness and can 
control individual difference well

It can not be used for multiple comparisons, only to 
compare whether the difference between the two aver‑
ages is significant

Mann–Whitney U test There is no requirement for data distribution When the data conforms to normal distribution and the 
variance is homogeneous, the test efficiency is lower 
than the t-test efficiency

Spearman correlation analysis It is suitable for nonlinear relations and continuous 
and discrete datasets

It is less efficient than Pearson correlation coefficient

Kaplan–Meier analysis It provides a variety of test methods, and is easy to 
implement

It can only perform univariate analysis

Log-rank test It analyzes the data in combination with all time 
points

It requires meeting equal proportional risk assumptions 
and only performs univariate analysis

Fisher’s exact test It is suitable for small samples and can accurately 
calculate the significance of deviations from the null 
hypothesis

It can only applicable to sample size n < 40 or theoretical 
frequency T < 1

Chi-square test It is convenient, concise, and widely used It is more complex than t-test and the test efficiency is 
lower than t-test efficiency
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to compare the OS of different risk groups, so these two 
methods generally appear simultaneously in prognosis 
research. The application of machine learning methods is 
diverse, including feature selection, model construction, 
model performance validation and so on. About feature 
selection, it has been described in detail in the subsec-
tion: Feature selection of feature engineering. Some algo-
rithms are both common in feature selection and model 
construction, such as LASSO and SVM. Traditional 
machine learning methods usually divide the problem to 
be solved into several sub-problems and then solve them 
one by one. Deep learning methods solve problems in 
an end-to-end way, which means the feature engineer-
ing step is not required. However, correspondingly, deep 
learning methods are less interpretive and have higher 
requirements for machines and equipment.

Researchers typically use the following metrics or 
methods to evaluate model performance: AUC, Acc, F-1 
score, sensitivity, specificity, precision, positive and nega-
tive predictive values, calibration curve analysis, deci-
sion curve analysis, the Hosmer–Lemeshow test, or the 
Akaike information criterion. These reveal certain char-
acteristics of a model, such as its discriminability, gen-
eralizability, robustness, clinical utility, and goodness of 
fit. Nevertheless, many aspects remain to be improved in 
radiomics models. Here, we review four of these aspects.

Model generalizability
The generalizability of a model is its ability to predict 
unknown data. The smaller the deviation of a model-
predicted result from the real result, the higher the 
generalizability of the model. Thus, a model with high 
generalizability is better than a model with low general-
izability. Accordingly, generalizability must be considered 
when radiomics models are applied in clinical decision 
making.

There are many reasons why a radiomics model may 
exhibit low generalizability. The root cause may be a dif-
ference between the distribution of the training data and 
that of the unknown data. For example, as there is cur-
rently no standard workflow for radiomics, changes in 
any aspect of a workflow, such as data sources, scanners, 
acquisition protocols, or image segmentation methods, 
will cause some level of data discrepancy that will affect 
the performance of a model. Castillo et  al. [143] found 
that radiomics models had an excellent ability to distin-
guish between low- and high-grade prostate tumors when 
single-center data or single-scanner data were used, but 
this ability was significantly reduced when multicenter 
data and/or multi-scanner data were used. Therefore, 
standardizing these processes can reduce variability and 
improve generalizability. However, as it will take some 
years for this to be achieved, another approach must 

currently be used: examining the number and diversity of 
input samples. Therefore, researchers have attempted to 
develop models using multicenter data and to circumvent 
the ethical and legal problems raised by multicenter data 
sharing by using distributed learning, which aims to train 
radiomics models without requiring the data to “leave” 
the hospital where it is housed. For example, Bogowicz 
et al. [144] constructed centralized and distributed HNC 
survival-prediction radiomics models and found that 
these models exhibit no significant AUC differences in 
terms of feature selection and classification. This con-
firmed that distributed learning does not affect model 
performance and indicates that it is a valid new approach 
for adopting multicenter data to generate models with 
good generalizability.

When a large amount of data cannot be obtained, gen-
eralizability can be improved by small sample learning 
and manifold learning. Small sample learning incorpo-
rates data augmentation and transfer learning [145]: data 
augmentation increases sample size and diversity [146], 
while transfer learning allows knowledge to be learned 
from related domains to increase model performance 
in the target domain. A study published in 2022 [147] 
described a feature extraction method based on transfer 
learning that increases the number of samples, suggested 
that the deep radiomics features extracted by this method 
might be more accurate than manually extracted radiom-
ics features, and then confirmed this by comparing the 
performance of models for predicting the regression of 
early HNC. Transfer learning involves domain adapta-
tion: the adjustment of a model to enable it to adapt to 
different domains (i.e., different datasets), so the model 
exhibits good generalizability (i.e., can be applied to unfa-
miliar sample sets) [148]. For example, Wang et al. [149] 
performed cross-phase adversarial domain adaptation 
using a gastric CT arterial phase as the source domain 
and the pre-contrast phase as the target domain, and 
thereby obtained a radiomics model that performed well 
in predicting the target domain. In addition, manifold 
learning can increase the number of samples by reduc-
ing the dimensionality of high-dimensional image data. 
Accordingly, Zhang et  al. [150] developed a classifier 
called multi-kernel regression with graph embedding, 
which applies manifold learning to prevent a radiomics 
model overfitting when predicting distant metastases of 
nasopharyngeal carcinoma. The classifier embeds a class 
compactness graph and connects a pair of samples of the 
same class in low-dimensional label space via undirected 
weighted edges to understand their relationship. Then, 
it maximizes the closeness between samples of the same 
class to prevent overfitting and enhance generalizability.

Researchers have also improved models’ general-
izability by employing appropriate feature-selection 
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approaches. Shayesteh et  al. [151] used the mutual 
information feature-selection method to enhance 
the generalizability of radiomics models; specifically, 
they analyzed non-linear relationships and linear rela-
tionships to find radiomics features with the highest 
discriminability, which they used to enhance model 
performance. As a target dataset may be nearly iden-
tical or completely different from an original dataset, 
the repeatability and reproducibility of features are the 
factors influencing a model’s generalizability. There-
fore, enhancing the reproducibility and reproducibility 
of radiomics features can also enhance a model’s gen-
eralizability. As such, the harmonization schemes are 
crucial, such as ComBat. For example, a study pub-
lished in 2022 [152] demonstrated that specific post-
processing algorithms can be applied to coordinate 
PET image noise and thereby increase the agreement 
of radiomics features. Another study [153] developed 
convolutional neural networks (CNNs) to coordinate 
CT images with different reconstruction kernels, which 
helps to improve a feature’s reproducibility and thus a 
model’s generalizability. Moreover, data augmentation 
is an image coordination method. Ibrahim et  al. [154]  
adopted the radiomics feature harmonization scheme 
of ComBat harmonization and found that it improved 
feature agreement when the acquisition and recon-
struction parameters were significantly different. How-
ever, they also noted that direct application of the 
ComBat method was not invariably successful, such 
that pre-adjustment of the parameters of the phantom 
dataset was necessary. Image coordination has also 
been achieved by identifying robust features. Robin-
son et  al. [155] found that a model’s generalizability 
decreased monotonously with a reduction in feature 
reproducibility, meaning that the classification general-
izability of the model was improved by selecting radi-
omics features with high robustness.

Several studies have been performed to select fea-
tures with high repeatability and reproducibility for use 
in feature engineering. Lu et  al. [99] developed a new 
phantom-based framework to screen radiomics features 
for repeatability and reproducibility and identify robust 
features by evaluating the effects of biological and noise 
signals. A study [156] published in 2021 used a new 
method (which differs from embedded methods) for 
selecting robust features for predicting the mutation sta-
tus of isocitrate dehydrogenase 1/2 (IDH1/2) in glioma. 
In this method, feature selection involves the identifica-
tion of variables that are part of causal structures (based 
on causal reasoning), are insensitive to environmental 
changes, are highly robust, and have a constant relation-
ship with the IDH1/2 mutation status. Radiomics mod-
els were constructed based on these variables, and their 

generalizability and performance could be improved even 
in a set of non-observational environments.

Imbalanced data classification
In an imbalanced data set, there are large differences 
between the sizes of different classes of data. The gener-
alizability of a radiomics model based on such a data set 
will be affected by these differences, which may decrease 
its predictive power. That is, in a case of a class imbal-
ance, a model first learns that there is more of one class of 
data than another in the training set, so the model’s pre-
dictions are biased toward the majority class [157]. For 
example, if there are two classes of data, class 1 and class 
2, and they are present in a ratio of 1:100, then the pre-
dictive Acc of a model based on class 2 data may be much 
higher than class 1 data. However, if we mainly focus on 
the 1 class, the model will not meet our requirements.

Resampling techniques are essential for dealing with 
class imbalances and have been used in many radiom-
ics studies. These techniques increase the balance of an 
imbalanced dataset at the data level and involve either 
over-sampling or under-sampling. The former is per-
formed by copying the minority class data to add more 
data [158], while the latter is performed by discarding 
a large amount of the majority class data. Regarding 
under-sampling techniques, a radiomics study men-
tioned above [149] developed the so-called sensibly 
based under-sampling imbalanced integrated frame-
work, which divides the majority class data into dif-
ferent blocks by clustering data on the basis of sample 
sensitivity. This under-sampling technique comprises 
two steps. In the first step, a coordinated method is 
used to maintain the same sensitivity level in each 
block. In the second step, a self-paced factor is applied 
to reduce the sample probability of the block with a 
large sample size and is combined with multi-kernel 
regression with graph embedding to train a good radi-
omics model. Regarding over-sampling techniques, a 
study that categorized pathologic complete responses 
(pCRs) for cancer [159] included 222 patients (61 pCR 
and 161 non-pCR patients) in its training set. The two 
types of patient samples were significantly different, so 
the researchers applied the synthetic minority over-
sampling technique (SMOTE) algorithm to an MRI-
based radiomics feature set to balance the minority and 
majority differences between the samples. Although 
SMOTE is an over-sampling technology, it synthesizes 
similar new samples from original samples rather than 
copying original samples. In addition, Zhang et al. [160] 
developed a novel over-sampling network—DeepS-
MOTE, and pioneered the integration of convolutional 
image features with radiomics features to effectively 
enhance the classification ability of an unbalanced 
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dataset. The target data for this study were rare rim-
positive lesions present in quantitative susceptibility 
mapping. DeepSMOTE increases these data by adding 
the two nearest neighbors of each rim-positive lesion, 
and then linearly combines the features of each lesion 
and its nearest-neighbor to generate comprehensive 
data.

Researchers have also adopted algorithm-based tech-
niques to address data set class-imbalance problems 
and thus alleviate the degradation of radiomics model 
performance. Ensemble learning, for example, com-
bines several weak algorithms to obtain a more com-
prehensive and strong algorithm that performs bagging, 
boosting, and stacking, and studies have confirmed that 
ensemble learning-generated algorithms can be well 
applied to imbalanced data [161, 162]. In 2022, Tang 
et al. [163] reported the advantages of bagging ensem-
ble learning for prognostic prediction of HNSCC and 
showed that a bagging ensemble radiomics model gen-
erated more accurate predictions (an average Acc of 
up to 88.3%) than DT, RF, XGBoost, SVM, and linear 
models. Another study [164] compared the predictive 
performance of four DT and ensemble radiomics mod-
els based on boosting with that of an SVM model and 
found that the performance of the former models was 
superior to that of the latter model. Cost-sensitivity 
learning is also an effective approach that can yield 
excellent results by increasing the cost of algorithmic 
misclassification [165]. In 2021, Sun et  al. [166] com-
bined cost-sensitivity learning with ensemble learn-
ing, as this is effective for application to imbalanced 
datasets. Moreover, a tiny class can be detected and  
then treated as an anomaly. For example, Welch et al. [167]  
used isolation forest algorithms to detect abnormal 
data and solve a data set class-imbalance problem 
when applying two pipelines (i.e., machine learning and 
deep learning pipelines) and synthesizing patient-spe-
cific features, clinical features, radiomics features, and 
quantitative radiation therapy features to predict the 
local failure of HNC treatment.

Furthermore, researchers have combined data-level  
approaches with algorithm-based techniques. Jiao et al. [168]  
extracted the radiomics features of US images and then 
constructed a cost-sensitive SVM model, a SMOTE and 
adaptive boosting (AdaBoost) combination model, and 
a random under-sampling and AdaBoost combination 
model (RUSBoost), for the original unbalanced data set. 
They also built a SVM model and an AdaBoost model 
and applied them to the original unbalanced data set and 
an adaptive synthetic-nominal (ADASYN) algorithm-bal-
anced data set, respectively. All of the models obtained 
good results, with the RUSBoost model exhibiting the 
best performance.

Multi‑modality fusion
The use of multi-modalities is an unsolved challenge in 
many fields, including in radiomics, where research-
ers must decide what modes to incorporate into studies 
and when to do so [169]. Many radiomics studies have 
adopted multi-modality fusion approaches and have con-
cluded that a radiomics model based on multi-modal 
information is superior to a radiomics model based on 
single-modality information. Generally, there are three 
time nodes for multi-modality fusion, namely early 
fusion, intermediate fusion and late fusion [170], and the 
advantages of each are described in the “Limitations and 
suggestions” section.

Early fusion is also known as data-level fusion and is the 
fusion of multiple modalities’ information before a fea-
ture input classifier is implemented [171]. Li et al. [172] 
combined the MR image features of different sequences 
to construct radiomics signatures and then combined 
these with clinic-radiological risk factors to develop a 
multi-factor model based on a training set. They found 
that the multi-factor model had the highest performance. 
Another study [173] modeled radiomics features with 
the tumor–node–metastasis stage primary tumor vol-
ume, clinical and biological features, respectively, and 
found that the performance of the multi-factor model 
was better than that of the single-factor model. Sheikh 
et al. [174] compared a CT model, an MRI model, and a 
CT–MRI hybrid model, and found that the hybrid model 
achieved the highest AUC in predicting acute radiation-
induced xerostomia in HNC, as their respective AUCs 
were 0.57, 0.66 and 0.70 in the external validation cohort.

Intermediate fusion is also known as inter-layer fusion 
as it is the fusion of modalities between the input and 
output layer during modeling [175]. A study published 
in 2021 [120] explored the ability of multi-omics mod-
els to predict the eligibility of patients with nasopharyn-
geal carcinoma for adaptive radiation therapy by using 
multi-kernel learning algorithms to achieve intermediate 
fusion of four types of omics features: radiomics, dosi-
omics, contouromics, and morphology features. Spe-
cifically, four single-omics models (a radiomics model, 
a dosiomics model, a contouromics model, and a mor-
phology model) and four multi-omics models (a radi-
omics–dosiomics model, a radiomics–contouromics 
model, a radiomics–morphology model, and a radiom-
ics–morphology–dosiomics–contouromics model) were 
constructed and studied, and decision graphs were used 
to select which model was the best, i.e., which combina-
tion of the above-mentioned omics features formed the 
highest-performing model. The results revealed the supe-
riority of the radiomics features: the AUC of the radiom-
ics model (0.94) was the highest of the four single-omics 
models, and radiomics features comprised the largest 
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proportion of features in the multi-omics models. These 
results also indicated that the performance of multi-
omics models was generally better than that of single-
omics models.

Late fusion is also known as decision-level fusion as it 
involves building a model by performing a certain pro-
cessing fusion of different modalities to enhance the 
model’s performance. Chen et  al. [176] adopted a late 
fusion approach to devise a mixed predictive model. 
That is, they established a novel many-objective radiom-
ics model and a 3D-CNN model, and then applied an 
evidence-reasoning method to fuse the outputs of these 
two models to obtain a higher predictive Acc than that 
obtained from either model alone. They also fused two 
kinds of image data: PET data and CT data. Their results 
revealed that the mixed model input with PET and CT 
data exhibited a predictive Acc superior to that of a single 
model input with only CT or PET data.

Other multi-modality fusions can be employed, such as 
radiomics feature and gene signature fusion or radiomics 
features fusion based on PET and MRI data. Research-
ers have yet to fully explore all forms of multi-modality 
fusions, so this remains a fruitful and exciting avenue of 
enquiry.

Model interpretability
The “black box” characteristics of the machine learning 
approaches used to construct radiomics models, com-
bined with the high sensitivity of radiomics features to 
image-specific variations [177], mean that radiomics 
models can be complex. Moreover, most radiomics stud-
ies have been single-center retrospective studies and thus 
had inherent defects such as small sample sizes and inef-
fectively verified model generalizability. Furthermore, 
the decision-making processes of deep learning models 
are opaque and may be unknowable. All of the above-
mentioned aspects mean that radiomics models may 
have low interpretability, i.e., the results of models cannot 
be explained and so are not trusted by doctors. In these 
cases, the clinical implementation and development of 
models are severely hindered.

There is a growing body of research focusing on solv-
ing interpretability problems. Thus far, most of this 
research has explored either the local interpretation of 
specific predictions or global interpretation of working 
principles [178]. In machine learning, linear models and 
DT algorithms are inherently globally interpretable. In 
contrast, the local interpretable model-agnostic explana-
tions (LIME) technique makes use of prediction samples 
and perturbed samples generated by random perturba-
tion to fit a simple interpretable model, which provides  
local explanations for a black-box model. Zafar et al. [179]  
constructed a deterministic LIME framework that uses 

hierarchical clustering and a KNN algorithm instead 
of random perturbations to enhance the stability of 
explanations. In addition, shapley additive explanations 
(SHAP) and LIME have often been compared, and SHAP 
has been a common method of interpretation. For exam-
ple, Giraud et  al. [180] used SHAP when developing a 
radiomics model for oropharyngeal cancer, determined 
SHAP values to quantify the contribution of each feature 
to predicting local recurrence, and used an interpretable 
method to identify the most important risk factors.

Partial dependence plots (PDPs) are applied for the 
global interpretation of working principles as they 
express the relationship between prediction targets and 
variables (features), which renders a black box model visi-
ble and thereby effectively increases interpretability [181].  
Accumulated local effects (ALE) plots are a superior alter-
native to PDP, and an ALE plot was used by Tan et al. [182]  
to reveal the major effects of each radiomics feature they 
examined. Their ALE plot demonstrated that higher 
“GreyLevelNonUniformity” values reflected intratumoral 
heterogeneity, while lower “Strength” values and more 
image-defined risk factors were associated with a higher 
probability of MYCN oncogene amplification. Permuta-
tion importance is also a key technique, whereby features 
are constantly adjusted during the testing of a model and 
the importance of all of the features to the predictive abil-
ity of the model is evaluated by observing changes in the 
performance of the model [183]. Enke et al. [184] applied 
permutation importance to screen the most relevant pre-
dictive radiomics features from 100 ranked radiomics 
features. They concluded that the features on the Lapla-
cian of a Gaussian-filtered image were the most impor-
tant when all of the features were included, while the 
shape features were the most important when only the 
radiomics features of the original image were included.

One study [185] simplified selected radiomics features 
to enhance the interpretability of a model. It used only 5 
of 42 related features and the whole omental tumor vol-
ume to build a model; this involved discarding most of the 
uninterpretable features, thus making the model easier to 
interpret than a model that included all of the features. 
Moreover, this simplified model maintained a high pre-
dictive power (AUC: 0.68 ± 0.03) on the external test set. 
Another study [186] used a gene masking technique to 
improve physicians’ acceptance of a model. Specifically, 
the gene expression profiles of patients were obtained, 
and the expression of related genes was retained while 
that of unrelated genes was masked. Then, the masked 
expression data was input into the radiomics model, and 
the predictive performance of the model was calculated. 
This process was repeated for the entire cohort, with a 
higher performance indicating a stronger predictive cor-
relation between the gene set and the radiomics features. 
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The above mentioned study in 2020 [132] also increased 
interpretability to produce a radiomics feature-activation 
map, which revealed that peritumoral regions were more 
relevant than GTVs for distinguishing histological sub-
types of NSCLC in CT imaging.

The interpretability of black-box models can be 
improved via many other methods, but these have yet 
to be applied in radiomics. We hope that future research 
will increase the diversity of methods available to solve 
the interpretability problems of radiomics models.

Discussion
Summary and analysis
In this review, we review research on the application of 
radiomics for clinical diagnosis, prognosis, and determi-
nation of treatment responses, as well as research exam-
ining the two most important steps in radiomics analysis: 
feature engineering and statistical modeling.

Feature engineering
Feature engineering consists of feature extraction and 
feature selection. Feature extraction can be performed to 
extract 2D or 3D image features, and there is no consen-
sus on whether either type of features is superior. Each 
type has its own advantages and can be selected accord-
ing to the imaging method used or the nature of the 
research being performed. In addition, researchers have 
attempted to identify new radiomics signatures. Feature 
selection is conducted to reduce the redundancy between 
features and improve the correlation between features 
and clinical goals. Feature selection methods comprise 
filter methods, embedding methods, and wrapper meth-
ods. The latter methods exhibit overfitting problems and 
thus have rarely been used in radiomics research, and 
none of the remaining methods are suitable for all situ-
ations. The reproducibility of radiomics features is a key 
concern in radiomics research. Reproducibility is sensi-
tive to external factors, and all of the steps preceding 
radiomics modeling can affect feature reproducibility. 
The reproducibility of features can be investigated by fol-
lowing the radiomics workflow: image acquisition, image 
preprocessing, delineation of tumor ROIs, and feature 
selection. Features are extremely sensitive to the changes 
in acquisition details; even two images of the same tis-
sue site may be different due to differences between their 
acquisition details. Nevertheless, in various acquisi-
tion modes and with certain reconstruction parameters, 
some features exhibit good reproducibility and there-
fore are good candidates for tumor segmentation. Inter- 
and intra-scanner feature reproducibility is affected by 
the slice thickness during image acquisition: thick slices 
are best for measuring tumor volumes and changes in 
these volumes, as thin slices contain comparatively more 

noise, which obscures texture features. Various methods 
are used for image preprocessing; a common method is 
resampling of voxel size, which can solve the problem 
of different voxel sizes to enhance the reproducibility of 
radiomics features. In addition, the ComBat harmoni-
zation method can eliminate most scanner effects and 
improve feature reproducibility and thus is suitable for 
multicenter research. Although manual segmentation is 
the preferred method for delineating tumor ROIs, it may 
be replaced gradually by fully automatic and semi-auto-
matic segmentation due to the continual improvements 
in the Acc of the latter two methods. The reproducibil-
ity of manual segmentation can be improved by its being 
performed by several experts, followed by inter-expert 
evaluation. Contouring protocols or related guidelines 
are recommended for reducing inter-expert variability 
in target volume delineation. Some studies have devised 
new feature selection methods to obtain radiomics fea-
tures with high reproducibility. Radiomics features can 
be clearly defined at a mathematical level, which adds 
some level of interpretability to radiomics results, but 
radiomics features’ lack of interpretability at the biologi-
cal level limits the application and development of radi-
omics in medicine.

Statistical modeling
The generalizability of models has received additional 
attention, as it determines whether models can be applied 
in real-world multicenter scenarios. The root cause of 
generalization problems is the differences between the 
distribution of training samples and that of testing sam-
ples, which originate at every step of the radiomics work-
flow. Therefore, a standardized radiomics research plan 
must be determined in future research. At this stage, 
this problem can be solved by using techniques such as 
transfer learning and manifold learning. In addition, 
incorporating robust features into a model can effectively 
improve its generalizability because, compared with fea-
tures with low robustness, features with high robustness 
are better able to resist environmental changes. Imbal-
anced datasets are another factor that adversely affects 
a model’s generalizability and predictive ability. This 
problem has often been solved by employing data-level 
resampling techniques, such as over-sampling and under-
sampling. In addition, an algorithm-level imbalance pro-
cessing strategy has exhibited some advantages, such as 
its ability to construct a more sensitive loss function and 
a more reasonable integration strategy than would have 
otherwise been available.

Furthermore, multi-modal fusion and model interpret-
ability have also been the focus of some attention in radi-
omics modeling. Research has shown that multi-modal 
fusion methods encompass one of three time nodes: early 
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fusion, intermediate fusion, and late fusion. Regardless of 
the fusion method used, studies have revealed that com-
pared with single-modal fusion, multi-modal fusion can 
obtain more mode information and thereby afford bet-
ter prediction results. For example, a multivariate model 
that combines radiomics features with clinical factors 
was shown to have better predictive performance than a 
radiomics features-only model or a clinical factors-only 
model. Analogously, the performance of fusion mod-
els based on radiomics, doseomics, and contouromics 
was shown to be better than the performance of models 
based on only a single type of omics. In addition, com-
bining traditional radiomics features with other features 
(such as deep learning features or genetic features) and 
combining different imaging methods (such as combin-
ing CT imaging and PET imaging) have revealed new 
pathways in radiomics research.

Ensuring the interpretability of a radiomics model 
is the last step prior to the model’s clinical applica-
tion. Some studies have suggested that a model can be 
explained from a global or local perspective. LIME is 
used to build simple models to explain the local parts of 
a complex model; PDP and global interpretation tech-
niques, such as ALE, are used to visualize complex mod-
els; and interpretation methods, such as SHAP and gene 
masking techniques, are used to quantify the relationship 
between features and diseases (or genes) and thereby 
increase the interpretability of a model.

Limitations and suggestions
Although the studies reviewed above have demonstrated 
that radiomics achieves good results when applied to 
tumors, many limitations hinder the broad application 
of radiomics models in real-world clinical settings. Some 
studies have attempted to alleviate these limitations, but 
current technology is not sufficiently advanced to com-
pletely eliminate them. Given these challenges, we now 
offer some insights and suggestions.

Feature selection
A large number of radiomics features can be derived 
from images in radiomics study. It is important to con-
trol the number of radiomics features because too many 
features can lead to overfitting. To the best of our knowl-
edge, so far, there is no absolute rule that fits all scenarios 
to determine the number of radiomics features required 
for modeling. In radiomics-based study, the optimal 
number of features is often determined by cross-valida-
tion on the internal validation data. This cross-validation 
strategy is applicable to any scenario because it is train-
ing data-based. However, studies do show that there is 
a relationship between the number of features and the 
number of training samples through a large number of 

experiments. For example, Hua et  al. [187] selected 7 
classifiers and carried out extensive experiments to find 
the relationship between the number of features and the 
training sample size. They found that the behavior of the 
optimal-feature-size relative to the sample size depends 
strongly on the classifier and the feature-label distribu-
tion. An immediate corollary is that one should be wary 
of rules-of-thumb generalized from specific cases. In 
addition, the performance of a designed classifier can be 
greatly influenced by the number of features and there-
fore one should attempt to use a number close to the 
optimal number. This means that it can be useful to refer 
to a database of optimal-feature-size curves to choose a 
feature size, even if this means making a necessarily very 
coarse approximation of the distribution model from the 
data—even perhaps just a visual assessment of the data.

Feature reproducibility
Many studies have explored the reproducibility of fea-
tures in different situations, but it appears that no stud-
ies have systematically summarized features that are 
robust to various influencing factors. Most studies have 
focused on image segmentation when exploring the 
reproducibility of features. However, the reproducibility 
of manual segmentation is usually not high due to large 
inter-expert deviations in defined tumor boundaries. The 
features obtained by some automatic or semi-automatic 
segmentation algorithms are more robust than manual 
features, but manual segmentation has been the most 
common form of segmentation conducted in recent clini-
cal research. This may be because researchers have paid 
more attention to Acc in small-scale studies, whereas 
radiomics results have been applied in clinical practice. 
The reproducibility of segmentation may be more impor-
tant than its Acc, as was noted by Kumar et  al. [188]. 
Moreover, even if manual segmentation is replaced by 
automatic segmentation in the future, this does not mean 
that the same type of automatic segmentation will be 
applicable in all situations. Thus, it may be necessary to 
select an appropriate automatic segmentation algorithm 
for a given research application and set of parameters. 
Similarly, no consensus has been reached on the optimal 
ICC threshold, but it is often the preferred indicator for 
reproducibility analysis. Therefore, it may be apposite for 
future research to identify an appropriate ICC threshold 
value.

Test–retest analysis is often conducted for dimension-
ality reduction and selection of robust radiomics features 
with minimal changes, but test–retest analysis results 
may not be generalizable, and it is recommended that 
conditions specific to treatment sites and time, scan-
ners, and imaging protocols are used [189]. However, 
test–retest may be impractical as its utility may not be 
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understood or accepted by patients in a clinic. The phan-
tom study is not described too much in this article for 
feature stability and repeatability studies. Phantom study 
can improve the reproducibility and robustness of radi-
omics features, while the phantom can also be used to 
accurately measure multicenter differences between dif-
ferent scanners or environments. The reproducibility of 
radiomics features based on CT is affected by material-
dependence [190], which means that it is very impor-
tant to select appropriate phantom materials according 
to the characteristics of different tumor sites and ensure 
that the range of features value between them is simi-
lar. Although phantom studies have shown promising 
trends in relevant radiomics analyses, it remains doubt-
ful whether the phantom study results can be transferred 
to clinical studies. Mackin et al. [191] partially answered 
this question; they found that the variability in the values 
of radiomics features in phantom CT images was compa-
rable to the variability in the values of radiomics features 
in NSCLC tumor CT images.

Model generalizability
Poor model generalizability is one of the main reasons 
why models have failed to be widely adopted in clinical 
practice. Methods that have been used to improve gen-
eralizability are discussed in this study, and studies have 
revealed that no single method is applicable to all scenar-
ios. It is not enough to extract robust features to improve 
model generalizability. Oliveira et al. [192] stated that it 
is necessary to use standardized multicenter datasets for 
radiomics research, and they found that a model con-
structed based on a standardized multicenter dataset had 
better predictive performance (AUC: 0.67–0.74) than a 
predictive model constructed based on robust features in 
validation cohorts (AUC = 0.53). Nevertheless, another 
study [193] came to the opposite conclusion: the fea-
tures of multicenter MR images exhibited significantly 
more variations than those of single-center MR images. 
Most of the variations were related to the differences in 
hardware and acquisition, which can influence appar-
ent diffusion coefficient diagrams. The authors provided 
ways to correct the data variations, such as by discarding 
poorly reproducible features, performing normalization, 
and using statistical models that specifically take center 
effects into account. The authors also mentioned that 
the reproducibility of high-order radiomics features was 
poor, which suggests that researchers should carefully 
select high-order features when modeling. Furthermore, 
technologies such as harmonization or few-shot learn-
ing are not optimal solutions; even though researchers 
try their best to improve generalizability, the resulting 
models cannot be perfectly applied to all target datasets. 
To sum up, to improve model performance on external 

validation datasets, the solutions can be organized into 
three categories: data-level, structure-level and algo-
rithm-level. At the data-level, multicenter data standard-
izing can be used to reduce the distribution difference 
between training data and external validation data. In 
structure-level, centralized or distributed learning struc-
ture can make multicenter studies close to single-center 
studies. At algorithm-level, transfer learning can leverage 
knowledge from target-related domains to train a model 
on a target task. Manifold learning aims to use regulari-
zation terms to minimize the distribution differences 
between training data and external validation data. In 
real application scenarios, to the best of our knowledge, 
so far, there is no absolute rule for determining which 
strategy can be used to improve model performance on 
external validation datasets. With the development of 
federated learning, perhaps structure-level will become 
more favored.

Radiomics features are highly sensitive to various 
parameters, and every step in the radiomics workflow 
must be considered when using additional methods to 
attempt to improve the stability features, which increases 
the cost of radiomics analysis. Therefore, data sharing 
and pipeline standardization are the only way to reduce 
the variation in radiomics data and improve the general-
izability of models. However, it remains difficult to stand-
ardize radiomics workflows and implement these at all 
institutions. Therefore, a model’s generalizability should 
be improved as much as possible, and then the model 
should be externally validated to improve its reliability so 
that it can be applied to clinical decision making.

Imbalanced data classification
Imbalanced datasets are common in learning models 
based on tumor images (as hospitals or institutions store 
too few samples of target patients), and this is a major lim-
itation of radiomics. This can be addressed by two types 
of sampling methods, as summarized in a study [194]  
that contrasted these methods’ effects on radiomics 
model performance with that of classifier tuning meth-
ods and feature selection algorithms. This showed that 
an optimal choice of classifiers and feature selection 
algorithms could significantly improve model perfor-
mance but did not show that sampling methods had a 
great impact on model performance. Thus, algorithm 
optimization methods are better than sampling meth-
ods in this context. However, Xie et  al. [195] argued 
that model parameter tuning and feature selection did 
not significantly improve the Acc of a radiomics model. 
Instead, they found that over-sampling techniques 
such as ADASYN and SMOTE can raise the geometric 
means and F-measures of minority class data of HNC 
patients, thereby improving the predictive performance 
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of imbalanced datasets. Therefore, we propose that to 
maximize the performance of a model, the best modeling 
method for the given research dataset must be compre-
hensively determined.

Multi‑modality fusion
As multi-modality fusion has always been an obstacle in 
radiomics, and multi-modality-based models often gen-
erate better results than single-modality-based models, 
multi-modality fusion has strong potential for improving 
radiomics models and is a current research hotspot. If 
imbalanced classes are present in a data set, a classifier is 
biased towards the majority class when learning and thus 
generates incorrect predictions, which affects the robust-
ness of the model. This is a difficult problem that must 
be solved, and two types of solutions have been devised: 
data-based improvements and algorithm-based improve-
ments. Multi-modality can be a combination of radiom-
ics features with other types of features or radiomics 
with other omics, or a combination of multiple imaging 
methods, and refinement can result in a combination of 
different MR imaging sequences [196]. It is well under-
stood that multi-modality methods can compensate 
for the shortcomings of single-modality methods. Early 
fusion can use different types of data for complementary 
purposes. For example, the preferred imaging method 
for tumors is CT, but this has insufficient soft-tissue 
contrast; however, the addition of MRI or PET infor-
mation to a CT data set can overcome this problem to 
some extent [197]. Late fusion improves final results by 
fusing models’ results. It has the obvious advantage that 
model errors do not affect each other and thus errors do 
not accumulate. Intermediate fusion can perform mul-
tiple fusions between layers, which further explores the 
complementarity between modalities that is explored via 
early fusion. In summary, this explains why multi-factor 
models are generally superior to single-factor models. 
Thus, when conducting fusion research, researchers 
should perform numerous experiments with different 
settings and predictive models to enable careful selection 
of fusion modality and timing, as this will enhance the 
quality of the resulting model. In reviewing the literature, 
we found that even though the number of studies using 
multi-modality fusion has increased in recent years, it 
remains a rare approach overall and requires further 
attention from researchers.

Model interpretability
Radiomics, due to its high complexity and use of black-
box machine learning, has the problem of low interpret-
ability in both its features and models. This problem has 
caused physicians and specialists to distrust radiom-
ics and has been the biggest obstacle to the widespread 

adoption of radiomics models in clinical settings. 
Researchers have thus developed methods to increase the 
interpretability of radiomics features and models. At the 
feature level, exploring the association between features 
and tumor heterogeneity can increase interpretability. 
At the model level, diverse technologies based on local 
and global interpretation can be applied to improve the 
interpretability of a model, although such technologies 
have their own shortcomings. For example, a feature map 
formed by deep convolutional neural networks can allow 
the most uninterpretable deep learning fields to realize 
the visual interpretation of classification tasks based on 
these networks [198]. However, we found that not all of 
the techniques for interpreting black-box models have 
been thoroughly studied in the field of radiomics, so this 
remains a task for future research. In addition, as most 
of the learning of radiomics models is retrospective and 
not invariably persuasive, it remains insufficient to use 
only interpretative models, as no model is applicable to 
all clinical decision-making scenarios. Researchers must 
continue to perform prospective studies to verify the 
clinical utility of the methods described in this review.

Conclusions
In this review, we introduce the radiomics-based stud-
ies in cancers from the perspectives of clinical applica-
tions and AI-driven modeling. In the first perspective, 
we provide a particular focus on three distinct applica-
tions: tumor grading, tumor staging, and the classifi-
cation of benign vs. malignant tumors. In the second 
perspective, we devote more text to discussing feature 
engineering and statistical modeling in AI-driven radi-
omics modeling, including feature reproducibility, feature 
interpretability, model generalizability, model interpret-
ability, imbalanced data classification, and multi-modal-
ity fusion. Our comprehensive review reveals that, in the 
context of AI, radiomics-based studies indeed play an 
important role in the diagnosis and prognostic prediction 
of cancers. However, related studies on feature reproduc-
ibility, feature interpretability, model generalization and 
model interpretability still present challenges, which are 
obstacles to the further promotion of radiomics models 
to clinical real-world applications.
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