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Abstract: 

 Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of 

quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility 

in the field has led to the development of universal pulse sequences, methodological consensus 

recommendations, and the development of open-source analysis software packages. One on-going 

challenge is methodological validation with ground-truth data. As ground-truths are rarely available for 

in vivo measurements, data simulations have become an important tool. The diverse literature of 

metabolite measurements has made it challenging to define ranges to be used within simulations. 

Especially for the development of deep learning and machine learning algorithms, simulations must be 

able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to 

determine the physiological ranges and relaxation rates of brain metabolites which can be used both in 

data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic 

reviews and Meta-Analyses (PRISMA) guidelines, we’ve identified relevant MRS research articles and 

created an open-source database containing methods, results, and other article information as a 

resource. Using this database, expectation values and ranges for metabolite concentrations and T2 

relaxation times are established based upon a meta-analyses of healthy and diseased brains. 
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Abbreviations: 1H, proton; 2-HG, 2-hydroxyglutarate, Adc, addiction; ADHD, attention-deficit/hyper 

activity; Asc, ascorbate; Asp, aspartate; Aut, autism; Bip, bipolar; Canc, cancer; Cho, choline-

containing compounds; CPMG, Carr-Purcell Meiboom-Gill; Cr, creatine; CRLB, Cramer-Rao lower 

bounds; CSF, cerebrospinal fluid; D1, type 1 diabetes; Dem, dementia; Dep, depression; E4, 

apolipoprotein 4 carriers; Etrm, Essential Tremor; Fib, fibromyalgia; GABA, gamma-aminobutyric 

acid; Gln, glutamine; Glu, glutamate; Glx, sum of glutamate and glutamine; Gly, glycine; GM, gray 

matter; GPC, glycerophosphocholine; ISMRM, international society for magnetic resonance in 

medicine; Lac, lactate; LASER, localization by adiabatic selective refocusing; MCI, mild cognitive 

impairment; MEGA, Mescher-Garwood; mI, myo-inositol; Mig, migraine; MRS, magnetic resonance 

spectroscopy; MS, multiple sclerosis; NAA, N-acetylaspartate; NAAG, N-acetyl-aspartyl-glutamate; 

OCD, obsessive compulsive disorder; Pain, chronic pain; PC, perinatal Complications; PCho, 

phosphocholine; PCr, phosphocreatine; PD, Parkinson’s disease; PE, phosphoethanolamine; Pers, 

personality disorder; PRISMA, preferred reporting Items for systematic reviews and meta-analyses; 

PRESS, point resolved spectroscopy; Psy, psychosis; PTSD, post-traumatic stress disorder; Schz, 

schizophrenia; Seiz, seizure disorder; Ser, serine; sI, scyllo-inositol; sLASER, semi-adiabatic 

localization by adiabatic selective refocusing; STEAM, stimulated echo acquisition mode; SNR, 

signal-to-noise ratio; Str, stroke; T2, spin-spin relaxation time; Tau, taurine; TBI, traumatic brain 

injury; tCho, sum of choline-containing metabolites; tCr, sum of creatine and phosphocreatine; tNAA, 

sum of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate; TE, echo-time; TI, inversion time; TM, 

mixing time; TR: repetition time; WM, white matter 
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1. Introduction:  

 In vivo MRS can measure levels of metabolites in the brain non-invasively, allowing the 

abnormal biochemical and cellular processes of disease to be interrogated. The most prominent signals 

in the 1H spectrum are the methyl singlets associated with N-acetylaspartate/N-acetylaspartylglutamate 

(tNAA), creatine-containing compounds (tCr), and choline-containing compounds (tCho). Substantial 

multiplet contributions to the spectrum are also seen from myo-inositol (mI), glutamate (Glu), 

glutamine (Gln), gamma-aminobutyric acid (GABA), glutathione (GSH), and lactate (Lac). A handful 

of other metabolites can be quantified, including but not limited to: aspartate (Asp); ascorbate (Asc); 

scyllo-inositol (sI); serine (Ser); glycine (Gly); and taurine (Tau) [1–3]. For each of these metabolites, 

there exists a diffuse literature of measurements made using different methodologies in healthy 

controls and various populations of neurologic, psychiatric, and neurodevelopmental disease. 

Consensus on the physiological ranges for metabolite concentrations and relaxation values has yet to 

be determined. 

 Quantification of metabolite levels by MRS is challenging and a variety of methods are used to 

convert detected signal voltages into concentration-like measurements. These are all relative – that is, 

they rely upon the collection of a reference signal. Phantom-replacement [4] and synthetic referencing 

[5] are cumbersome and not widely used, so internal signal referencing predominates [6,7]. Among the 

potential reference signals, there is no clear and unambiguous ‘best’ option, each having advantages 

and disadvantages. Metabolite-metabolite referencing (most commonly to creatine) has the advantage 

of being simultaneously acquired and relatively unaffected by changing amounts of cerebrospinal fluid 

(CSF) within the measurement volume [8]. However, metabolite-water referencing is now the 

consensus-recommended approach, based upon the high SNR of the water signal and its role as the 

solvent [7,9,10]. Concentrations can be inferred from signal ratios and an assumption of the MR-

visible water concentration, and can be expressed in molal (mol/kg solvent), molar (mol/dm3) or 

institutional units (i.u.) [7,9–11]. Correction for the varying water signal relaxation rates and 
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visibilities in gray matter (GM), white matter (WM) and CSF is usually also performed on the basis of 

segmented structural images [12]. The relaxation of metabolite signals is usually corrected on the basis 

of literature reference values [12,13]. 

 Generating realistic synthetic in vivo spectra is desirable for the development and validation of 

MRS quantification methods. Simulations that produce spectra that are fully representative of in vivo 

data, in terms of metabolite concentrations, macromolecular background, spectral baseline, artifacts 

and other nuances of MRS, will improve validation of classical methods and permit the development 

of deep learning techniques. Density matrix simulations based upon prior knowledge of metabolite 

chemical shifts and coupling constants [14–19] can generate metabolite basis spectra. However, 

deriving the metabolite component of a synthetic spectrum from simulated basis sets additionally 

requires specifying appropriate metabolite concentrations and lineshapes (combining relaxation 

behavior and field inhomogeneity). The International Society for Magnetic Resonance in Medicine 

(ISMRM) ‘Fitting Challenge’ was one of the first efforts to create realistic synthetic spectra to test the 

performance of different modeling software packages [20], specifying a single metabolite T2 value of 

160 ms and, ‘normal ranges,’ for metabolite concentrations. While there have been a few disease-

specific meta-analyses of MRS literature [21–25], there has not been a meta-analysis of the healthy and 

‘control’ literature nor a cross-diagnosis comparison of the MRS literature. Therefore, in this 

manuscript we describe an open-source database which can be used to identify trends among the MRS 

literature and provide a meta-analysis to better inform future efforts to generate synthetic data that 

represent brain MRS in health and disease. 

2. Methods: 

 In the current study, we have developed a comprehensive open-source database that includes 

metabolite relaxation and concentration values. This collates the results of nearly 500 MRS papers, 

tabulating metabolite concentrations and relaxation rates for the healthy brain and a wide range of 

pathologies. Each entry also includes the publication information, experimental parameters, and data 
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acquisition methods. To demonstrate the utility of this database, we performed three separate analyses: 

1) an investigation into healthy brain metabolite concentrations; 2) a model of how these 

concentrations change in 25 clinical populations; and 3) a model to predict and account for variable 

metabolite T2 results. 

2.1 Search Methods: 

 In building the database, publications were identified to determine eligibility for inclusion 

according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 

guidelines [26,27]. Searches were conducted on PubMed, Web of Science, and Scopus databases. 

Separate searches (each search phrase is included in Supplementary Table 1) were carried out to 

specifically identify publications that either quantified metabolite concentrations or T2 relaxation 

times, herein referred to as the concentration study and relaxation studies, respectively. The original 

search for both was conducted in August of 2021. In order to include literature published throughout 

2021, an additional follow-up search was conducted in March 2022. No limitation for publication date 

was specified for searches; only articles available in English were included. A PRISMA flowchart that 

reflects the process of building concentration and relaxation databases is shown in Figure 1. 

For both the concentration and relaxation studies, only in vivo brain 1H-MRS data from primary 

sources were considered. Duplicate records (i.e., abstracts/titles) identified from more than one 

database, reviews, meta-analyses, re-analyses, and book chapters were excluded during the “Removed 

Before Screening” step of the “Identification” stage. Conference posters were generally also excluded 

at the “Removed Before Screening” step since they are not peer-reviewed (with exceptions made, 

where information was otherwise scarce). During the “Screening” stage, “Records Excluded” were 

those identified as the wrong field of study (e.g., NMR Spectroscopy for food science), X-nuclei (e.g., 

13C, 31P, 17O, 15N, 23Na, etc.), non-spectroscopy MR methods (e.g., anatomical, functional, diffusion, 

etc.), or that did not study the brain. For the Concentration study, “Records Excluded” also included 

animal studies. All reports (i.e., research articles) were able to be retrieved for the remaining screened 
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records. Finally, during the “Assessed for Eligibility” step, the “Reports Excluded” step reflects 

articles that did not include the mean and standard deviation for at least one metabolite concentration 

quantified in molar (moles/liter), molal (moles/g), or institutional units (i.u.), or referenced to total 

creatine (1/tCr), nor transverse relaxation times T2 or rates R2. Mean and standard deviation were 

calculated for reports listing median and quartile results, using the methods outlined in [28,29] to 

handle normal and skewed distributions, respectively. Distributions were classified as normal or 

skewed by comparing the upper and lower quartile-to-median ranges; if the range between the median 

and the lower quartile was similar to the range between and the median and the upper quartile (<50% 

difference), then the distribution was classified as normal, otherwise it was classified as skewed. 

Articles that presented values in the form of bar or scatter plots were included by manually 

determining mean and standard deviations with the assistance of an in-house Python software package 

that maps pixel values to figure axes. Authors were contacted by email ` if they collected relevant data, 

but did not list their results; these included authors that only provided statistical results (e.g., t-statistic, 

p-value, etc.), non-standard units (e.g., arbitrary units), or normalized measurements (e.g., relative to 

baseline, z-scored, etc.). 
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Figure 1: PRISMA flow charts that show the database selection and inclusion process of the (A) concentration 

and (B) T2 relaxation publications. Records “Removed Before Screening” were duplicates (identified from more 

than one database), reviews, meta-analyses, textbooks, or re-analyses. Conference abstracts were generally 

excluded, with exceptions made when information for a given metabolite/disease was scarce. “Records 

Excluded” were those identified as the wrong field of study, non-1H MRS, non-spectroscopy MR methods, non-

brain regions, or animal studies (for Concentration study only). “Reports Excluded” during the “Assessed for 

Eligibility” did not include metabolite concentrations nor relaxation values. 

 

Due to the high volume of articles (10,506) returned for the concentration study, articles were 

initially limited to 2018-2021. Where necessary, articles were retrieved from earlier years to ensure 

that three or more studies were included for less commonly studied clinical populations or difficult-to-

measure metabolites (e.g., ascorbate) – this provided an abbreviated subset of 1,863 articles in the 

"Identification” stage. Of the original 1,863 articles, 571 articles were "Removed Before Screening” 

leaving 1,292 articles. After screening, 790 records remained and the corresponding report was 
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retrieved. A total of 348 articles were determined to be eligible for inclusion in the database and 

analysis. 

 While this work aims to determine MRS features in the human brain, the relaxation study 

included all species as a handful of metabolites have not yet been well studied outside of animal 

models. A total of 870 articles were returned by the database searches during the “Identification” stage. 

Of the original 870 articles, 234 were “Removed Before Screening.” The remaining 636 records were 

"Screened" and 294 were removed in the “Records Excluded” step. 342 reports were then retrieved and 

assessed for eligibility. Finally, 113 articles remained and were included in the database and analyses. 

 Data were analyzed using in-house Python scripts that utilized NumPy, Pandas, Scipy, 

Statsmodels, Matplotlib, and Scikit-learn [30–35]. The weighted mean and 95% confidence intervals 

calculated within the healthy and clinical metabolite concentration meta-analyses used a combined 

effects model. Specifically, combined effects were determined using a Random Effects model [36] 

which can be advantageous for biological studies where a true value does not exist across studies (e.g., 

metabolite concentration varies from person to person). If a Random Effects model was not defined or 

there was not enough data (<8 studies), a Fixed Effect model was used [36] which can similarly 

identify common effects with less flexibility by assuming a singular true value. Weighting across 

studies, both for combined effects and meta-regression, used the inverse variance weighting scheme 

[37] to penalize high-variance studies. While all data are present in the database, meta-analyses were 

only carried out when 3 or more studies were available for a particular metabolite, group, or field 

strength.  

2.2. Metabolite Concentrations in Healthy Populations: 

 Studies that investigated healthy individuals or had healthy control groups were used to 

determine metabolite concentration ranges in healthy populations. Of the 350 studies included, 259 

studies investigated a healthy population or included a healthy control group (26% of studies included 

no healthy subjects). Subjects were classified into early life (<2 years of age), adolescent (5-14 years of 
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age), young adult (18-45 years of age) and aged adult (>50 years of age). These age ranges allowed for 

the greatest number of studies to be included in each of the categories while leaving a gap (e.g., 46-49 

years of age) to set groups apart. There were 8 [38–44], 19 [45–63], 199 [54,64–258], and 45 

[81,97,142,152,156,159,194,196,225,244,259–288] studies within the four age categories (early life, 

adolescent, young adult, aged), respectively. To determine the concentration ranges, values were 

separated by metabolite and units (i.u./mM and 1/tCr) reported. Finally, a combined effects model [36] 

was used to compute the mean and 95% confidence interval (as seen in Figure 2. 

2.3. Metabolite Concentrations in Clinical Populations: 

 Studies that investigated clinical groups and included a healthy control group were included in 

the clinical population analysis. There were 180 publications [38–43,49–52,54–57,59,62–

64,68,69,71,73–75,77,78,80,82,84,87,91,92,94–98,100,101,103,104,106,107,110,111,113,116–

118,120,124,128,129,136–142,144,146,148–151,153,155,160–165,170,173,174,176,178,179,181–

183,185–189,191,192,196–200,202–205,207,209,210,213,218,220–

222,224,227,229,230,232,235,237,240,242,243,246–248,250–255,257–261,263,264,267–

273,276,277,279–313] consisting of 25 unique clinical groups. To determine the concentration ranges, 

values were separated by metabolite and units reported.  Each clinical population was then modeled as 

a linear change relative to their respective control group by using the ‘ratio of means’ method 

[314,315]. A value of 1.0 would indicate no difference between the clinical and control groups. 

Finally, a combined effects model [36] was used to compute the mean and 95% confidence interval (as 

seen in Figure 3). 

2.4. T2 Meta-regression Model: 

 Studies that investigated healthy subjects or included a healthy control group were included in 

the T2 relaxation analysis. Of the 113 included studies, 76 studies [3,13,316–389] were included in the 

analysis. All the studies’ results were separated by metabolite for the analysis to produce 629 values. 

Next, a multiple meta-regression was employed with 6 input variables: 1) metabolite; 2) field strength; 
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3) localization pulse sequence; 4) T2 filter, 5) tissue type; and 6) subject species. Metabolite was a 

categorical variable that included 14 metabolites, with some of them further differentiated by moiety 

(Asp, tCr CH2, Cr CH3, GABA, Gln, Glu, Gly, tCho, GSH, Lac, mI, NAA CH3, NAAG, Tau). Field 

strength was a continuous variable from 1.5 T through 14.1 T. Localization pulse sequence was a 

categorical variable that included Point Resolved Spectroscopy (PRESS), Stimulated Echo Acquisition 

Mode (STEAM), or either Localization by Adiabatic Selective Refocusing (LASER) or semi-LASER 

(sLASER). ‘T2 filter’ was a categorical variable indicating whether the data were collected with a Carr-

Purcell Meiboom-Gill (CPMG) multi-echo sequence or not. Tissue type was a categorical variable 

which was characterized as GM (voxel composition >80% GM), WM (voxel composition >80% WM), 

or mixed (all other cases). Subject species was a categorical variable that specified human or not 

human. The output was a continuous T2 value in milliseconds. Continuous variables were scaled 

between 0 and 1. Categorical variables were dummy coded creating for use within the regression 

model. The model was iteratively re-run leaving one datapoint out each time for prediction (i.e., 629 

individual leave-one-out regression models were run).  

3. Results: 

3.1. Database: 

 The database currently contains 461 publications with each entry containing the publication 

information, experiment details, parameters of the data acquisition, and the mean and standard 

deviation of the results. A complete list of the information available from each entry in the database is 

given in Table 1. We used the PRISMA guidelines to ensure an unbiased and wide-reaching approach 

was taken to identify and screen publications. The database is open-source and available online at 

https://github.com/agudmundson/mrs-database. 

3.2. Healthy Metabolite Concentrations: 

 The physiological ranges of brain metabolites were determined within the each of the four age 

categories for both i.u./mM and 1/tCr. The resulting weighted mean and 95% confidence intervals for 

young and aged adult concentrations, for both i.u./mM and 1/tCr, are shown in Figure 2. The weighted 
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mean, 95% confidence intervals, and other summary statistics for healthy infant, adolescent, young 

adult, and aged populations are available at https://github.com/agudmundson/mrs-database.  

 

 

Figure 2: Brain metabolite concentrations in younger (18-45 years, in blue) and older (>50 years, in 

white) healthy adults from studies that reported results as: (A) Molar, molal, and Institutional Units; 

(B) Creatine-referenced. An * indicates the use of a Fixed Effects Model rather than a Random Effects 

Model. A † indicates a combined effects model was not defined.  

3.3. Clinical Metabolite Concentrations in pathological conditions: 

While clinical studies that did not include a control group were included in the database, the 

main focus was on studies that had direct comparisons, to minimize confounds involving technical 

variations among studies. Rather than computing effect sizes, linear changes were used to be directly 

interpretable to generate concentrations for future simulations. Figure 3 depicts levels of commonly 

investigated metabolites measured in diseased populations. The mean linear change, 95% confidence 

intervals, and other summary statistics for each metabolite in the 25 clinical populations is available at 

https://github.com/agudmundson/mrs-database. 
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Figure 3: The six most commonly investigated metabolite concentrations modeled in diseased 

populations. Data from metabolite and metabolite complexes are combined (e.g., Cr and tCr, Glu and 

Glx). An * by the group classification indicates the use of a Fixed Effects Model rather than a Random 

Effects Model. A † indicates a combined effects model was not defined. PC = perinatal complications; 

Aut = autism; ADHD = attention-deficit/hyper activity; MCI = mild cognitive impairment; E4 

apolipoprotein 4 carriers; Dem = dementia; Etrm = essential tremor; PD = Parkinson’s disease; MS = 

multiple sclerosis; Bip = bipolar; Pers = personality disorder; Psy = psychosis; Schz = schizophrenia; 

Adc = addiction; Depr = depression; OCD = obsessive compulsive disorder; PTSD = post-traumatic 

stress disorder; Fib = fibromyalgia; Mgrn = migraine; Pain = chronic pain; Canc = cancer; D1 = type 1 

diabetes; TBI = traumatic brain injury; Str = stroke; Seiz = seizure disorder.  

 

3.4. T2 relaxation: 

  The iterative leave-one-out models achieved a median adjusted R2 of 0.782 (Q1 = .7817; Q3 = 

0.7819). Predictions for these models yielded a median error of 26.61 ms (Q1 = 12. 06 ms; Q3 = 54.66 

ms) with 16.23% error (Q1 = 7.51%; Q3 = 27.29%). Figure 4 shows the actual value plotted with the 

marker size representing the weight within the model and the meta-regression model for 3 of the most 
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common metabolites, NAA, Cho, Cr. The full model is available at 

https://github.com/agudmundson/mrs-database. 

 

 

Figure 4: Transverse relaxation time meta-analysis. Only results for NAA, Cho, and Cr are shown for 

ease of visualization, but a total of 629 values for 14 metabolites were included in the database and 

modeled. Metabolite, field strength, localization, T2 filter, species, and tissue type were included as 

factors in the model. Database entries are sorted here by these factors in that order. Each study is 

represented by a square of size reflecting the modeling weight (based on the inverse of variance). The 

red line shows the model.  

4. Discussion: 

4.1 Open-source Database: 

Using a systematic approach, we provide the first database for MRS results and corresponding 

methods. As this database is freely available through the cloud-based website GitHub, new entries can 

be continually added and existing entries can be updated with more information through collaborative 

efforts. This database is valuable for quickly identifying trends as results across multiple studies can be 

interrogated. As with the meta-analyses performed here, future analyses may interrogate brain region, 

software, or other methodological decisions. 
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Citation: Voxel: 

Name in Database Dimensions (x, y, z) 

Publication Year Volume 

Author(s) Anatomical Region 

Journal Volume Hemisphere 

Title Tissue Fractions (Mean/Standard Deviation) 

Digital Object Identifier  

 Acquisition: 

Study Populations: Localization Sequence 

Study Index Water Suppression  

Population Acquisition Bandwidth 

Control Group Number of Datapoints 

Treatment or Conditions Number of Transients 

Visit or Session Number Repetition Time (TR) 

Total Number of Subjects Echo Time (TE) 

Number of Subjects Analyzed Inversion Time (TI) 

Number of Male Subjects T2 Filter 

Number of Female Subjects  

Age (Mean/Standard Deviation) Analysis: 

 Preprocessing Software 

Hardware: Fitting/Quantification Software 

Scanner Manufacturer Segmentation Software 

Scanner Model Partial Volume Correction 

Magnetic Field Strength Relaxation Correction 

 

Table 1. Information available for entries in the database.  

 

4.2 Physiological Ranges of Brain Metabolites in the Healthy Adults: 

 The primary goal of this meta-analysis was to summarize levels of MRS-accessible metabolites 

with a large data mining and unification approach. This was not the first effort to provide typical 

concentration values or ranges – physiological ranges of metabolites have been proposed previously 

for the healthy brain using data from multiple species [390,391]. Here, a comprehensive approach was 

taken to unify measures across hundreds of human studies and appropriately weight them to establish 

the physiological ranges of 19 brain metabolites and metabolite-complexes. The focus here on recent 

publications (<5 years old) biased the analysis toward data quantified using more current and advanced 
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methodologies. Reassuringly, many values here reflect similar ranges to those previously proposed 

[20,390,391].  

Methodological heterogeneity within the MRS literature certainly limits any quantitative meta-

analysis. The extent to which such effects negatively impact this analysis vary. For example, the 

clinical effects are all quantified within-study (i.e., each study is characterized in terms of a fractional 

group difference), so first-order effects associated with different tissue corrections shifting the mean 

concentration values are not a concern; however, second-order effects (where less valid corrections 

might lead to a group-bias) are still a concern. The main concentration analysis does conflate data 

quantified with a variety of methods. The variance observed in the meta-analysis results thus includes 

measurement variance as well as methodological variance within the literature. Where the 

combined/random effects models ‘compare’ categories with biased sampling among the methods 

represented, this approach may be misled by methodological biases. 

 The metabolic profile provided here represents progress towards effective and accurate 

simulation of realistic synthetic data. The development of data analysis methodologies is limited by a 

lack of ground truths – methodological performance is usually assessed in terms of modeling 

uncertainty (CRLB) or within- or between-subject variance (standard deviation). Notably, these 

metrics do not reflect a true measurement error, tending to ignore measurement bias and conflate 

sources of variance. Ultimately, synthetic data that accurately represent all features of in vivo data 

allow comprehensive evaluation of sources of variance and bias in MRS methods. Beyond validation 

of traditional analysis methods, such synthetic data are integral to developing deep learning and 

machine learning algorithms for MRS data analysis and quantification.  

4.3. Physiological Ranges of Brain Metabolites in Clinical Populations: 

 Here, a linear model demonstrating the relationship between healthy and clinical populations 

was presented. Results for the six most frequently quantified metabolites can be seen in Figure 3. As 

far as we know, this is the first study to provide a basis to determine physiological and pathological 
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ranges of brain metabolites in such a wide array of clinical populations. Many of the cohort effects 

summarized, and those highlighted in Figure 3, agree with previous systematic reviews and disease-

specific meta-analyses [21–25,392]. For example, our analysis reproduced the widely recognized 

elevated choline in tumors [22] and elevated mI and decreased NAA in aging and Alzheimer’s Disease 

[21,392–394]. Neurometabolic changes in tNAA and tCho also appear to have some value in 

discriminating between clinical syndromes with similar symptomology, such as Parkinson’s Disease 

and Essential Tremor [395–397]. It is notable that, although tCr is often used as an internal reference, it 

is not markedly stable across the disease populations, and can show changes across aging [398,399]. 

By synthesizing meta-analytic information across a range of disorders, this resource may allow the 

development of future tools to discriminate between clinical conditions.   

4.4. Multiple Meta-Regression to Explain Heterogeneity of Metabolite T2 Relaxation Results: 

 T2 relaxation is an important aspect of in vivo MRS data and should be carefully considered 

when simulating data. Unfortunately, apart from the 3 most common methyl singlets (i.e., tNAA, tCr, 

tCho), T2 ranges have not been well established. This can be seen as most relaxation-corrected absolute 

quantification methods rely on a small handful of references and must make approximations for tissue 

differences, pulse sequence effects, or even for metabolites that have not been studied for the given 

acquisition protocol. The goal of this analysis was to produce a model that could provide metabolite T2 

ranges for simulation. To do this, we leveraged data from multiple metabolites across different species 

that were measured using a variety of acquisition schemes. While results between studies can be seen 

to have a high degree of variability, the multiple meta-regression model was able to account for a large 

degree of the variance. The model included 6 variables: 1) metabolite, 2) field strength, 3) localization 

pulse sequence, 4) T2 filter, 5) tissue type, and 6) subject species. Following a leave-one-out validation 

approach, nearly 80% of the variance could be attributed to the 6 factors. The major factors that 

explain variance in T2 are field strength, with shorter T2 at higher field; metabolite, with Cr having 

shorter T2 than Cho and especially NAA; species, with longer T2 in rodents; and T2-filter (although 
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CPMG filters are only used in a minority of studies). The error in prediction was low, with 

approximately 25% of the prediction errors less than 10 ms, 50% of prediction errors less than 25 ms, 

and nearly 75% of prediction errors under 50 ms. High prediction errors came primarily from a small 

subset of papers that appear to represent outliers in the dataset suggesting predictions may provide 

reliable estimates when simulating understudied metabolites. We did not attempt to quantify ‘study 

quality’ as a potential weighting factor, other than through cohort size. The main factor that is not 

included in the model (although addressed to some degree by the ‘tissue factor’) is brain region of 

measurements, where iron-rich regions are known to show shorter T2s [400–402]. It will also be 

important to measure T2 data in clinical populations and across the lifespan to further solidify the 

existing body of literature.  

 The context of generating the metabolite components of synthetic spectra, which this meta-

analysis builds toward, requires metabolite basis functions, metabolite amplitudes, as well as 

metabolite linewidths. By surveying the metabolite T2 literature, we sought to better understand the 

‘pure-T2’ of metabolite linewidths in the absence of local field inhomogeneity. One model of in vivo 

lineshapes is to assume T2 as the Lorentzian linewidth component and to assign inhomogeneity 

broadening to a Gaussian linewidth component – the data compiled here can inform such a model. It is 

also appropriate to consider transverse relaxation weighting of metabolite amplitudes when assembling 

synthetic spectra “acquired” at typical TEs. 

5. Conclusion: 

 Here, we provide a new database containing brain metabolite results from nearly 500 MRS 

publications. This database is freely available online where users can view and contribute their own 

data. Moving forward, this database can function as a community resource allowing deeper 

interrogation and understanding of how acquisition protocol, software analysis tools, brain region, 

population, etc. impact and/or bias results. 
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Using the database, we have determined physiological ranges of 19 brain metabolites and 

metabolite-complexes across the lifespan of healthy individuals. We further modeled disease effects 

relative to healthy controls to allow for determining concentration ranges for 25 psychiatric and 

neurologic diseases. Finally, we have performed a meta-regression to determine appropriate ranges for 

T2 in MRS simulations. The determined ranges will be invaluable for informing the generation of 

synthetic data for evaluating analysis tools and deep learning datasets. Additionally, these ranges may 

serve as a reference to clinical researchers that are unaware of the expected values for a given 

metabolite or may be considering how MRS can fit within their study design. 
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