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Abstract 

Background  Air pollution is associated with poor health; though it is unclear whether this association is stronger for 
ethnic minorities compared to the rest of the population. This study uses longitudinal data to investigate the spatial–
temporal effect of air pollution on individuals’ reported health and its variation by ethnicity in the United-Kingdom 
(UK).

Methods  Longitudinal individual-level data from Understanding Society: the UK Household Longitudinal Study including 
67,982 adult individuals with 404,264 repeated responses over 11 years (2009–2019) were utilized and were linked to 
yearly concentrations of NO2, SO2, and particulate-matter (PM10, PM2.5) pollution once at the local authority and once 
at the census Lower Super Output Area (LSOA) of residence for each individual. This allows for analysis at two geographi-
cal scales over time. The association between air pollution and individuals’ health (Likert scale: 1–5, Excellent to poor) 
and its variation by ethnicity was assessed using three-level mixed-effects ordered logistic models. Analysis distin-
guished between spatial (between areas) and temporal (across time within each area) effects of air pollution on health.

Results  Higher concentrations of NO2, SO2, PM10, and PM2.5 pollution were associated with poorer health. Decom-
posing air pollution into between (spatial: across local authorities or LSOAs) and within (temporal: across years within 
each local authority or LSOA) effects showed a significant between effect for NO2 and SO2 pollutants at both geo-
graphical scales, while a significant between effect for PM10 and PM2.5 was shown only at the LSOAs level. No signifi-
cant within effects were detected at an either geographical level. Indian, Pakistani/Bangladeshi, Black/African/Carib-
bean and other ethnic groups and non-UK-born individuals reported poorer health with increasing concentrations of 
NO2, SO2, PM10, and PM2.5 pollutants in comparison to the British-white and UK-born individuals.

Conclusion  Using longitudinal data on individuals’ health linked with air pollution data at two geographical scales 
(local authorities and LSOAs), this study supports the presence of a spatial–temporal association between air pollution 
and poor self-reported health, which is stronger for ethnic minorities and foreign-born individuals in the UK, partly 
explained by location-specific differences. Air pollution mitigation is necessary to improve individuals’ health, espe-
cially for ethnic minorities who are affected the most.
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Introduction
Recent global environmental debates have been focused 
on the issue of air pollution and its impact on human 
health [1, 2]. Literature has shown an association 
between air pollution and elevated risks for mortality, 
clinical prescriptions, doctor visits, and hospital admis-
sions for a range of acute and chronic health conditions, 
including cancer, cardiovascular and respiratory dis-
eases [2–4]. For example, in Belgium, a 3.5% increase 
in cardiovascular hospital admissions and a 4.5% 
increase in ischemic stroke hospital admissions were 
reported for every 10 μg/m3 increase in nitrogen diox-
ide (NO2) pollution [5]. In the United Kingdom (UK), 
the Committee on the Medical Effects of Air Pollution 
(COMEAP) has published a series of reports assessing 
the impacts of long-term exposure to air pollution on 
health and mortality. In those reports, particulate mat-
ter with a diameter ≤ 2.5  µm (PM2.5) was found to be 
associated with all-cause, cardiopulmonary, and lung 
cancer mortality [6]. Another stream of the literature 
revealed the association between increased particulate 
matter air pollution and poor self-reported health [7–
10]. Self-reported health can capture the health status 
from the perspective of the individual and it is an accu-
rate proxy for objective health measures such as mortal-
ity and hospital admissions [11–13].

The impact of air pollution on health is complex and 
is affected by a number of social, economic, individual, 
contextual, and environmental factors [2, 4]. Gender, age, 
poverty, socioeconomic insecurity, educational attain-
ment, marital status, household size and condition, 
occupation type and level, and income are among the 
socioeconomic factors affecting the association between 
air pollution and health [2, 4, 14–16]. Pre-existing comor-
bidities, individual lifestyle habits (e.g., smoking, exercise, 
and alcohol consumption), contextual factors (e.g., neigh-
bourhood condition, urbanicity, and population density), 
and environmental factors (e.g., the season, temperature, 
relative humidity, rainfall, and wind) also affect the indi-
viduals’ exposure to ambient air pollution and its associ-
ated illnesses [2, 4, 16–18]. For example, the effect of air 
pollution on poor self-reported health in France [19] and 
Germany [20] was exacerbated by increased socioeco-
nomic insecurity, being unemployed, and living in more 
deprived areas.

Investigating the effect of air pollution on health 
by key population and socio-demographic subgroups 
would help in identifying the population sub-groups 
most affected by air pollution for specific intervention 
measures. In this context, literature has been focused 
on examining the effect of air pollution on health by 
gender, age, education, socioeconomic position, and 
deprivation. However, research on the effect of air 

pollution on health by ethnicity and migration status 
(i.e., being a foreign-born individual) is still lacking in 
European countries and the UK as per a recently pub-
lished systematic scoping literature review [4]. Most 
of the research about the effect of air pollution on 
health by ethnicity was conducted in the United States 
of America [7, 21, 22], which is characterized by a dif-
ferent ethnic composition and structure than Europe. 
To the best of our knowledge, only one study investi-
gated the effect of air pollution on respiratory-asthma 
health in adolescents by ethnic groups in the UK [23]. 
In this study, Astell-Burt et  al. found that despite the 
higher concentrations of air pollution at the place of 
residence, ethnic minorities did not show lower lung 
function than the rest of the population. They even 
observed a lower prevalence of asthma among some 
ethnic minority groups compared to the British-white 
group, even though ethnic minorities lived in more 
polluted regions [23].

Ethnicity forms an important topic in the health lit-
erature [24, 25] and might be an important effect modi-
fier in the association between air pollution and health. 
Ethnic minorities often report poorer health compared 
to the rest of the population [8, 25–28]. Literature from 
the UK has shown that people of Pakistani and Bangla-
deshi origins tend to have the poorest reported health 
followed by people from African/Caribbean and Indian 
origins [8, 25, 29, 30]. This is because ethnic minori-
ties, in general, tend to occupy lower socioeconomic 
status and live in more deprived ethnic concentra-
tion communities with poor housing conditions [25, 
31–33]. Racism, inadequate access to healthcare and 
poor patient service can also explain why some ethnic 
minority groups in the UK report poorer health [34, 
35]. In contrast, foreign-born individuals in the UK 
tend to have better health and lower rates of mortal-
ity compared to the native-born population, which is 
linked to the “Healthy migrant effect” theory [36, 37]. 
This theory indicates that healthier, more educated, 
wealthier, and better job market-suited individuals are 
the ones who have the capability of migrating to high-
income countries such as the UK [29, 36].

Thus, in the context of environmental exposures, 
ethnic minorities in the UK are expected to show 
poorer health with increased exposure to air pollution 
due to two main reasons. First, the more disadvan-
taged socioeconomic status and the experienced rac-
ism of this group would increase their risk of illness, 
making them more sensitive to the health impacts of 
air pollution. Second, ethnic minorities and foreign-
born individuals often reside in large highly popu-
lated cities and in low-priced social housing, which is 
situated in more deprived neighbourhoods and near 
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major roads and industrial areas with little access to 
green spaces [33]. This increases their exposure to air 
pollution, mostly traffic-related pollution [38], and 
results in a stronger effect of air pollution on health. 
Despite the UK government’s efforts in enhancing the 
air quality to meet the European Commission guide-
lines post 2001, an analysis done by Mitchell et  al. 
(2015) found that improvements in air quality were 
the highest in the least deprived areas, whereas the 
most deprived areas still suffer from high air pollution 
in excess of the recommended air quality guidelines 
[39]. This indicates that ethnic minorities and foreign-
born individuals who mostly live in deprived areas will 
be exposed to higher concentrations of air pollution 
compared to the rest of the population, which would 
result in poorer health.

In addition to the lack of studies on the effect of air 
pollution on health by ethnicity and country of birth, 
the application of innovative study designs that can dif-
ferentiate between spatial and temporal components 
is also lacking. Previous studies have examined the 
short-term effects of air pollution on health, mortality, 
and hospital admissions using time series, case-cross-
over, or ecological designs [3, 4]. The long-term effect 
of air pollution on health outcomes was also assessed 
in the literature using cohort designs [3, 4]. However, 
to our knowledge, no study has used a between-within 
longitudinal design to examine the spatial–temporal 
effect of long-term exposure to air pollution on health. 
Applying a between-within longitudinal design would 
involve a decomposition of the air pollution effect on 
health into between (calculating the average air pollu-
tion concentration for each geographical area across 
the follow-up time) and within (calculating the annual 
deviation in air pollution concentrations from the area-
average between concentration for each unit of time 
within the follow-up period) effects [40]. This approach 
would allow us to distinguish between the spatial 
(between) and the temporal (within) effects of air pollu-
tion on individuals’ health.

Finally, studies that link air pollution data to individ-
ual-level data at different geographical scales are lack-
ing. Assessing the effect of air pollution on individuals’ 
health at two geographical scales (e.g., coarse local 
authorities and detailed census areas such as lower super 
output areas (LSOAs)) would allow for a comparison of 
the results between the two scales and a detailed explo-
ration of the local-contextual patterns. Whilst analysis at 
a finer geographical scale using LSOAs would add spatial 
robustness to the results, analysis at a coarser scale using 
local authorities would better inform local mitigation 
approaches by providing overall area estimates for the 
local authority boards. Additionally, daily exposure to air 

pollution does not occur only at the place of residence. 
Thus, assessing the exposure at a coarser geographical 
scale such as at the local authority may capture expo-
sures at the workplace and during commuting, if the indi-
vidual lives, works, and does most of the daily activities 
within the same local authority. This means that coarser 
local authorities are a better proxy for exposure to risk 
on a day-to-day basis compared to the finer LSOAs.

In this study, we will be using two geographical scales 
(coarse local authorities and detailed LSOAs) to assess 
the spatial–temporal (between-within) effects of air 
pollution on individuals’ reported health and how this 
effect varies by ethnicity and country of birth (being a 
foreign-born versus not) in the UK. The UK is com-
posed of four nations: England, Wales, Scotland, and 
Northern Ireland. Each of these four nations has its own 
classification of census areas. In England and Wales, 
the most geographically detailed census areas are out-
put areas  with  LSOAs  being an aggregation of output 
areas  that are used to decompose England and Wales 
based on the population size into areas with a minimum 
population size of 1000 people. Those are equivalent to 
data zones in Scotland and to Super Output Areas in 
Northern Ireland. For simplicity, we will refer in this 
article to the joint LSOAs, data zones, and Super Output 
Areas as LSOAs.

Study objectives
The objectives of this study are as follows:

(1)	 To investigate the association between long-term 
(11 years) exposure to NO2, sulphur dioxide (SO2), 
Particulate matter with diameter ≤ 10  µm (PM10), 
and PM2.5 air pollutants and individuals’ reported 
health.

(2)	 To investigate the between (spatial—average pol-
lutant concentration across the follow-up time for 
each geographical area) and within (temporal—
annual deviation in the pollutant concentration 
from the average area concentration for each time 
unit of the follow-up period) effects of air pollution 
on individuals’ reported health.

(3)	 To examine how the association of air pollution 
with individuals’ reported health varies by different 
ethnic groups and migration status (being a foreign-
born versus UK-born individual).

The analysis to meet the above objectives will be 
performed on two datasets: first on the dataset which 
includes the linkage of air pollution to the individual-
level data at the LSOAs level, and second on the data-
set which includes the linkage of air pollution to the 
individual-level data at the local authority level.
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Methods
Study design and population
A longitudinal panel design was employed using indi-
vidual-level data from “Understanding Society: The UK 
Household Longitudinal Study” [41]. Understanding 
Society is a rich longitudinal dataset consisting of 10 
data collection waves/panels that span from 2009 up to 
2020 with around 40,000 households recruited at wave 
1 from the four nations of the UK: England, Wales, 
Scotland, and Northern Ireland. It involves two main 
surveys: the youth survey which is filled out by young 
people (aged 10 to 15) and the adult survey which is 
filled by individuals aged 16 and above [41].

The dataset includes information on the socio-
demographic characteristics of individuals (e.g., age, 
gender, marital status, educational attainment, occu-
pation, housing tenure, perceived financial situation, 
ethnicity, and country of birth) and on the individu-
als’ self-reported health, well-being, smoking status, 
as well as the local authority/council area and census 
Lower Super Output Areas (LSOAs) where house-
holds are located. Individuals recruited in the Under-
standing Society study are visited each year to collect 

information on changes to their household and indi-
vidual circumstances [41].

The sample design of the Understanding Soci-
ety main survey is made up of four components: 1) 
the large General Population Sample (around 26,000 
recruited households at wave 1, 2009–2010); 2) the 
Ethnic Minority Boost Sample (around 4000 recruited 
households at wave 1, 2009–2010); 3) the former Brit-
ish Household Panel Survey sample (at wave 1, 2010); 
and 4) the Immigrant and Ethnic Minority Boost Sam-
ple (around 2,500 recruited households at wave 6, 
2015) [41]. Further information on the Understanding 
Society study design is described elsewhere [42, 43].

For this study, we utilized individual-level data on 
67,982 individuals with 404,264 repeated responses 
(at least 2 repeated responses per individual) across 10 
data collection waves over 11 years (2009–2019) from 
the adult survey (age: 16 +) of the Understanding Soci-
ety data. It is worth noting that the initial adult sur-
vey of the Understanding Society data involved a total 
of 87,045 individuals with 444,181 repeated responses 
and that 39,917 observations were deleted due to the 
reasons summarised in Fig. 1.

Fig. 1  The reasons for omitting survey responses from the UK household longitudinal data
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Variables and measurements
Self‑reported health
Individuals’ self-reported health which asks how indi-
viduals perceive their health in general is assessed on a 
5-point Likert scale: 1 = excellent, 2 = very good, 3 = good, 
4 = fair, 5 = poor. Out of the total 404,264 general health 
observations, 105 (0.03%) were missing and were filled 
out using another health indicator: satisfaction with 
health, which showed a strong correlation (Pearson’s 
coefficient = 0.53) with the general health outcome. Satis-
faction with health is measured on a 7-point Likert scale 
(completely satisfied, mostly satisfied, somewhat satisfied, 
neither satisfied nor dissatisfied, somewhat dissatisfied, 
mostly dissatisfied, and completely dissatisfied). There-
fore, completely satisfied was coded to excellent health, 
mostly satisfied was coded to very good health, some-
what satisfied was coded to good health, neither satisfied 
nor dissatisfied and somewhat dissatisfied were coded to 
fair health, and mostly dissatisfied and completely dissat-
isfied were coded to poor health.

It should be noted that individuals’ self-reported health 
was chosen as the main outcome in this study due to its 
ability to capture the health status from the perspective 
of the individual and it is considered a reliable measure of 
health given the high observed correlations between self-
reported health and objective health measures (e.g., mor-
tality and hospital admissions) in the literature [11–13].

Air pollution
We obtained yearly air pollution data that combine 
all sources of air pollution including road traffic and 
industrial/combustion processes for NO2, SO2, PM10, 
and PM2.5 pollutants from the “Department for Envi-
ronment Food and Rural Affairs” online database [44]. 
These are raster data of mean annual concentrations of 
pollutants measured in µg/m3 up to the year 2019, esti-
mated using air dispersion models at a spatial resolu-
tion of 1 × 1 km2, and projected using the UK National 
Grid [44]. The raster data is projected in a way that 
each 1 × 1 km2 raster square has the value of a central 
air pollution point.

For each of the 391 local authorities/council areas in 
the UK, we computed the average concentration of NO2, 
SO2, PM10, and PM2.5 pollution from all the centroids 
of the 1 × 1 km2 raster cells that intersected/fell within 
the boundaries of the respective local authorities/council 
areas for each year from 2009 up to 2019. These average 
concentrations of air pollution were then linked to the 
“Understanding Society” data using the individuals’ local 
authority of residence for each year of observation per 
individual between 2009 and 2019, inclusive.

To minimize exposure bias and establish more robust 
results, we also linked the 1 × 1 km2 raster air pollu-
tion data to the Understanding Society data at the level 
of Lower Super Output Areas (LSOAs; data zones for 
Scotland and Super Output Areas for Northern Ire-
land), a finer geographical scale, for each individual and 
each year of follow-up (2009–2019). The linkage was 
done by calculating an area-weighted average air pollu-
tion concentration for each LSOA based on the propor-
tion of area intersection between the 1 × 1 km2 raster 
squares and the respective LSOA. For example, if a 
LSOA intersected with three 1 × 1 km2 squares in which 
one intersection covered half of the area of that LSOA 
while the other two intersections covered a propor-
tion of 0.3 and 0.2, respectively; the air pollution con-
centration for that LSOA would be 0.5 × air pollution 
concentration of the first intersected square + 0.3 × air 
pollution concentration of the second intersected 
square + 0.2 × air pollution concentration of the third 
intersected square. Using these smaller spatial units, 
we conducted our analysis at a smaller geographic scale 
than local authorities, which allowed us to explore 
local-contextual patterns of the effect of air pollution 
on health.

A map showing the local authorities in the UK (coun-
cil areas in Scotland) and an enlarged subset of 20 local 
authorities in the southeast of the UK with an example of 
PM10 concentrations at 1 × 1 km2 grid for the year 2017 
for Tower Hamlets local authority and its corresponding 
LSOAs was used to illustrate the process of air pollution 
linkages (Fig. 2).

Socio‑demographic and lifestyle covariates
In this study, ethnicity (Other-white, Pakistani/Bangla-
deshi, Indian, Black/African/Caribbean, mixed ethnici-
ties, and other ethnicities versus British-white (Reference 
category)) and country of birth (non-UK-born and miss-
ing information versus UK-born (Reference category)) 
covariates were considered as effect modifiers in the asso-
ciation between air pollution and self-reported health.

Additionally, we selected a list of individual-level 
socio-demographic and lifestyle covariates based on 
what is available in the Understanding Society data 
and based on the confounders considered by the air 
pollution-health literature [3, 4]. These included age 
(coded as 16–18 and then in 5  years increments as 
19–23; 24–28; 29–33; 34–38; 39–43; 44–48; 49–53; 
54–58; 59–63; 59–63; 64–68; 69–73; 74–78; > 78); 
gender (females versus males (Reference category)); 
marital status (living as a couple, single never married, 
divorced/separated, widowed, and missing information 
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versus married (Reference category)); educational 
attainment (High school, lower education, other 
educational qualifications, and still a student ver-
sus university degree (Reference category)); occupa-
tion (Non-manual workers, manual workers, student/
retired/not-working and missing information versus 
managers/professionals/ employers (Reference cat-
egory)); housing tenure (Owned with mortgage, local 
authority rent, housing association rent, private rent 
and other or missing information versus owned out-
right (Reference category)); perceived financial situa-
tion (living difficultly and missing information versus 
living comfortably/doing alright (Reference category)); 
and smoking (smoker and missing information versus 
non-smoker (Reference category)) [47].

The question about smoking was not asked during 
wave 1 of data collection and during waves 3 and 4 for 
people above the age of 21  years old. Therefore, indi-
vidual responses on smoking from wave 2 were used as 
a proxy for the smoking status in waves 1, 3, and 4 [47]. 
This imputation is unlikely to deviate from the real smok-
ing status scenario because the intraclass correlation 
coefficient (ICC) indicates a 97% similarity in the individ-
ual smoking responses across the data collection waves.

Finally, year dummies (calendar year: 2009–2019) were 
considered as a control for the time trend in our analysis 
following the approach of relevant studies [48, 49]. Given 
that our study utilises yearly air pollution data, controlling 
for other temporal covariates considered by relevant lit-
erature such as seasonal trends [50, 51] was not possible.

Data analysis
Percentages were computed to describe the individuals’ 
socio-demographic and lifestyle factors for each wave 
(waves 1 to 10) of the Understanding Society sample. 
We also examined the correlation between NO2, SO2, 
PM10, and PM2.5 pollutants at the two geographi-
cal scales of local authorities and LSOAs using Pear-
son’s correlation coefficient. Given the high observed 
correlations between the pollutants (Pearson’s coeffi-
cient ≥ 0.7 [52]; Tables 2 and 3), the association of NO2, 
SO2, PM10, and PM2.5 pollutants with self-reported 
health was examined in separate regression models. 
However, a low to moderate correlation was observed 
between SO2 and each of the other three pollutants, 
which enabled the construction of bi-pollutant models 
adjusting the NO2, PM10, and PM2.5 models for the 
SO2 pollutant.

Intraclass correlation coefficients (ICCs) were com-
puted to assess the homogeneity in the self-reported 
general health responses within individuals and house-
hold clusters. An ICC of more than 0.3 indicates the 
presence of fair to high homogeneity in the responses 
within the examined clusters across time [53]. Given 
the presence of 65% homogeneity (ICC = 0.65; Table 4) 
within the responses of self-reported health for each 
individual across time, the mean of self-reported 
health was calculated from predictions of mixed-
effects linear models, which were adjusted for age in 
fixed effects and for the individual ID in the random 
intercept.

Fig. 2  A map showing the local authorities in the UK and an enlarged subset of 20 local authorities in the south-east of the UK with an example of 
PM10 concentrations at 1 × 1 km2 grid for the year 2017 for Tower Hamlets local authority and its corresponding LSOAs. The green–blue coloured 
polygons in the LSOAs map represent the LSOAs; The map was constructed by the authors in ArcGIS Pro software using PM10 air pollution shapefile 
for the year of 2017 downloaded from the DEFRA online data repository [44], local authorities UK boundaries shapefile downloaded from the Office 
for National Statistics [45], and LSOAs and data zones UK boundaries also downloaded from the Office for National Statistics, National Records of 
Scotland, and Northern Ireland Statistics [46]. Both DEFRA and Office for National Statistics shapefiles are governed under the Open Government 
Licence v.3.0
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Three-level (repeated individual observations across 
time nested within local authorities or LSOAs) mixed-
effects ordered logistic models were used to assess the 
association between self-reported general health and 
each of NO2, SO2, PM10, and PM2.5 pollutants. Mixed-
effects ordered logistic models were used to account for 
the nested-longitudinal structure of the data and because 
general health is an ordinal outcome, which is measured 
on a 5-point (Excellent, very good, good, fair, and poor 
health) Likert scale. These models were adjusted for 
the socio-demographic and lifestyle covariates and the 
year (2009–2019) dummies. The models which involve 
air pollution linked at the LSOAs level were addition-
ally adjusted for the LSOAs population density. This was 
done to account for any bias introduced by the LSOAs 
being constructed by dividing areas in the four nations 
of the UK based on the population size. In a supplemen-
tary analysis, we also demonstrate the association of 
self-reported health with each of the socio-demographic 
and lifestyle covariates (Additional file  1: Supplemen-
tary Table 1). It is worth noting that we did not account 
for the household clustering in the random intercept of 
the mixed-effects ordered logistic models due to the 
low observed homogeneity in the self-reported health 
responses within each household cluster (ICC = 0.24; 
Table 4).

In further analysis, we decomposed the overall effect 
of air pollution (linked at the local authority or LSOAs 
level) on health into between (spatial) and within (tem-
poral) effects. Between effects (Eq. 1) were used to deter-
mine the spatial effect of air pollution by computing the 
mean of air pollution across the 11  years of follow-up 
(2009–2019) for each local authority and each LSOA. On 
the contrary, within effects (Eq.  2) were used to deter-
mine the temporal effect of air pollution by calculating 
the yearly air pollution deviation from the 11 years mean 
for each local authority and LSOA. The multilevel mixed-
effects ordered logistic models were used to examine the 
overall (Eq. 3) effect of air pollution as well as the between 
and within effects (Eq. 4) of air pollution on self-reported 
health at two geographical scales (coarse local authorities 
and detailed LSOAs).

Finally, we incorporated into the mixed-effects mod-
els an interaction term between ethnicity and each of 
NO2, SO2, PM10, and PM2.5 pollutants and between 
country of birth and each of the four pollutants to 
assess whether the association between air pollution 
and health varies between ethnic groups and by coun-
try of birth. Interaction terms were incorporated into 
the overall pollutant models (Eqs.  5 and 6) and into 
the between-within models, each at a time. Coefficient 

plots were used to visualize the interaction analysis 
results.

Where i is the individual; t is the time in years; and j is 
the local authority or LSOA.
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+ �12Smoking statustij + �13Year dummiesij

+ �tij

(5)

ln

(

Yctij

1 − Yctij

)

=�c +Ucij +Ucj

+ �1overall pollutant concentration

× Ethnicitytij + �4Agetij + �5Gendertij

+ �6Country of birthtij + �7Marital statustij

+ �8Educationtij + �9Occupationtij

+ �10Housing tenuretij

+ �11Perceivedfinancial situationtij

+ �12Smoking statustij + �13Year dummiesij

+ �tij
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where Yctij is the health outcome for individual i meas-
ured using 5 ordered categories (c = 1, 2, 3, 4, 5), in local 
authority or LSOA j at year t; β1, β2 …. β12 are the slopes 
of fixed effects; βc is the fixed intercept for the 5 ordered 
categories (c = 1, 2, 3, 4, 5); Ucij is level 2 random inter-
cept of individuals nested in local authorities or LSOAs 
for the 5 ordered categories (c = 1, 2, 3, 4, 5); Ucj is level 
3 random intercept of local authorities or LSOAs for the 
5 ordered categories (c = 1, 2, 3, 4, 5); εtij are the model 
residuals; Models involving air pollution linked at the 
LSOAs level are additionally adjusted for the LSOAs 
population density.

In a sensitivity analysis, we performed the same mul-
tilevel mixed-effects ordered logistic models to examine 
the overall and the between-within effects of air pollu-
tion (linked at the level of local authority and LSOAs) 
on self-reported health and how these effects vary by 
ethnic groups and country of birth only for individuals 
recruited in wave 1 of the Understanding Society data. 
This sensitivity analysis was carried out to balance the 
cohort effect because not all individuals in our sample 
were recruited in wave 1 and attrition bias is more prob-
able at later waves.

In a sensitivity analysis, we also carried out four-level 
mixed-effects logistic models with repeated individual 
responses nested in LSOAs, nested in local authorities to 
examine the association between air pollution linked at 
the LSOAs level and self-reported general health coded 
as a binary variable of fair/poor health versus excellent/
very good/good health. This sensitivity analysis was con-
ducted to assess in more details the local and regional 
effects of air pollution on health in the general popula-
tion and by ethnicity. Given the complexity of the four-
level nested models, the analysis was performed using a 
binary version of the general health outcome rather than 
the ordered Likert scale version.

Statistical analysis was conducted using STATA soft-
ware (StataCorp. 2015. Stata Statistical Software: Release 
14. College Station, TX: StataCorp LP) and spatial pre-
processing was conducted using ArcGIS Pro software. 

(6)

ln

(

Yctij

1 − Yctij

)

=�c + Ucij +Ucj

+ �1overall pollutant concentration

× Country of birthtij + �4Agetij

+ �5Gendertij + �6Ethnicitytij

+ �7Marital statustij + �8Educationtij

+ �9Occupationtij

+ �10Housing tenuretij + �11Perceivedfinancial situation
tij

+ �12Smoking statustij + �13Year dummiesij + �tij

Regression results were reported in terms of odds ratios 
(ORs) and 95% confidence intervals (CIs) per 10  µg/m3 
increase in air pollution. Statistical significance was con-
sidered at a P-value of less than 0.05.

Results
Description of individuals’ socio‑demographic and lifestyle 
factors
This study included a total of 67,982 adult individuals 
(aged 16 +) with 404,264 repeated responses across 10 
waves/panels spread over 11  years (2009–2019) of indi-
viduals’ follow-up. The average number of observations 
per individual was 5.95 (SD = 2.86) with a minimum of 2 
observations per individual and the mean follow-up time 
was 5.53 (SD = 3.00) years.

Table  1 summarises the descriptive statistics for the 
individuals’ socio-demographic and lifestyle factors for 
each of the 10 waves/panels of the Understanding Soci-
ety sample. In all the waves, most of the individuals were 
females, aged between 34 and 58  years old, were mar-
ried, were non-manual workers (if working), owned their 
houses either outrightly or with a mortgage, had a com-
fortable/alright financial situation, were non-smokers, 
and lived in England. As for educational attainment, indi-
viduals were equally distributed between high school, 
university, and other educational qualifications in all the 
waves (Table 1).

Most of the individuals were born in the UK (83% in 
wave 1) and belonged to British-white ethnicity (76% in 
wave 1). The share of ethnic minorities in wave 1 was as 
follows: Other-white (4%), Indians (4%), Pakistani/Bang-
ladeshi (5%), Black/African/Caribbean (5%), mixed eth-
nicities (2%), and other ethnicities (4%) (Table 1).

Description of air pollution
Description of air pollution at the LSOAs level
The mean of NO2, SO2, PM10, and PM2.5 pollutants 
across 42,619 LSOAs in the UK for each year from 2009 
through 2019 is summarised in Fig. 3. Fluctuations in air 
pollution were observed from one year to another with 
lower levels of pollution noted in the last 5 years of the 
observation window in comparison to previous years for 
all four pollutants, with an exception for the year 2016 
(Fig.  3). The yearly concentrations of NO2 decreased 
from 17.6  µg/m3 in 2009 to 13.4  µg/m3 in 2019. Simi-
larly, the concentrations of PM10 and PM2.5 decreased 
from 15.5 µg/m3 in 2009 to 13.5 µg/m3 in 2019 and from 
10.4 µg/m3 in 2009 to 8.6 µg/m3 in 2019, respectively. A 
decline in SO2 concentration from 2.7 µg/m3 in 2009 to 
1.4 µg/m3 in 2019 was also observed (Fig. 3).
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Table  2 summarises the average concentrations of 
air pollutants across 42,619 LSOAs in the UK and 
their respective correlations. A high correlation (Pear-
son’s coefficient ≥ 0.7) was noted between NO2, PM10, 
and PM2.5 pollutants, which could be explained by 
the chemical reactions between particulate matter and 
NO2 pollutants in the atmosphere (Table 2).

Description of air pollution at the Local authority level
Similar to the LSOAs, fluctuations in the mean of NO2, 
SO2, PM10, and PM2.5 concentrations across 391 local 
authorities in the UK were observed from one year to 
another with lower levels of pollution noted in the last 
5 years of the observation window (2015–2019) in com-
parison to previous years (2009–2014), with an excep-
tion for the year 2016 (Fig. 4).

A high correlation (Pearson’s coefficient ≥ 0.7) was 
also observed between NO2, PM10, and PM2.5 pollut-
ants at the local authority level (Table 3).

Description of individuals’ self‑reported health
The mean of self-reported general health (1 to 5: excel-
lent to poor) was 2.65 (SD = 0.36) indicating that most 
of the individuals report good health. Specifically, 
excellent/very good/good health was prevalent in 79% 
of the responses, while 21% of responses indicated fair/
poor health. High homogeneity in the self-reported 
health responses was noted within the individual clus-
ters over time (ICC = 0.65), while low homogeneity was 
observed within the household clusters (ICC = 0.24) 
(Table 4).

Fig. 3  The annual mean of NO2, SO2, PM10, and PM2.5 air pollutants at the LSOAs level in the UK from the year 2009 to 2019 (N = 42,619 LSOAs)

Table 2  Exposure description and correlation matrix of air pollutants at the LSOAs level (N = 42,619 LSOAs)

Strong correlations with a correlation coefficient ≥ 0.70 are highlighted in bold

Pearson’s correlation coefficient

NO2 (µg/m3) SO2 (µg/m3) PM10 (µg/m3) PM2.5 (µg/m3) Mean SD Median Interquartile 
range

NO2 (µg/m3) 1.00 15.80 7.47 14.91 9.69

SO2 (µg/m3) 0.36 1.00 1.89 1.26 1.59 1.06

PM10 (µg/m3) 0.76 0.28 1.00 14.38 3.18 14.53 4.32

PM2.5 (µg/m3) 0.79 0.31 0.97 1.00 9.76 2.40 9.88 3.30
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The spatial–temporal effect of air pollution on individuals’ 
health
The spatial–temporal effect of air pollution on individuals’ 
health at the LSOAs level
Results showed that poorer self-reported health (1–5 
Likert scale: excellent to poor health) is associated with 
increased concentrations of air pollution linked at the 
LSOAs level. Individuals were 10% (95%CI = 7%-14%), 
36% (95%CI = 26%-47%), 15% (95%CI = 8%-23%), and 
25% (95%CI = 15%-36%) more likely to increase the rat-
ing of their general health by one point, moving from 
excellent to poor health, for every 10  µg/m3 increase 
in NO2, SO2, PM10, and PM2.5 pollutants, respec-
tively (Table  5). Performing sensitivity analysis using 

Fig. 4  The annual mean of NO2, SO2, PM10, and PM2.5 air pollutants at the local authority level in the UK from the year 2009 to 2019 (N = 391 local 
authorities)

Table 3  Exposure description and correlation matrix of air pollutants at the local authority level (N = 391 local authorities)

Strong correlations with correlation coefficient ≥ 0.70 are highlighted in bold

Pearson’s correlation coefficient

NO2 (µg/m3) SO2 (µg/m3) PM10 (µg/m3) PM2.5 (µg/m3) Mean SD Median Interquartile 
range

NO2 (µg/m3) 1.00 12.99 7.08 11.71 8.18

SO2 (µg/m3) 0.50 1.00 1.57 0.93 1.37 0.90

PM10 (µg/m3) 0.77 0.38 1.00 14.06 3.19 14.43 4.26

PM2.5 (µg/m3) 0.81 0.42 0.97 1.00 9.42 2.35 9.62 3.23

Table 4  Intraclass correlation coefficient for within individual 
and household clusters

Strong ICCs > 0.3 are highlighted in italic-bold; Meana is based on predictions 
from mixed-effects linear models which are adjusted for age in fixed effects and 
for the individual ID in random intercept

General Health scale (1 
to 5: excellent to poor)

Individual ID ICC [95%CI] 0.65 [0.64, 0.65]
N of observations 404,264

N of individuals 67,982

Meana (SD) 2.65 (0.36)

Household ID ICC [95%CI] 0.24 [0.24, 0.24]

N of observations 404,264

N of households 233,212
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four-level mixed-effects models also revealed similar 
results of higher odds of fair/poor health with increas-
ing concentrations of all the four pollutants (Addi-
tional file  1: Supplementary Table  2). In bi-pollutant 
models adjusting each of NO2, PM10 and PM2.5 mod-
els for SO2 pollutant, similar results were observed of 
poorer self-reported health with increasing concentra-
tions of NO2, PM10 and PM2.5 pollutants (Table 6).

Decomposing the overall effect of air pollution on health 
into between (spatial: across LSOAs) and within (tempo-
ral: across years within each LSOA) effects, showed sig-
nificant positive associations with poorer health for the 
between effect for NO2 (OR = 1.09, 95%CI = 1.05–1.14), 
SO2 (OR = 5.69, 95%CI = 4.50–7.19), PM10 (OR = 1.11, 
95%CI = 1.02–1.21), and PM2.5 (OR = 1.23, 95%CI = 1.09–
1.38) pollutants. No significant within effects were 
observed for these four pollutants, although the sign of 

the odds ratios is largely as expected (Table  5). Similar 
results for the overall and for the between-within effects of 
the four pollutants on individuals’ health were shown in a 
sensitivity analysis for wave 1 recruited individuals (Addi-
tional file 1: Supplementary Table 3).

Table 5  The association of self-reported general health with 
each of NO2, SO2, PM10, and PM2.5 air pollutants in separate 
models at the LSOAs level (N = 404,264 observations from 67,982 
individuals)

ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air 
pollutants; Model 1 is adjusted for age, gender, and year dummies (2009–2019); 
Model 2 is adjusted for age, gender, ethnicity, country of birth, marital status, 
education, occupation, housing tenure, perceived financial situation, smoking 
status, and year dummies (2009–2019); Model 3 is additionally adjusted for the 
LSOAs population density
** P-value < 0.01; *P-value < 0.05

Model 1 Model 2 Model 3
OR [95%CI] OR [95%CI] OR [95%CI]

Overall pollution effect
  NO2 (µg/m3) 1.20 [1.16, 

1.23]**
1.11 [1.08, 
1.14]**

1.10 [1.07, 1.14]**

  SO2 (µg/m3) 1.46 [1.35, 
1.58]**

1.37 [1.27, 
1.48]**

1.36 [1.26, 1.47]**

  PM10 (µg/m3) 1.28 [1.20, 
1.37]**

1.19 [1.11, 
1.26]**

1.15 [1.08, 1.23]**

  PM2.5 (µg/
m3)

1.42 [1.31, 
1.55]**

1.29 [1.19, 
1.40]**

1.25 [1.15, 1.36]**

Between pollution effect
  NO2 (µg/m3) 1.22 [1.18, 

1.26]**
1.11 [1.07, 
1.14]**

1.09 [1.05, 1.14]**

  SO2 (µg/m3) 16.45 [12.61, 
21.44]**

5.88 [4.65, 
7.42]**

5.69 [4.50, 7.19]**

  PM10 (µg/m3) 1.29 [1.19, 
1.40]**

1.17 [1.08, 
1.27]**

1.11 [1.02, 1.21]*

  PM2.5 (µg/
m3)

1.50 [1.34, 
1.69]**

1.31 [1.18, 
1.47]**

1.23 [1.09, 1.38]**

Within pollution effect
  NO2 (µg/m3) 1.04 [0.97, 1.12] 1.02 [0.95, 1.10] 1.02 [0.95, 1.10]

  SO2 (µg/m3) 0.97 [0.85, 1.10] 0.99 [0.88, 1.12] 0.99 [0.88, 1.13]

  PM10 (µg/m3) 1.12 [0.98, 1.27] 1.06 [0.93, 1.20] 1.05 [0.93, 1.20]

  PM2.5 (µg/
m3)

1.004 [0.86, 1.17] 0.93 [0.78, 1.08] 0.92 [0.79, 1.08]

Table 6  The association of self-reported general health with 
each of NO2, SO2, PM10, and PM2.5 air pollutants in bi-pollutant 
models adjusted for SO2 pollutant at the LSOAs level (N = 404,264 
observations from 67,982 individuals)

ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air pollutants

Models are additionally adjusted for age, gender, ethnicity, country of birth, 
marital status, education, occupation, housing tenure, perceived financial 
situation, smoking status, year dummies (2009–2019), and LSOAs population 
density
** P-value < 0.01; *P-value < 0.05

Overall pollution effect
OR [95%CI]

NO2—SO2 Model NO2 (µg/m3) 1.07 [1.04, 1.11]**

SO2 (µg/m3) 1.30 [1.20, 1.41]**

PM10—SO2 Model PM10 (µg/m3) 1.10 [1.03, 1.17]**

SO2 (µg/m3) 1.33 [1.23, 1.45]**

PM2.5—SO2 Model PM2.5 (µg/m3) 1.18 [1.08, 1.29]**

SO2 (µg/m3) 1.33 [1.22, 1.44]**

Table 7  The association of self-reported general health with 
each of NO2, SO2, PM10, and PM2.5 air pollutants in separate 
models at the local authority level (N = 404,264 observations 
from 67,982 individuals)

ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air 
pollutants; Model 1 is adjusted for age, gender, and year dummies (2009–2019); 
Model 2 is adjusted for age, gender, ethnicity, country of birth, marital status, 
education, occupation, housing tenure, perceived financial situation, smoking 
status, and year dummies (2009–2019)
** P-value < 0.01; *P-value < 0.05

Model 1 Model 2
OR [95%CI] OR [95%CI]

Overall pollution effect
  NO2 (µg/m3) 1.13 [1.09, 1.18]** 1.08 [1.05, 1.12]**

  SO2 (µg/m3) 1.28 [1.14, 1.43]** 1.28 [1.13, 1.45]**

  PM10 (µg/m3) 1.14 [1.05, 1.23]** 1.10 [1.01, 1.19]*

  PM2.5 (µg/m3) 1.25 [1.13, 1.38]** 1.19 [1.07, 1.31]**

Between pollution effect
  NO2 (µg/m3) 1.12 [1.04, 1.20]** 1.05 [0.99, 1.10]

  SO2 (µg/m3) 15.05 [7.77, 29.15]** 6.31 [3.46, 11.5]**

  PM10 (µg/m3) 1.04 [0.87, 1.25] 1.03 [0.90, 1.18]

  PM2.5 (µg/m3) 1.09 [0.85, 1.41] 1.06 [0.88, 1.29]

Within pollution effect
  NO2 (µg/m3) 1.01 [0.92, 1.12] 1.01 [0.91, 1.12]

  SO2 (µg/m3) 1.05 [0.86, 1.28] 1.04 [0.83, 1.30]

  PM10 (µg/m3) 1.03 [0.90, 1.19] 1.02 [0.88, 1.19]

  PM2.5 (µg/m3) 0.87 [0.73, 1.02] 0.86 [0.72, 1.03]
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The spatial–temporal effect of air pollution on individuals’ 
health at the local authority level
At the local authority level, individuals were 8% 
(95%CI = 5%-12%), 28% (95%CI = 13%-45%), 10% 
(95%CI = 1%-19%), and 19% (95%CI = 7%-31%) more 

likely to increase the rating of their general health by one 
point, moving from excellent to poor health, for every 
10  µg/m3 increase in NO2, SO2, PM10, and PM2.5 pol-
lutants, respectively (Table 7). This shows that the higher 
the pollution levels in a local authority are the poorer the 
health of individuals living there is. Similar results were 
noted in bi-pollutant models adjusting each of the NO2, 
PM10 and PM2.5 models for the SO2 pollutant. An excep-
tion was PM10 which does not show a significant associa-
tion with self-reported general health after adjusting for 
the SO2 pollutant (Table 8). This could be explained by the 
moderate correlation between PM10 and SO2 (Pearson’s 
coefficient = 0.38), when linked at the local authority level. 
This was not the case when air pollution was linked at the 
LSOAs level, where the correlation between PM10 and 
SO2 (Pearson’s coefficient = 0.28) was lower.

Analysing the between-within effects revealed sig-
nificant positive associations with poorer health 
for the between effect only for the SO2 (ORs = 6.31, 
95%CI = 3.46–11.5) pollutant, while no significant within 
effect was noted for this pollutant. Contrary to the 
LSOAs, both between and within effects were not present 
for NO2, PM10 and PM2.5 pollutants at the local authority 
level (Table 7).

Table 8  The association of self-reported general health with 
each of NO2, SO2, PM10, and PM2.5 air pollutants in bi-pollutant 
models adjusted for SO2 pollutant at the local authority level 
(N = 404,264 observations from 67,982 individuals)

ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air 
pollutants; Models are additionally adjusted for age, gender, ethnicity, country 
of birth, marital status, education, occupation, housing tenure, perceived 
financial situation, smoking status, and year dummies (2009–2019)
** P-value < 0.01; *P-value < 0.05

Overall pollution effect
OR [95%CI]

NO2—SO2 Model NO2 (µg/m3) 1.07 [1.02, 1.11]**

SO2 (µg/m3) 1.19 [1.03, 1.38]*

PM10—SO2 Model PM10 (µg/m3) 1.06 [0.98, 1.16]

SO2 (µg/m3) 1.25 [1.10, 1.43]**

PM2.5—SO2 Model PM2.5 (µg/m3) 1.14 [1.02, 1.27]*

SO2 (µg/m3) 1.24 [1.08, 1.42]**

Fig. 5  The overall effect of air pollution on individuals’ self-reported health by ethnicity and country of birth at the LSOAs level (N = 404,264 
observations from 67,982 individuals). ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air pollutants. The dashed line is placed 
at OR = 1 as a cut-off for statistically insignificant results; The solid line separates between the air pollution-ethnicity interaction models and the 
air pollution-country of birth interaction models; Air pollution-ethnicity interaction models where the reference category is “British-white” are 
adjusted for country of birth, age, gender, marital status, education, occupation, housing tenure, subjective financial situation, smoking status, year 
dummies (2009 to 2019), and LSOAs population density; Air pollution-country of birth interaction models where the reference category is “born in 
UK” are adjusted for ethnicity, age, gender, marital status, education, occupation, housing tenure, subjective financial situation, smoking status, year 
dummies (2009 to 2019), and LSOAs population density
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Sensitivity analysis for wave 1 recruited individuals 
showed similar results for the overall and for the between-
within effects of the SO2 pollutant (at the local author-
ity level) on individuals’ health. However, for wave 1 
recruited individuals, PM10 and PM2.5 pollutants do not 
show an association with poor self-reported health and 
NO2 shows a significant between effect on self-reported 
health (Additional file 1: Supplementary Table 4).

The association of air pollution with individuals’ health 
by ethnicity and country of birth
The association of air pollution with individuals’ health 
by ethnicity and country of birth at the LSOAs level
Examining the association between ethnicity and indi-
viduals’ health revealed poorer self-reported health 
among Indian (OR = 1.35, 95%CI = 1.21–1.50), Pakistani/
Bangladeshi (OR = 1.82, 95%CI = 1.65–2.02), and mixed 
ethnicities (OR = 1.19, 95%CI = 1.04–1.36) in compari-
son to the British-white. On the contrary, other-white 
(OR = 0.86, 95%CI = 0.79–0.94) and Black/African/Carib-
bean (OR = 0.66, 95%CI = 0.59–0.73) showed better self-
reported health than the British-white. Non-UK-born 
individuals also reported better health in comparison 
to UK-born individuals (OR = 0.85, 95%CI = 0.80–0.91), 
which is in line with the “Healthy migrant effect” theory 
(Additional file 1: Supplementary Table 1).

Analysis of the association between air pollution and 
individuals’ health by ethnicity and country of birth at 
the LSOAs level showed a stronger effect of air pollution 
on poor self-reported health among ethnic minorities. 
Specifically, individuals from an Indian and Pakistani/
Bangladeshi origins reported poorer health with every 
10 µg/m3 increase in SO2, PM10, and PM2.5 pollutants 
compared to British-white. Non-UK-born individuals 
were also more likely to report poorer health than UK-
born individuals with increasing concentrations of all 
four pollutants (Fig. 5). Similar results were observed in 
four-level mixed-effects models in which higher odds of 
fair/poor health were shown among people from Indian 
and Pakistani/Bangladeshi origins compared to British-
white with increasing concentrations of SO2, PM10, and 
PM2.5 pollutants. Higher odds of fair/poor health were 
also observed among non-UK-born individuals com-
pared to UK-born individuals with increasing concen-
trations of the four pollutants. However, Black/African/
Caribbean ethnicities showed higher odds of fair/poor 
health compared to British-white while other-white 
showed lower odds of fair/poor health with increasing 
concentrations of NO2, PM10, and PM2.5 pollutants 
(Additional file 1: Supplementary Fig. 1). These associa-
tions were not observed in the three-level mixed-effects 
models, which included only a random intercept for 
LSOAs, but not for local authorities.

Sensitivity analysis for only wave 1 recruited individu-
als revealed similar associations, except for the associa-
tion between PM10 pollutant and self-reported health, 
whereby no differences were shown among ethnic 
minorities and non-UK-born individuals compared to 
British-white and UK-born individuals (Additional file 1: 
Supplementary Fig. 2).

Analysing the between-within (spatial–temporal) 
effects of air pollution on health by ethnicity and coun-
try of birth at the LSOAs level showed less consistent 
results than the overall effect of air pollution. Better 
health was reported with increasing LSOAs-11  years 
average concentrations of NO2, PM10 and PM2.5 pol-
lutants (between effect) by people from Pakistani/Bang-
ladeshi origins compared to British-white. Indians and 
non-UK-born individuals also showed better health with 
more temporal variation (within effect) in PM10 and 
PM2.5 pollutants. In contrast, Indians and Pakistani/
Bangladeshi ethnicities reported poorer health with 
more temporal variation in SO2 pollutant compared to 
British-white (Fig.  6). The Between-within analysis for 
individuals recruited at wave 1 of the Understanding 
Society study revealed similar results (Additional file 1: 
Supplementary Fig. 3).

The association of air pollution with individuals’ health 
by ethnicity and country of birth at the local authority level
Analysis of air pollution and health by ethnicity and 
country of birth at the local authority level also revealed 
a stronger effect of air pollution on poor self-reported 
health among ethnic minorities; yet with some noted 
differences than the analysis performed at the LSOAs 
level. At the local authority level, individuals from an 
Indian, Pakistani/Bangladeshi, Black/African/Carib-
bean, and other ethnicities origin reported poorer 
health than the British-white with every 10  µg/m3 
increase in NO2, PM10, and PM2.5 pollution. People 
from Indian and Pakistani/Bangladeshi origins also 
showed poorer health with increasing concentrations of 
SO2 pollutant (Fig. 7). Similar to LSOAs, non-UK-born 
individuals were more likely to report poorer health 
than UK-born individuals with increasing concentra-
tions of all four pollutants linked at the local authority 
level (Fig. 7).

Similar association patterns were observed in the analy-
sis for only wave 1 recruited individuals compared to 
the total sample analysis. However, the magnitude of the 
associations was reduced, and no significant differences 
are noted anymore between the ethnic minority groups 
and British-white for the association between NO2 and 
PM10 pollutants and self-reported health (Additional 
file  1: Supplementary Fig.  4). The most probable expla-
nation for the reduced magnitude of associations is that 
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Fig. 6  The between-within (spatial–temporal) effect of air pollution on individuals’ self-reported health by ethnicity and country of birth at the 
LSOAs level (N = 404,264 observations from 67,982 individuals). ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air pollutants. 
The dashed line is placed at OR = 1 as a cut-off for statistically insignificant results; The solid line separates between the air pollution-ethnicity 
interaction models and the air pollution-country of birth interaction models; Air pollution-ethnicity interaction models where the reference 
category is “British-white” are adjusted for country of birth, age, gender, marital status, education, occupation, housing tenure, subjective financial 
situation, smoking status, year dummies (2009 to 2019), and LSOAs population density; Air pollution-country of birth interaction models where the 
reference category is “born in UK” are adjusted for ethnicity, age, gender, marital status, education, occupation, housing tenure, subjective financial 
situation, smoking status, year dummies (2009 to 2019), and LSOAs population density
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by considering only wave 1 recruited individuals, we are 
missing the second ethnic minority boost sample, which 
was introduced at wave 6 of the data collection.

For the between-within (spatial–temporal) effects of 
air pollution at the local authority level, significant asso-
ciations with poorer health were noted for the between 
effect of NO2, PM10, and PM2.5 pollution among the 
Black/African/Caribbean group in comparison to the 
British-white and among those not born in the UK. In 
contrast, Indians showed better health with more tem-
poral variation (within effect) in PM10 and PM2.5 pol-
lutants compared to British-white (Fig. 8). However, the 
above Between-within effects were not observed in the 
analysis for only wave 1 recruited individuals, except for 
Indians who still show better health with more temporal 
variation in PM10 pollutant (Additional file  1: Supple-
mentary Fig. 5).

Discussion
This study shows that there is an association between 
increased exposure to four air pollutants NO2, SO2, 
PM10, and PM2.5 (linked at coarse local authorities and 
detailed LSOAs geographical scales) and self-reported 
health in the UK for individuals followed between 2009 

and 2019. These findings are corroborated by relevant 
literature whereby exposure to air pollution was associ-
ated with many respiratory (eg. asthma, bronchiolitis), 
cardiovascular (eg. chronic obstructive pulmonary dis-
ease, emphysema, myocardial infarction), cerebrovascu-
lar (eg. stroke), and cancer (eg. lung cancer) diseases [2, 
4]. This in turn contributes to increased rates of mortality 
[54–57], hospital admissions [3, 15, 58, 59], and poor self-
reported health [8, 10, 60].

Although the association between air pollution and 
poor health is well-established in the literature, this study 
was novel in going a further step in an attempt to show 
the between-within effects of air pollution on health. 
Additionally, the analysis was carried out at two geo-
graphical scales, the coarse local authorities and more 
detailed LSOAs, which forms another novelty of this 
study. The between-within analysis is widely used in the 
fields of economics, behavioural finance, and strategic 
management [61]. However, this type of analysis is rarely 
used in health research [62]; and no previous study has 
assessed the between-within effects of air pollution on 
health. Through the application of the between-within 
analysis in this study, we observed significant between, 
but not within effects on poor self-reported health for 

Fig. 7  The overall effect of air pollution on individuals’ self-reported health by ethnicity and country of birth at the local authority level (N = 404,264 
observations from 67,982 individuals). ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air pollutants. The dashed line is placed 
at OR = 1 as a cut-off for statistically insignificant results; The solid line separates between the air pollution-ethnicity interaction models and the air 
pollution-country of birth interaction models; Air pollution-ethnicity interaction models where the reference category is “British-white” are adjusted 
for country of birth, age, gender, marital status, education, occupation, housing tenure, subjective financial situation, smoking status, and year 
dummies (2009 to 2019); Air pollution-country of birth interaction models where the reference category is “born in UK” are adjusted for ethnicity, 
age, gender, marital status, education, occupation, housing tenure, subjective financial situation, smoking status, and year dummies (2009 to 2019)
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Fig. 8  The between-within (spatial–temporal) effect of air pollution on individuals’ self-reported health by ethnicity and country of birth at the local 
authority level (N = 404,264 observations from 67,982 individuals). ORs and 95%CIs are expressed in terms of 10 µg/m3 increase in the air pollutants. 
The dashed line is placed at OR = 1 as a cut-off for statistically insignificant results; The solid line separates between the air pollution-ethnicity 
interaction models and the air pollution-country of birth interaction models; Air pollution-ethnicity interaction models where the reference 
category is “British-white” are adjusted for country of birth, age, gender, marital status, education, occupation, housing tenure, subjective financial 
situation, smoking status, and year dummies (2009 to 2019); Air pollution-country of birth interaction models where the reference category is “born 
in UK” are adjusted for ethnicity, age, gender, marital status, education, occupation, housing tenure, subjective financial situation, smoking status, 
and year dummies (2009 to 2019)
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NO2 and SO2 pollutants, at both the LSOAs and local 
authority levels. However, for PM10 and PM2.5 pol-
lutants, significant between but not within effects were 
observed only when linked at the LSOAs level, but not 
at the local authority level. Therefore, individuals residing 
in local authorities or LSOAs with higher average con-
centrations of NO2 and SO2 pollution across the 11 years 
of follow-up exhibited poorer self-reported health in 
comparison to individuals residing in local authorities 
or LSOAs with lower pollution concentrations. For par-
ticulate matter pollution, only residing in more polluted 
LSOAs resulted in poorer health. Hence, analysis at the 
local authority level attenuated the spatial (between) 
effect of PM10 and PM2.5 pollution on individuals’ 
health in comparison to the analysis at the LSOAs level. 
This implies stronger associations at the LSOAs finer 
geographical scale compared to the coarser local author-
ity level. However, conducting analysis at the coarser 
local authorities’ level was necessary for guiding local 
authority-specific decision-making regarding air pollu-
tion and health.

In all cases, our study shows strong evidence for the 
spatial rather than temporal effects of air pollution on 
health, whether linked at the coarse local authority level 
or at the finer LSOAs level. This could be explained by 
the low variation of yearly air pollution concentrations 
across the 11 years of follow-up, particularly for SO2 pol-
lutant as shown in Fig. 3 for LSOAs and Fig. 4 for local 
authorities. Hence, increasing the follow-up time to allow 
for more variation in air pollution might result in signifi-
cant within effects. Additionally, air pollution exposure in 
this study was assessed on a yearly rather than monthly or 
daily basis, which also limits the variation in air pollution 
across time, resulting in weaker temporal associations.

Despite the statistically insignificant within results, 
the ORs for NO2, SO2, and PM10 indicated a positive 
association with poorer general health. This implies 
that the variation in air pollution over time within each 
local authority or LSOA can contribute to poorer health 
among individuals living in the respective local authority 
or LSOA. Hence, if the number of vehicles and/or indus-
trial facilities increases over time in a respective local 
authority or LSOA, people may experience poorer health 
due to increased air pollution exposure.

The observed between-within effects can be also 
explained by the emission source of the pollutants and 
their chemical reactivity in the atmosphere. The major 
source of NO2 emissions is traffic exhaust [63], which 
varies across both local authorities/LSOAs (between: spa-
tial) and time (within: temporal) depending on the num-
ber of vehicles and the movement of people. Yet, nitrogen 
oxides are highly reactive and seasonal pollutants [64], 
which makes it difficult to capture their temporal 

variation through yearly measurements. For instance, 
more NO2 will be liberated into the atmosphere during 
warm seasons due to the chemical reactions between 
nitrogen oxides and ozone [64]. Additionally, NO2 is con-
verted to Nitric acid by several different reactions in the 
atmosphere [65]. That’s why only spatial (between) and not 
temporal (within) effects for NO2 pollutant were observed 
when taking the year as our time measuring unit.

On the other hand, industrial processes and power 
plants are the major sources of SO2 pollution [66], which 
is dominated by spatial (between) variation rather than 
temporal (within) variation as building a new factory 
requires much longer time than purchasing a motor vehi-
cle. Particulate matter results from both traffic exhaust 
and industrial processes [67], and is considered a more 
stable pollutant that may stay suspended in the air for 
long periods of time [65]. Thus, an overall effect of par-
ticulate matter on health is expected rather than a spa-
tial or a temporal derived effect. Yet, the stable nature of 
particulate matter allows this pollutant to show a spatial 
effect when using a high spatial resolution geographical 
scale such as LSOAs while this spatial effect will be atten-
uated when using a lower spatial resolution scale such as 
local authorities.

This study was also novel in analysing how the overall 
and the between and within effects of air pollution on 
self-reported health vary across six ethnic groups and 
by country of birth. Analysis revealed a stronger effect 
of air pollution on poor self-reported health among 
Pakistani/Bangladeshi, Indian, Black/African/Carib-
bean (only at the local authority level and in four-level 
nested models with a random intercept for repeated 
individual responses nested in LSOAs nested in local 
authorities), and other ethnic minorities compared to 
British-white; and among non-UK-born individuals com-
pared to natives. These findings are corroborated by simi-
lar research from the United States of America whereby 
non-Hispanic white individuals were 10% more likely 
to report hypertension and non-Hispanic blacks were 2 
times more likely to report asthma with increasing con-
centrations of PM2.5 pollution [7, 21].

In contrast, the between-within analysis did not show 
consistent associations between air pollution and health 
across the ethnic groups. Only individuals of Black/
African/Caribbean origin and those not born in the UK 
reported poorer health with increasing concentrations of 
local authority-specific 11 years average NO2, PM10, and 
PM2.5 pollution (between effects). Whereas, better health 
was observed with more temporal variation in PM10 and 
PM2.5 pollutants (within effects) among Indians, and 
non-UK-born individuals.

The observed ethnic differences in health in the context 
of air pollution can be explained by two concepts derived 
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from relevant literature on ethnic inequalities in health. 
The first concept relates to the socioeconomic and life-
style behavioural differences among ethnic groups. 
Research has shown that ethnic minorities often live in 
more disadvantaged communities and have lower socio-
economic status, lower healthcare coverage, and higher 
job/income insecurity, which increases their risk of ill-
ness and leads to poor health [29, 31, 32]. People of Paki-
stani and Bangladeshi origins tend to report the poorest 
health in the UK, followed by people of Indian and Car-
ibbean origins [30]. This was confirmed in our analy-
sis whereby Pakistani/Bangladeshi, Indians, mixed, and 
other ethnicities individuals were more likely to report 
poor general health in comparison to British-white peo-
ple (Additional file 1: Supplementary Table 1). However, 
our analysis accounted for major socioeconomic char-
acteristics such as age, gender, marital status, education, 
occupation, housing tenure, and financial situation. Still, 
ethnic differences in the effect of air pollution on health 
persisted. Hence, those differences can be related to 
other socioeconomic and individual factors not captured 
in our analysis (e.g., genetics, racism and discrimination 
in healthcare access and patient services) or to contextual 
location-specific factors, which leads us to the second 
concept.

Contextual location-specific factors such as urbani-
sation, population density, neighbourhood, and hous-
ing conditions can help explain the observed ethnic 
differences in the effect of air pollution on health. Ethnic 
minorities and immigrants (foreign-born individuals) 
often reside in large cities and highly populated urban-
ised regions, near major roads and key transportation 
networks. This facilitates their movement and increases 
their chances of personal development, employment and 
business start-ups [68]. In addition, ethnic minorities 
often live in low-priced social housing offered by local 
authorities, which is often situated in more deprived 
ethnic concentration neighbourhoods or close to major 
roads and industrial areas [33]. In contrast, British-white 
and UK-born individuals are at a greater advantage in 
terms of job security, financial means, and inheritance 
tenure to move away from metropolitan areas and highly 
polluted industrial regions. Conducting a Chi2 tabula-
tion in this study between ethnicity and housing tenure 
showed that around 24% of Pakistani/Bangladeshi, 45% of 
Black/African/Caribbean, and 29% of mixed ethnicities 
reside in houses rented from local authorities or housing 
associations compared to only 15% of British-white who 
live in these types of housing tenure (Additional file  1: 
Supplementary Table 5).

These location-specific factors would expose ethnic 
minorities and non-UK-born individuals to higher con-
centrations of air pollution related to traffic exhaust, 

industries, and burning of fossil fuels, which would mani-
fest in greater health impacts compared to the rest of the 
population. In additional analysis through Chi2 tabula-
tion, we show that a very high percentage of non-UK-
born individuals (93.5%) and ethnic minorities including 
Pakistani/Bangladeshi (99.6%), Indian (98.4%), Black/
African/Caribbean (98.9%), mixed (94.4%) and other eth-
nicities (84.0%) live in urban areas, whereas this percent-
age is much lower for British-white (71.5%) and UK-born 
(74.7%) individuals (Additional file  1: Supplementary 
Table  6). In a further analysis of individuals living in 
urban areas, we show that ethnic minorities and non-UK-
born individuals live in more polluted local authorities 
especially for NO2 pollutant with an average exposure 
exceeding 20 µg/m3 for individuals from Pakistani/Bang-
ladeshi, Indian, Black/African/Caribbean, and mixed eth-
nicity origins compared to an average exposure of 14 µg/
m3 for the British-white group (Additional file  1: Sup-
plementary Table  7). Furthermore, the between-within 
(spatial–temporal) analysis at the local authority level 
revealed stronger between effects for PM10 and PM2.5 
pollution on poor self-reported health among Black/
African/Caribbean and non-UK-born individuals. Thus, 
further confirming that residing in more polluted local 
authorities is a key explanation for the observed ethnic 
inequalities in health.

To sum up, living in deprived ethnic concentration 
areas which coincide with poor air quality is the most 
reasonable explanation for the observed ethnic inequali-
ties in air pollution exposure and self-reported health. 
This is confirmed by Mitchell et  al. (2015), whereby the 
most deprived areas in the UK still suffer from poor air 
quality despite the overall reduction in air pollution con-
centrations between 2001 and 2011 [39]. Thus, moving 
away from deprived areas would result in less exposure 
to air pollution among ethnic minorities, which would 
dilute the observed ethnic inequalities in self-reported 
health. One way to accomplish this is to reduce ethnic 
segregation and encourage ethnic diversity in the neigh-
bourhoods. In this context, projections of the UK’s ethnic 
populations from 2001 to 2051 showed significant future 
changes with ethnic minorities increasing in size and 
share and shifting out of deprived local authorities into 
less deprived ones [69]. This was further confirmed by a 
recent analysis of the 2021 Census showing a growth of 
ethnic neighbourhood diversity across all the regions of 
England and Wales [70].

Despite the novelty of this study, it has some limita-
tions. First, the assessment of individuals’ exposure to 
ambient air pollution was done using the local author-
ity and LSOA of residence, which does not necessar-
ily equate to the true personal exposure. In reality, an 
exposure scenario is more complex involving exposure 



Page 22 of 25Abed Al Ahad et al. BMC Public Health          (2023) 23:897 

indoors, at the workplace and through commuting pat-
terns. Assessing the exposure at the local authorities 
might have helped in capturing some of these exposures 
such as exposures at the workplace or during commut-
ing. However, this assumption stands only if the indi-
vidual lives and works within the same local authority. 
Therefore, future studies are encouraged to integrate 
air pollution exposure at the residence and workplace 
(e.g., by using the residential and workplace postcodes) 
and to consider both ambient and indoor air pollution 
exposures.

Second, the smallest census area units were used to 
link the air pollution data to the “Understanding Society” 
individual-level data. Whilst these census areas offer a 
fine spatial resolution for the linkage of air pollution data, 
they have different classifications in the four nations of 
the UK based on a minimum population size quota and 
are called LSOAs in England and Wales, data zones in 
Scotland, and Super Output Areas in Northern Ireland. 
The potential size heterogeneity issue between the differ-
ent census areas was addressed in our analysis by includ-
ing a random intercept for those census areas referred 
jointly to as LSOAs. Additionally, we performed a set of 
models which are adjusted for the population density at 
the LSOAs level, and results remained unchanged. Not to 
mention that analysis was also done at the local author-
ity level, a more harmonised geographical level com-
pared to census areas, where similar results were shown. 
However, analysis at the local authority level and in four-
level nested models which included a random intercept 
for both LSOAs and local authorities showed a stronger 
association between air pollution and health among the 
Black/African/Caribbean ethnicity, which was not the 
case for the analysis at the LSOAs level. This shows the 
importance of performing analysis at two geographical 
levels to disentangle the local and regional effects of air 
pollution on health, especially in the context of ethnicity.

Third, our study examined the association between 
air pollution and self-reported health rather than using 
more objective health measures such as mortality or 
hospital admissions. This could lead to social desirabil-
ity or reporting bias whereby individuals overestimate 
or underestimate their general health. However, high 
correlations between self-reported health and objective 
health measures including mortality and hospital admis-
sions were demonstrated by relevant literature, which 
increases the reliability of the self-reported health vari-
able [11–13]. Furthermore, research from the UK has 
shown an association between poorer self-rated health 
and greater morbidity within each ethnic group; hence, 
providing evidence that the use of self-rated health to 
measure health status in different ethnic groups in the 
UK is valid [71].

Fourth, our study included all individuals recruited 
at different waves of the “Understanding society” data, 
that had at least two observations through the follow-up 
period (2009–2019). Therefore, some individuals were 
followed for the whole observation window of 11  years 
and started at wave 1 while others were recruited at later 
data collection waves and followed for a shorter period. 
Nevertheless, we performed sensitivity analysis only on 
individuals recruited in wave 1 to balance the cohort 
effect (Additional file 1: Supplementary Tables 3 and 4, and 
Additional file 1: Supplementary Figs.  2, 3, 4, and 5), and 
results remained unchanged, except for the analysis by eth-
nicity in which the magnitude of associations was reduced.

Fifth, the sample design of the “Understanding Society” 
survey involved ethnic minority boost samples at waves 
1 and 6 of data collection to enable ethnicity-focused 
research. Thus, the survey included longitudinal weights 
that adjust for the overrepresentation of some ethnic 
groups. However, we could not adjust our analysis for the 
longitudinal weights as this requires that all individuals 
be followed until the last wave (wave 10) of the survey, 
which was not the case. Hence, our ethnicity analysis 
might not be generalizable to the whole UK population, 
but rather represent regions with dense ethnic minority 
concentrations.

Finally, our study included individuals followed over 
11 years (2009–2019) of time. However, the air pollution 
variation across these 11  years was low, which did not 
allow for the detection of significant temporal (within) 
effects of air pollution on health. For future research, we 
recommend using other datasets with a longer follow-up 
time to allow for more variation in air pollution, which 
might result in significant temporal effects.

Conclusion
Using a longitudinal panel design that involves linking 
individual-level to air pollution data at two geographical 
scales (coarse local authorities and detailed LSOAs), this 
study supports the presence of a spatial–temporal asso-
ciation between air pollution and individuals’ reported 
health in the UK. However, results showed stronger 
between (spatial) effects across local authorities/LSOAs 
rather than within (temporal) effects across time within 
each local authority/LSOA. Furthermore, this study 
demonstrates a stronger effect of air pollution on poor 
self-reported health among ethnic minorities and non-
UK-born individuals, which is partly explained by loca-
tion-specific differences. Our results are of importance 
for policymakers in the UK toward advancing legislations 
related to air pollution, health, time, and place with an 
emphasis on targeting the ethnic inequalities in air pollution 
exposure and health.
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Abbreviations
NO2	� Nitrogen dioxide
SO2	� Sulphur dioxide
PM10	� Particulate matter with a diameter ≤ 10 µm
PM2.5	� Particulate matter with a diameter ≤ 2.5 µm
UK	� United Kingdom
COMEAP	� Committee on the Medical Effects of Air Pollution
LSOAs	� Lower Super Output Areas
OR	� Odd Ratio
CI	� Confidence Interval
SD	� Standard deviation
ICC	� Intraclass correlation coefficient
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