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Abstract:

Proton (*H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of
quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility
in the field has led to the development of universal pulse sequences, methodological consensus
recommendations, and the development of open-source analysis software packages. One on-going
challenge is methodological validation with ground-truth data. As ground-truths are rarely available for
in vivo measurements, data simulations have become an important tool. The diverse literature of
metabolite measurements has made it challenging to define ranges to be used within simulations.
Especially for the development of deep learning and machine learning algorithms, simulations must be
able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to
determine the physiological ranges and relaxation rates of brain metabolites which can be used both in
data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines, we’ve identified relevant MRS research articles
and created an open-source database containing methods, results, and other article information as a
resource. Using this database, expectation values and ranges for metabolite concentrations and T»
relaxation times are established based upon a meta-analyses of healthy and diseased brains.
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Abbreviations: H, proton; 2-HG, 2-hydroxyglutarate, Adc, addiction; ADHD, attention-deficit/hyper
activity; Asc, ascorbate; Asp, aspartate; Aut, autism; Bip, bipolar; Canc, cancer; Cho, choline-
containing compounds; CPMG, Carr-Purcell Meiboom-Gill; Cr, creatine; CRLB, Cramer-Rao lower
bounds; CSF, cerebrospinal fluid; D1, type 1 diabetes; Dem, dementia; Dep, depression; E4,
apolipoprotein 4 carriers; Etrm, Essential Tremor; Fib, fibromyalgia; GABA, gamma-aminobutyric
acid; GlIn, glutamine; Glu, glutamate; Glx, sum of glutamate and glutamine; Gly, glycine; GM, gray
matter; GPC, glycerophosphocholine; ISMRM, international society for magnetic resonance in
medicine; Lac, lactate; LASER, localization by adiabatic selective refocusing; MCI, mild cognitive
impairment; MEGA, Mescher-Garwood; ml, myo-inositol; Mig, migraine; MRS, magnetic resonance
spectroscopy; MS, multiple sclerosis; NAA, N-acetylaspartate; NAAG, N-acetyl-aspartyl-glutamate;
OCD, obsessive compulsive disorder; Pain, chronic pain; PC, perinatal Complications; PCho,
phosphocholine; PCr, phosphocreatine; PD, Parkinson’s disease; PE, phosphoethanolamine; Pers,
personality disorder; PRISMA, preferred reporting Items for systematic reviews and meta-analyses;
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1. Introduction:

In vivo MRS can measure levels of metabolites in the brain non-invasively, allowing the
abnormal biochemical and cellular processes of disease to be interrogated. The most prominent signals
in the *H spectrum are the methy! singlets associated with N-acetylaspartate/N-acetylaspartylglutamate
(tNAA), creatine-containing compounds (tCr), and choline-containing compounds (tCho). Substantial
multiplet contributions to the spectrum are also seen from myo-inositol (ml), glutamate (Glu),
glutamine (GIn), gamma-aminobutyric acid (GABA), glutathione (GSH), and lactate (Lac). A handful
of other metabolites can be quantified, including but not limited to: aspartate (Asp); ascorbate (Asc);
scyllo-inositol (sl); serine (Ser); glycine (Gly); and taurine (Tau) [1-3]. For each of these metabolites,
there exists a diffuse literature of measurements made using different methodologies in healthy
controls and various populations of neurologic, psychiatric, and neurodevelopmental disease.
Consensus on the physiological ranges for metabolite concentrations and relaxation values has yet to
be determined.

Quantification of metabolite levels by MRS is challenging and a variety of methods are used to
convert detected signal voltages into concentration-like measurements. These are all relative — that is,
they rely upon the collection of a reference signal. Phantom-replacement [4] and synthetic referencing
[5] are cumbersome and not widely used, so internal signal referencing predominates [6,7]. Among the
potential reference signals, there is no clear and unambiguous ‘best” option, each having advantages
and disadvantages. Metabolite-metabolite referencing (most commonly to creatine) has the advantage

of being simultaneously acquired and relatively unaffected by changing amounts of cerebrospinal fluid

PRESS, point resolved spectroscopy; Psy, psychosis; PTSD, post-traumatic stress disorder; Schz,
schizophrenia; Seiz, seizure disorder; Ser, serine; sl, scyllo-inositol; SLASER, semi-adiabatic
localization by adiabatic selective refocusing; STEAM, stimulated echo acquisition mode; SNR,
signal-to-noise ratio; Str, stroke; T, spin-spin relaxation time; Tau, taurine; TBI, traumatic brain
injury; tCho, sum of choline-containing metabolites; tCr, sum of creatine and phosphocreatine; tINAA,
sum of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate; TE, echo-time; TI, inversion time; TM,
mixing time; TR: repetition time; WM, white matter
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(CSF) within the measurement volume [8]. However, metabolite-water referencing is now the
consensus-recommended approach, based upon the high SNR of the water signal and its role as the
solvent [7,9,10]. Concentrations can be inferred from signal ratios and an assumption of the MR-
visible water concentration, and can be expressed in molal (mol/kg solvent), molar (mol/dm?) or
institutional units (i.u.) [7,9-11]. Correction for the varying water signal relaxation rates and
visibilities in gray matter (GM), white matter (WM) and CSF is usually also performed on the basis of
segmented structural images [12]. The relaxation of metabolite signals is usually corrected on the basis
of literature reference values [12,13].

Generating realistic synthetic in vivo spectra is desirable for the development and validation of
MRS gquantification methods. Simulations that produce spectra that are fully representative of in vivo
data, in terms of metabolite concentrations, macromolecular background, spectral baseline, artifacts
and other nuances of MRS, will improve validation of classical methods and permit the development
of deep learning techniques. Density matrix simulations based upon prior knowledge of metabolite
chemical shifts and coupling constants [14-19] can generate metabolite basis spectra. However,
deriving the metabolite component of a synthetic spectrum from simulated basis sets additionally
requires specifying appropriate metabolite concentrations and lineshapes (combining relaxation
behavior and field inhomogeneity). The International Society for Magnetic Resonance in Medicine
(ISMRM) ‘Fitting Challenge” was one of the first efforts to create realistic synthetic spectra to test the
performance of different modeling software packages [20], specifying a single metabolite T value of
160 ms and, ‘normal ranges,’ for metabolite concentrations. While there have been a number of
domain-specific meta-analyses of MRS literature, there has not been a meta-analysis of the healthy and
‘control’ literature nor a cross-diagnosis synthesis of the MRS literature. Therefore, in this manuscript
we describe an open-source database which can be used to identify trends among the MRS literature
and provide a meta-analysis to better inform future efforts to generate synthetic data that represent

brain MRS in health and disease.
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2. Methods:

In the current study, we have developed a comprehensive open-source database that includes
metabolite relaxation and concentration values. This collates the results of nearly 500 MRS papers,
tabulating metabolite concentrations and relaxation rates for the healthy brain and a wide range of
pathologies. Each entry also includes the publication information, experimental parameters, and data
acquisition methods. To demonstrate the utility of this database, we performed three separate analyses:
1) an investigation into healthy brain metabolite concentrations; 2) a model of how these
concentrations change in 25 clinical populations; and 3) a model to predict and account for variable
metabolite T results.

2.1 Search Methods:

In building the database, publications were identified to determine eligibility for inclusion
according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [21,22]. Searches were conducted on PubMed, Web of Science, and Scopus databases.
Separate searches were carried out to specifically identify publications that either quantified metabolite
concentrations or measured T relaxation times, herein referred to as the concentration study and
relaxation studies, respectively. The original search for both was conducted in August of 2021. An
additional follow-up search was then conducted March 2022 to ensure all publications through the end
of 2021 were included. No limitation for publication date was specified for searches and only articles
available in English were included. A PRISMA flowchart that reflects the process of building
concentration and relaxation databases is shown in Figure 1.

For both the concentration and relaxation studies, only in vivo brain *H-MRS data from primary
sources were considered. Reviews, meta-analyses, re-analyses and book chapters were excluded.
Conference posters were typically excluded since they are not peer-reviewed (with some exceptions
where information was otherwise scarce). Finally, to be included, manuscript results had to include a

mean and standard deviation. For studies that reported statistical results (t-statistics, p-values, etc.)
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without values, authors were contacted by email for inclusion. Median and quartiles were converted to
mean and standard deviation using the methods outlined in [23,24] to handle normal and skewed
distributions, respectively. Distributions were classified as normal or skewed by comparing the upper
and lower quartile-to-median ranges; if the range between the median and the lower quartile was
similar to the range between and the median and the upper quartile (<50% difference), then the
distribution was classified as normal, otherwise it was classified as skewed. Articles that presented
values in the form of bar or scatter plots were included by manually determining mean and standard

deviations with the assistance of an in-house Python software package that maps pixel values to figure

axes.
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Figure 1: PRISMA flow charts that show the database selection and inclusion process of the (A) concentration
and (B) T relaxation publications.
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For the concentration study, only human subjects research was included. Articles were included
if they reported at least one metabolite concentration, quantified in molar (moles/liter), molal
(moles/g), or institutional units (i.u.), or referenced to total creatine (1/tCr). Due to the high volume of
articles (10,506) returned for the concentration study, articles were initially limited to 2018-2022.
Where necessary, articles were retrieved from earlier years to ensure that three or more studies were
included for less commonly studied clinical populations or difficult-to-measure metabolites (e.g.,
ascorbate) — this provided an abbreviated subset of 1,863 articles.

Acrticles were included in the relaxation study that reported at least one metabolite T relaxation
value in time or R rate in 1/time. While this work aims to determine MRS features in the human brain,
the relaxation study included all species as a handful of metabolites have not yet been well studied
outside of animal models. A total of 870 articles were returned by the database searches.

After removing articles according to inclusion/exclusion criteria, articles’ titles and abstracts
were reviewed for relevance. Once confirmed relevant, article full texts were downloaded to make a
final decision on inclusion/exclusion, as summarized in Figure 1.

For the concentration study, of the original 1,863 articles, 571 articles were removed prior to
screening leaving 1,292 articles. After screening, 790 articles remained and were retrieved and
assessed for relevance. A total of 350 articles were determined to be eligible for inclusion in the
database and analysis.

For the relaxation study, of the original 870 articles, 234 were removed prior to screening and
636 articles were further screened. 342 articles were then retrieved and assessed for eligibility. Finally,
113 articles remained and were included in the database and analyses.

Data were analyzed using in-house Python scripts that utilized NumPy, Pandas, Scipy,
Statsmodels, Matplotlib, and Scikit-learn [25-30]. The weighted mean and 95% confidence intervals
calculated within the healthy and clinical metabolite concentration meta-analyses used a combined

effects model. Specifically, combined effects were determined using a Random Effects model [31]
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which can be advantageous for biological studies where a true value does not exist across studies (e.g.,
metabolite concentration varies from person to person). If a Random Effects model was not defined or
there was not enough data (<8 studies), a Fixed Effect model was used [31] which can similarly
identify common effects with less flexibility by assuming a singular true value. Weighting across
studies, both for combined effects and meta-regression, used the inverse variance weighting scheme
[32] to penalize high-variance studies. While all data are present in the database, meta-analyses were
only carried out when 3 or more studies were available for a particular metabolite, group, or field

strength.

2.2. Metabolite Concentrations in Healthy Populations:
Studies that investigated healthy individuals or had healthy control groups were used to

determine metabolite concentration ranges in healthy populations. Of the 350 studies included, 259
studies investigated a healthy population or included a healthy control group (26% of studies included
no healthy subjects). Subjects were classified into early life (<2 years of age), adolescent (5-14 years of
age), young adult (18-45 years of age) and aged adult (>50 years of age). These age ranges allowed for
the greatest number of studies to be included in each of the categories while leaving a gap (e.g., 46-49
years of age) to set groups apart. There were 8 [33-39], 19 [40-58], 199 [49,59-253], and 45
[76,92,254-263,137,264-273,147,274-283,151,154,189,191,220,239] studies within the four age
categories (early life, adolescent, young adult, aged), respectively. To determine the concentration
ranges, values were separated by metabolite and units (i.u./mM and 1/tCr) reported. Finally, a
combined effects model [31] was used to compute the mean and 95% confidence interval (as seen in

Figure 2.

2.3. Metabolite Concentrations in Clinical Populations:
Studies that investigated clinical groups and included a healthy control group were included in

the clinical population analysis. There were 180 publications [33,34,49,204,205,208,213,215—

217,219,222,224,50,225,227,230,232,235,237,238,241-243,51,245-250,252—
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255,52,256,258,259,262-268,54,271,272,274-281,57,282—-291,58,292-301,59,302—
308,63,64,35,66,68—70,72,73,75,77,79,82,36,86,87,89-93,95,96,98,37,99,101,102,105,106,108,111-
113,115,38,119,123,124,131-137,44,139,141,143-146,148,150,155,156,45,157—
160,165,168,169,171,173,174,46,176-178,180-184,186,187,47,191-195,197-200,202] consisting of
25 unique clinical groups. To determine the concentration ranges, values were separated by metabolite
and units reported. Each clinical population was then modeled as a linear change relative to their
respective control group by using the ‘ratio of means’ method [309,310]. A value of 1.0 would indicate
no difference between the clinical and control groups. Finally, a combined effects model [31] was used
to compute the mean and 95% confidence interval (as seen in Figure 3).

2.4. T2 Meta-regression Model:

Studies that investigated healthy subjects or included a healthy control group were included in
the T> relaxation analysis. Of the 113 included studies, 76 studies [3,13,311-384] were included in the
analysis. All the studies’ results were separated by metabolite for the analysis to produce 629 values.
Next, a multiple meta-regression was employed with 6 input variables: 1) metabolite; 2) field strength;
3) localization pulse sequence; 4) T filter, 5) tissue type; and 6) subject species. Metabolite was a
categorical variable that included 14 metabolites, with some of them further differentiated by moiety
(Asp, tCr CHz, Cr CH3, GABA, GlIn, Glu, Gly, tCho, GSH, Lac, ml, NAA CHs, NAAG, Tau). Field
strength was a continuous variable from 1.5 T through 14.1 T. Localization pulse sequence was a
categorical variable that included Point Resolved Spectroscopy (PRESS), Stimulated Echo Acquisition
Mode (STEAM), or either Localization by Adiabatic Selective Refocusing (LASER) or semi-LASER
(SLASER). ‘T> filter’ was a categorical variable indicating whether the data were collected with a Carr-
Purcell Meiboom-Gill (CPMG) multi-echo sequence or not. Tissue type was a categorical variable
which was characterized as GM (voxel composition >80% GM), WM (voxel composition >80% WM),
or mixed (all other cases). Subject species was a categorical variable that specified human or not

human. The output was a continuous T> value in milliseconds. Continuous variables were scaled
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between 0 and 1. Categorical variables were dummy coded creating for use within the regression
model. The model was iteratively re-run leaving one datapoint out each time for prediction (i.e., 629
individual leave-one-out regression models were run).

3. Results:

3.1. Database:
The database currently contains 461 publications with each entry containing the publication

information, experiment details, parameters of the data acquisition, and the mean and standard
deviation of the results. A complete list of the information available from each entry in the database is
given in Table 1. We used the PRISMA guidelines to ensure an unbiased and wide-reaching approach
was taken to identify and screen publications. The database is open-source and available online at

https://github.com/agudmundson/mrs-database.

3.2. Healthy Metabolite Concentrations:
The physiological ranges of brain metabolites were determined within the each of the four age

categories for both i.u./mM and 1/tCr. The resulting weighted mean and 95% confidence intervals for
young and aged adult concentrations, for both i.u./mM and 1/tCr, are shown in Figure 2. The weighted
mean, 95% confidence intervals, and other summary statistics for healthy infant, adolescent, young

adult, and aged populations are available at https://github.com/agudmundson/mrs-database.
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A Institutional Units and mM = Young Adul

Asc Asp Cr GABA GPC GSH Gln Glu GIx Gly Lac ml NAA NAAG ST Tau tCho tCr INAA
B Referenced to Creatine

1-| ' i

Asc Asp GABA GPCGSH Gln Glu GIx ‘Gly lac mI NAA NAAG tCho INAA
Figure 2: Brain metabolite concentrations in younger (18-45 years, in blue) and older (>50 years, in
white) healthy adults from studies that reported results as: (A) Molar, molal, and Institutional Units;

(B) Creatine-referenced. An * indicates the use of a Fixed Effects Model rather than a Random Effects
Model. A + indicates a combined effects model was not defined.

3.3. Clinical Metabolite Concentrations in pathological conditions:
While clinical studies that did not include a control group were included in the database, the

main focus was on studies that had direct comparisons, to minimize confounds involving technical
variations among studies. Rather than computing effect sizes, linear changes were used to be directly
interpretable to generate concentrations for future simulations. Figure 3 depicts levels of commonly
investigated metabolites measured in diseased populations. The mean linear change, 95% confidence
intervals, and other summary statistics for each metabolite in the 25 clinical populations is available at

https://github.com/agudmundson/mrs-database.
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Figure 3: Commonly investigated metabolite concentrations modeled in diseased populations. Data
from metabolite and metabolite complexes are combined (e.g., Cre and tCr, Glu and GIx). An * by the
group classification indicates the use of a Fixed Effects Model rather than a Random Effects Model.

A t indicates a combined effects model was not defined. PC = perinatal complications; Aut = autism;
ADHD = attention-deficit/hyper activity; MCI = mild cognitive impairment; E4 apolipoprotein 4
carriers; Dem = dementia; Etrm = essential tremor; PD = Parkinson’s disease; MS = multiple sclerosis;
Bip = bipolar; Pers = personality disorder; Psy = psychosis; Schz = schizophrenia; Adc = addiction;
Depr = depression; OCD = obsessive compulsive disorder; PTSD = post-traumatic stress disorder; Fib
= fibromyalgia; Mgrn = migraine; Pain = chronic pain; Canc = cancer; D1 = type 1 diabetes; TBI =
traumatic brain injury; Str = stroke; Seiz = seizure disorder.

3.4. T2 relaxation:
The iterative leave-one-out models achieved a median adjusted R? of 0.782 (Q1 = .7817; Q3 =

0.7819). Predictions for these models yielded a median error of 26.61 ms (Q1 = 12. 06 ms; Q3 = 54.66

ms) with 16.23% error (Q1 = 7.51%; Q3 = 27.29%). Figure 4 shows the actual value plotted with the
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marker size representing the weight within the model and the meta-regression model for 3 of the most
common metabolites, NAA, Cho, Cr. The full model is available at

https://github.com/agudmundson/mrs-database.

Bo T 1.5 3 7 94 15 3 7 >7 1.5 3 7 =7

600+

400+ o ) .+ o -

2004

Transverse relaxation time constant T2 / ms

0 100 200 300  Databaseentry 400

Figure 4: Transverse relaxation time meta-analysis. Only results for NAA, Cho, and Cr are shown for
ease of visualization, but a total of 629 values for 14 metabolites were included in the database and
modeled. Metabolite, field strength, localization, T- filter, species, and tissue type were included as
factors in the model. Database entries are sorted here by these factors in that order. Each study is
represented by a square of size reflecting the modeling weight (based on the inverse of variance). The
red line shows the model.

4. Discussion:
4.1 Open-source Database:

Using a systematic approach, we provide the first database for MRS results and corresponding
methods. As this database is freely available through the cloud-based website GitHub, new entries can
be continually added and existing entries can be updated with more information through collaborative

efforts. This database is valuable for quickly identifying trends as results across multiple studies can be


https://doi.org/10.1101/2023.02.10.528046
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.10.528046; this version posted May 1, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

interrogated. As with the meta-analyses performed here, future analyses may interrogate brain region,

software, or other methodological decisions.

Citation: Voxel:
Name in Database Dimensions (X, Y, 2)
Publication Year Volume
Author(s) Anatomical Region
Journal VVolume Hemisphere
Title Tissue Fractions (Mean/Standard Deviation)
Digital Object Identifier

Acquisition:
Study Populations: Localization Sequence
Study Index Water Suppression
Population Acquisition Bandwidth
Control Group Number of Datapoints
Treatment or Conditions Number of Transients
Visit or Session Number Repetition Time (TR)
Total Number of Subjects Echo Time (TE)
Number of Subjects Analyzed Inversion Time (TI)
Number of Male Subjects T, Filter
Number of Female Subjects
Age (Mean/Standard Deviation) Analysis:

Preprocessing Software
Hardware: Fitting/Quantification Software
Scanner Manufacturer Segmentation Software
Scanner Model Partial Volume Correction
Magnetic Field Strength Relaxation Correction

Table 1. Information available for entries in the database.

4.2 Physiological Ranges of Brain Metabolites in the Healthy Adults:
The primary goal of this meta-analysis was to summarize levels of MRS-accessible metabolites

with a large data mining and unification approach. This was not the first effort to provide typical
concentration values or ranges — physiological ranges of metabolites have been proposed previously
for the healthy brain using data from multiple species [385,386]. Here, a comprehensive approach was
taken to unify measures across hundreds of human studies and appropriately weight them to establish
the physiological ranges of 19 brain metabolites and metabolite-complexes. The focus here on recent

publications (<5 years old) biased the analysis toward data quantified using more current and advanced
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methodologies. Reassuringly, many values here reflect similar ranges to those previously proposed
[20,385,386].

The metabolic profile provided here represents progress towards effective and accurate
simulation of realistic synthetic data. The development of data analysis methodologies is limited by a
lack of ground truths — methodological performance is usually assessed in terms of modeling
uncertainty (CRLB) or within- or between-subject variance (standard deviation). Notably, these
metrics do not reflect a true measurement error, tending to ignore measurement bias and conflate
sources of variance. Ultimately, synthetic data that accurately represent all features of in vivo data
allow comprehensive evaluation of sources of variance and bias in MRS methods. Beyond validation
of traditional analysis methods, such synthetic data are integral to developing deep learning and
machine learning algorithms for MRS data analysis and quantification.

4.3. Physiological Ranges of Brain Metabolites in Clinical Populations:

Here, a linear model demonstrating the relationship between healthy and clinical populations
was presented. As far as we know, this is the first study to provide a basis to determine physiological
and pathological ranges of brain metabolites in such a wide array of clinical populations. Many of the
cohort effects summarized agree with previous systematic reviews and domain-specific meta-analyses.
For example, our analysis reproduced the widely recognized elevated choline in tumors [387], and
elevated ml and decreased NAA in Alzheimer’s Disease [388,389]. Neurometabolic changes may also
have some value in discriminating between clinical syndromes with similar symptomology, such as
Parkinson’s Disease and Essential Tremor [390-392]. By synthesizing meta-analytic information
across a range of disorders, this resource may allow the development of future tools to discriminate
between clinical conditions.

4.4. Multiple Meta-Regression to Explain Heterogeneity of Metabolite T2 Relaxation Results:

T relaxation is an important aspect of in vivo MRS data and should be carefully considered

when simulating data. Unfortunately, apart from the 3 most common methyl singlets (i.e., tNAA, tCr,
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tCho), T2 ranges have not been well established. This can be seen as most relaxation-corrected absolute
quantification methods rely on a small handful of references and must make approximations for tissue
differences, pulse sequence effects, or even for metabolites that have not been studied for the given
acquisition protocol. The goal of this analysis was to produce a model that could provide metabolite T>
ranges for simulation. To do this, we leveraged data from multiple metabolites across different species
that were measured using a variety of acquisition schemes. While results between studies can be seen
to have a high degree of variability, the multiple meta-regression model was able to account for a large
degree of the variance. The model included 6 variables: 1) metabolite, 2) field strength, 3) localization
pulse sequence, 4) T filter, 5) tissue type, and 6) subject species. Following a leave-one-out validation
approach, nearly 80% of the variance could be attributed to the 6 factors. The major factors that
explain variance in T are field strength, with shorter T> at higher field; metabolite, with Cr having
shorter T, than Cho and especially NAA,; species, with longer T2 in rodents; and To-filter (although
CPMG filters are only used in a minority of studies). The error in prediction was low, with
approximately 25% of the prediction errors less than 10 ms, 50% of prediction errors less than 25 ms,
and nearly 75% of prediction errors under 50 ms. High prediction errors came primarily from a small
subset of papers that appear to represent outliers in the dataset suggesting predictions may provide
reliable estimates when simulating understudied metabolites. We did not attempt to quantify ‘study
quality’ as a potential weighting factor, other than through cohort size. The main factor that is not
included in the model (although addressed to some degree by the ‘tissue factor’) is brain region of
measurements, where iron-rich regions are known to show shorter Ts [393-395]. It will also be
important to measure T» data in clinical populations and across the lifespan to further solidify the
existing body of literature. Ultimately, this model provides a rigorous foundation for including T>

relaxation within simulations.
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5. Conclusion:

Here, we provide a new database containing brain metabolite results from nearly 500 MRS
publications. This database is freely available online where users can view and contribute their own
data. Using the database, we have determined physiological ranges of 19 brain metabolites and
metabolite-complexes across the lifespan of healthy individuals. We further modeled disease effects
relative to healthy controls to allow for determining concentration ranges for 25 psychiatric and
neurologic diseases. Finally, we have performed a meta-regression to determine appropriate ranges for

T2 in MRS simulations.
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