Skip to main content
. 2023 May 16;10:22. doi: 10.1186/s40779-023-00458-8

Table 1.

Applications of radiomics-based tumor grading

Image modality Number of patients Cancer Target Number of radiomics features Commercial or open-source software Method References
CT 206 HNSCC Tumor grading 74 Matlab, Python, IBM SPSS software

ML: KPCA, RF, VT selection

SM: DeLong test, t-test, Chi-square test

[13]
CT 284 HNSCC Tumor grading, extracapsular spread, perineural invasion, lymphovascular invasion, human papillomavirus status 25–35 Matlab, R

ML: PCA, LR, LASSO, Hierarchic clustering, tenfold CV

SM: Fisher exact test

[14]
CT 878 Lung cancer, HNC Tumor grading Unspecified Matlab, R

ML: LR, consensus clustering, hierarchical clustering

SM: Jaccard index, Pearson correlation analysis

[15]
CT 211 Laryngeal cancer Preoperative T category (T3 vs. T4) 8 ITK-SNAP, PyRadiomics, R, Python

ML: LASSO, SVM,

Grid search, CV

SM: t-test (or Mann–Whitney U test), Chi-square (or Fisher’s exact) test, ICC

[16]

CT computed tomography, ML machine learning, SM statistical method, HNSCC head and neck squamous cell carcinoma, HNC head and neck cancer, KPCA kernel principal component analysis, RF random forest, VT variance-threshold, PCA principal component analysis, LR logistic regression, LASSO least absolute shrinkage and selection operator, CV cross validation, SVM support vector machine, ICC intraclass correlation coefficients