Table 1.
Image modality | Number of patients | Cancer | Target | Number of radiomics features | Commercial or open-source software | Method | References |
---|---|---|---|---|---|---|---|
CT | 206 | HNSCC | Tumor grading | 74 | Matlab, Python, IBM SPSS software |
ML: KPCA, RF, VT selection SM: DeLong test, t-test, Chi-square test |
[13] |
CT | 284 | HNSCC | Tumor grading, extracapsular spread, perineural invasion, lymphovascular invasion, human papillomavirus status | 25–35 | Matlab, R |
ML: PCA, LR, LASSO, Hierarchic clustering, tenfold CV SM: Fisher exact test |
[14] |
CT | 878 | Lung cancer, HNC | Tumor grading | Unspecified | Matlab, R |
ML: LR, consensus clustering, hierarchical clustering SM: Jaccard index, Pearson correlation analysis |
[15] |
CT | 211 | Laryngeal cancer | Preoperative T category (T3 vs. T4) | 8 | ITK-SNAP, PyRadiomics, R, Python |
ML: LASSO, SVM, Grid search, CV SM: t-test (or Mann–Whitney U test), Chi-square (or Fisher’s exact) test, ICC |
[16] |
CT computed tomography, ML machine learning, SM statistical method, HNSCC head and neck squamous cell carcinoma, HNC head and neck cancer, KPCA kernel principal component analysis, RF random forest, VT variance-threshold, PCA principal component analysis, LR logistic regression, LASSO least absolute shrinkage and selection operator, CV cross validation, SVM support vector machine, ICC intraclass correlation coefficients