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Abstract 
The clinical response to adoptive T cell therapies is strongly associated with 

transcriptional and epigenetic state. Thus, technologies to discover regulators of T cell 

gene networks and their corresponding phenotypes have great potential to improve the 

efficacy of T cell therapies. We developed pooled CRISPR screening approaches with 

compact epigenome editors to systematically profile the effects of activation and 

repression of 120 transcription factors and epigenetic modifiers on human CD8+ T cell 

state. These screens nominated known and novel regulators of T cell phenotypes with 

BATF3 emerging as a high confidence gene in both screens. We found that BATF3 

overexpression promoted specific features of memory T cells such as increased IL7R 

expression and glycolytic capacity, while attenuating gene programs associated with 

cytotoxicity, regulatory T cell function, and T cell exhaustion. In the context of chronic 

antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic 

signatures of T cell exhaustion. CAR T cells overexpressing BATF3 significantly 

outperformed control CAR T cells in both in vitro and in vivo tumor models. Moreover, we 

found that BATF3 programmed a transcriptional profile that correlated with positive 

clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout 

screens with and without BATF3 overexpression to define co-factors and downstream 

factors of BATF3, as well as other therapeutic targets. These screens pointed to a model 

where BATF3 interacts with JUNB and IRF4 to regulate gene expression and illuminated 

several other novel targets for further investigation.     
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Introduction 
 

Adoptive T cell therapy (ACT) holds tremendous potential for cancer treatment by 

redirecting T cells to cancer cells via expression of engineered receptors that recognize 

and bind to tumor-associated antigens. Receptor-antigen interactions can initiate 

complex transcriptional networks that drive multipotent T cell response and lead to cancer 

cell death. The potency and duration of T cell response are associated with defined T cell 

subsets, and cell products enriched in stem or memory T cells provide superior tumor 

control in animal models and in the clinic1-5. Given the association between defined T cell 

subsets and clinical outcomes, precise regulation or programming of T cell state is a 

promising approach to improve the therapeutic potential of ACT.  

T cell state and function are largely regulated by specific transcription factors (TFs) 

and epigenetic modifiers that process intrinsic and extrinsic signals into complex and 

tightly controlled gene expression programs. For example, TOX6-10 and NFAT11 program 

CD8+ T cell exhaustion in the context of chronic antigen exposure. Conversely, T cell 

function can be enhanced by rewiring transcriptional networks through either enforced 

expression or genetic deletion of specific TFs and epigenetic modifiers.  Ectopic 

overexpression of specific TFs such as c-JUN12, BATF13, and RUNX314 or genetic 

deletion of NR4A15, FLI116, members of the BAF chromatin remodeling complex17, 18, and 

regulators of DNA methylation19,20 can alter T cell state and improve T cell function 

through diverse mechanisms.  

Large-scale CRISPR knockout (CRISPRko)21-23 and open reading frame (ORF) 

overexpression24 screens have further accelerated gene discovery and defined the 

effects of individual genes on T cell proliferation and cytokine production. Compared to 

other screening modes, it has been more challenging to conduct gene activation and 

repression screens via epigenome editing in primary human T cells25. One study 

optimized lentiviral production to overcome limitations of delivering large CRISPR-based 

epigenome editors and then conducted proof-of-concept gene silencing and activation 

screens to define regulators of cytokine production25. Indeed, CRISPR-based and ORF 

genetic screens in primary human T cells use proliferation or cytokine production as the 

primary readout. Although these are important phenotypic indicators of T cell function, 

these readouts are also susceptible to missing genes that impact T cell state without 
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significantly changing T cell survival, proliferation, or cytokine production. For example, 

several key regulators of memory T cells such as TCF7, MYB, and FOXO1 have not 

emerged from proliferation-based screens. Additionally, combinatorial perturbations and 

dissection of gene interactions that control human T cell phenotypes have not been 

extensively explored.  

In this study, we developed compact Staphylococcus aureus Cas9 (SaCas9)-

based epigenome editors for targeted gene silencing and activation in primary human T 

cells. We leveraged these tools to profile the effects of 120 genes with complementary 

CRISPR interference (CRISPRi) and activation (CRISPRa) screens on human CD8+ T 

cell state. These screens and subsequent validation revealed that BATF3 overexpression 

could be harnessed to support specific features of memory T cells, counter T cell 

exhaustion, and improve tumor control. By conducting parallel pooled CRISPRko screens 

of all human transcription factor genes (TFome) with or without BATF3 overexpression, 

we defined co-factors and downstream targets of BATF3. More generally, we developed 

orthogonal CRISPR-based screening approaches to systematically discover regulators 

of complex T cell phenotypes, which should accelerate efforts to engineer T cells with 

enhanced durability and therapeutic potential.  

 
Results 

Development and characterization of compact and efficient dSaCas9-based 
epigenome editors for targeted gene regulation in primary human T cells. 

SaCas9 has been extensively used for genome editing in vivo as its compact size 

(3,159 bp) enables packaging into adeno-associated virus (AAV)26-28.  However, SaCas9 

has been used sparingly as an epigenome editor for targeted gene regulation29, 30 and 

has not been used in the context of an epigenome editing screen. First, we evaluated 

dSaCas9 for targeted gene silencing in primary human T cells by conducting two high-

throughput promoter tiling CRISPRi screens. Previous CRISPRi/a screens with dSpCas9 

performed serial transductions with one lentivirus encoding the dCas9-effector and 

another lentivirus encoding for the gRNA-library25. To minimize the number of 

transduction events, we constructed an all-in-one CRISPRi lentiviral plasmid encoding for 

dSaCas9 fused to the KRAB repressor domain and a gRNA cassette (Figure 1A).  
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Next, we considered the protospacer adjacent motif (PAM) requirement for 

SaCas9. In the context of nuclease activity, SaCas9 is more active when targeting 

genomic regions upstream of the PAM (5’ – NNGRRT-3’) compared to the more relaxed 

PAM (5’ – NNGRRV – 3’; where V = A, C, or G)26. However, several gRNA design tools 

do not require a thymine in the final position of the PAM31, 32. Moreover, the PAM 

preference for dSaCas9-based epigenetic effectors has not been rigorously 

characterized. To systematically evaluate this feature, we designed two independent 

gRNA libraries with the relaxed PAM variant (5’-NNGRRN-3’) and tiled ~1,000 bp 

windows around the promoters of CD2 and B2M. We chose CD2 and B2M as gene 

targets because both are ubiquitously and high expressed genes encoding for surface 

markers and thus readily compatible with cell sorting-based screens. The CD2 and B2M 

gRNA libraries contained 141 and 217 targeting gRNAs, respectively, and 250 non-

targeting gRNAs.  

For each CRISPRi screen, we transduced primary human CD8+ T cells with the 

respective gRNA library and expanded the cells for 9-10 days before staining and sorting 

transduced cells in the lower and upper 10% tails of CD2 or B2M expression (Figure 1B). 

We recovered 16 and 5 targeting gRNAs enriched in the CD2 low and B2M low 

populations, respectively (Figure 1C and S1A). Many enriched gRNAs were within an 

optimal window relative to the transcriptional start site (TSS) for gene silencing32 (Figure 

1D and S1B). Although only a small fraction of the targeting gRNAs (11% of CD2 gRNAs 

and 2% of B2M gRNAs) were hits for each gene target, the gRNA hit rates (32% of CD2 

gRNAs and 16% of B2M gRNAs) were significantly higher for gRNAs targeting the strict 

PAM (5’-NNGRRT-3’). This is consistent with previous PAM characterization of SaCas9 

for nuclease activity26 and suggests that the thymine base in the final position of the PAM 

facilitates more efficient recognition and binding between dSaCas9 and the target DNA 

sequence (Figure 1E and S1C). 

Subsequent validation of CD2 and B2M gRNA screen hits revealed marked gene 

silencing and a wide range of activity across gRNAs, underscoring the unique capability 

of CRISPRi to tune gene expression levels (Figure 1F, S1D-E, and S2A-B). For example, 

the percentage of CD2 silenced cells varied from 7% to 89% depending on the gRNA 

(Figure 1F and S2A). The mean expression of CD2 in silenced cells was highly correlated 
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with the percentage of silenced cells, indicating that the effect of a gRNA across a cell 

population is coupled to the magnitude of gRNA activity at a single cell level (Figure S2C). 

The most potent CD2 and B2M gRNAs targeted genomic sites adjacent to 5’-NNGRRT-

‘3 PAMs (Figure 1F and S1D).  As previously observed33, 34,  individual gRNA activity was 

strongly correlated with its fold-enrichment in the screen (Figure 1G and S2D). Finally, 

we adapted this CRISPRi system for multiplex gene silencing by using a lentiviral plasmid 

with orthogonal mouse and human U6 promoters. We verified this system using the most 

potent CD2 and B2M gRNAs and only detected dual silenced cells when both CD2 and 

B2M gRNAs were delivered (Figure S2E-G).  

 Next, we developed efficient and compact dSaCas9-based activators using the 

small transactivation domain VP64. Using polyclonal Jurkat cell lines constitutively 

expressing dSaCas9 fused to either one copy of VP64 (dSaCas9VP64) or two copies of 

VP64 (VP64dSaCas9VP64), we conducted parallel CRISPRa screens with a 400 gRNA 

library (306 IL2RA gRNAs and 94 non-targeting gRNAs) tiling a 5,000 bp window around 

the TSS of the transcriptionally silenced IL2RA gene (Figure S3A). Interestingly, there 

were three more gRNA hits in the VP64dSaCas9VP64 CRISPRa screen along with a shared 

set of five gRNA hits (Figure 1H-I). All gRNA hits targeted sites within a prominent open 

chromatin peak within 350 bp of the TSS with the majority located upstream of the TSS 

(Figure S3B). As with gene silencing, there was a marked preference for 5’-NNGRRT-3’ 

PAMs for gene activation with 75% of gRNA hits targeting this PAM variant (Figure S3C).  

Together, the relative gRNA position and PAM sequence were major predictors of gRNA 

efficacy, similar to the CRISPRi screen, as 24% (6/25) of 5’-NNGRRT-3’ targeting IL2RA 

gRNAs within a ~1,000 bp window around the TSS were hits. Individual validation of all 

eight gRNA hits in both cell lines showed a significant increase in IL2RA expression with 
VP64dSaCas9VP64 consistently more potent than dSaCas9VP64 (Figure 1J-K and S3D). 

Moreover, the most potent VP64dSaCas9VP64 gRNAs achieved equivalent levels of IL2RA 

gene activation as VP64dSpCas9VP64 paired with the best IL2RA gRNA from a published 

CRISPRa screen tiling the IL2RA locus in Jurkats35 (Figure 1K).  

Given the robust activity of VP64dSaCas9VP64 in Jurkat cells, we constructed an all-

in-one CRISPRa lentiviral vector encoding for VP64dSaCas9VP64 and gRNA cassette for 

assays in primary human T cells. We hypothesized that the smaller size of dSaCas9 
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would lead to higher titer lentivirus than S. pyogenes Cas9 (SpCas9), thus reducing the 

quantity of T cells and reagents required to perform CRISPR-based screens with 

equivalent coverage.  We tested this by transducing CD8+ T cells from two donors with 

serial titrations of all-in-one VP64dSaCas9VP64 and VP64dSpCas9VP64 lentiviruses. 
VP64dSaCas9VP64 produced nearly two-fold higher lentiviral titers than the equivalent 
VP64dSpCas9VP64 construct, thus requiring half the lentiviral volume to achieve the same 

transduction rate (Figure S4A-D). We then verified that VP64dSaCas9VP64 could potently 

activate endogenous gene expression of a transcriptionally silenced gene (EGFR) in 

primary human T cells (Figure S4E-F).  

 

CRISPR interference and activation screens identify transcriptional and epigenetic 
regulators of human CD8 T cell state. 

Transcription factors (TFs) and epigenetic modifiers function to establish and 

maintain cell-type specific gene expression programs, mediate response to internal and 

external stimuli, and ultimately dictate cell fate and function. We therefore sought to 

interrogate this important class of genes using high-throughput CRISPRi and CRISPRa 

screens in primary human CD8+ T cells. We compiled a curated list of 110 TFs associated 

with T cell state and function based on motif enrichment in differentially accessible 

chromatin across T cell subsets4, 36, 37,38 and manually appended the following 11 

transcriptional and epigenetic regulators: BACH2, TOX, TOX2, PRDM1, KLF2, BMI1, 

DNMT1, DNMT3A, DNMT3B, TET1, and TET2 for a total of 121 candidate genes 

(Supplementary Table 2). Based on our characterization of dSaCas9-based epigenome 

editors, we generated a gRNA library containing all specific, 5’-NNGRRT-3’ PAM 

targeting gRNAs within a 1,000 bp window centered around the TSS of each gene. All 

genes were represented by at least 7 gRNAs with an average of 16 gRNAs per gene, 

except for PBX2 which did not have any gRNAs (Figure S5A-B). We added 120 non-

targeting gRNAs as negative controls, bringing the final gRNA library to 2,099 gRNAs 

(Supplementary Table 2). We cloned the gRNA library into both all-in-one CRISPRi and 

CRISPRa lentiviral plasmids. Subsequent lentiviral titrations revealed a dose-dependent 

response to lentiviral volume with both CRISPRi and CRISPRa constructs eclipsing 90% 

transduction rates (Figure S5C). 
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We selected CCR7 as the readout for our screens for several reasons. First, CCR7 

is a well-characterized T cell marker and is highly expressed in specific T cell subsets 

such as naïve, stem-cell memory, and central memory T cells39. Second, we 

hypothesized it would enable us to capture more subtle changes in T cell state than other 

phenotypic readouts such as proliferation or cytokine production. To start with a 

homogenous T cell population for our screens, we sorted CD8+CCR7+ T cells from 2-3 

donors and transduced each donor with CRISPRi and CRISPRa gRNA libraries at a low 

multiplicity of infection (MOI) to ensure that most cells only received a single gRNA (Figure 

S6A-B). We expanded the cells for 10 days post-transduction to allow enough time for 

both perturbation of the target gene and any downstream effects on gene regulatory 

networks, and then sorted transduced cells based on expression of CCR7 (Figure 2A and 

Figure S6C-D). 

The CRISPRi screen recovered many canonical regulators of memory T cells 

including FOXO140, MYB41, and BACH242 – all of which when silenced led to reduced 

expression of CCR7, indicative of T cell differentiation towards effector T cells (Figure 2B 

and Figure S7A). Interestingly, the most significant hit from the CRISPRi screen was 

DNMT1, which encodes for a DNA methyltransferase that maintains DNA methylation 

across cell divisions via recognition of hemi-methylated DNA. Genetic disruption of both 

TET2 and DNMT3A, which encode for proteins that regulate DNA methylation in opposite 

directions, can improve the therapeutic potential of T cells19, 20. There was a single non-

targeting gRNA (1/120) hit in the CRISPRi screen. The same non-targeting gRNA 

emerged as a hit in multiple screens using CCR7 as the readout, suggesting a real off-

target effect.   

The CRISPRa screen identified several transcription factors that have been 

implicated in CD8+ T cell differentiation and function such as EOMES43, BATF13, and 

JUN12 (Figure 2C). Importantly, gRNA enrichment was consistent across the three donors 

(Figure 2D and Figure S7B). Multiple gRNAs targeting basic leucine zipper ATF-like 

transcription factors BATF and BATF3 were enriched in reciprocal directions across 

CRISPRi and CRISPRa screens, highlighting the power of coupling loss- and gain-of-

function perturbations, and this was not related to the number of library gRNAs targeting 

these genes (Figure S7C-D). We noticed that BATF and BATF3 gRNA hits in the 
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CRISPRa screen generally co-localized to regions upstream of the promoter and near the 

summits of accessible chromatin (Figure 2E-F). This observation is consistent with our 

CRISPRa IL2RA gRNA tiling screens and recent recommendations for designing gRNAs 

for cis-regulatory elements.   

Single cell RNA-seq characterization of transcriptional and epigenetic regulators 
of T cell state. 
 We next characterized the transcriptomic effects of each candidate gene identified 

from our CRISPRi and CRISPRa screens using single cell RNA-seq (scRNA-seq). We 

adapted the ECCITE-seq protocol44 for SaCas9 by designing a reverse transcription 

primer complementary to the constant scaffold region of the SaCas9 gRNA. This enabled 

simultaneous capture of both non-polyadenylated gRNA transcripts and mRNA 

transcripts from individual cells. We cloned the union set of gRNA hits across CRISPRi/a 

screens (32 gRNAs) and 8 non-targeting gRNAs into both CRISPRi and CRISPRa 

plasmids. We then followed the same workflow as the sort-based screens, but instead of 

sorting the cells based on CCR7 expression, we profiled the transcriptomes and gRNA 

identity of ~60,000 cells across three donors for each screen. After filtering for high-

quality, gRNA-assigned cells, we aggregated the cells and compared the transcriptional 

profile of cells with the same gRNA to non-perturbed cells (cells with only non-targeting 

gRNAs). To assess the quality and statistical power of our scRNA-seq data, we compared 

the quantity and magnitude of effects between targeting and non-targeting gRNAs. 

Targeting gRNAs were associated with significantly more differentially expressed genes 

(DEGs) and these gRNA-to-gene links had larger effect sizes than non-targeting gRNAs 

(Figure S8A-D). We therefore proceeded to evaluate the transcriptomic effects of 

silencing or activating each candidate gene.  

First, we focused on CCR7 expression across gRNAs to validate the results from 

our CRISPRi/a sort-based screens (Figure 3A-B). The scRNA-seq data revealed that half 

of the gRNA hits reproducibly affected CCR7 expression with a similar rank order as 

predicted by the sort-based screens. For example, both assays informed that targeted 

silencing of DNMT1 or FOXO1 drastically reduced CCR7 expression levels, which was 

further confirmed through individual gRNA validations (Figure S9A-B). We noticed that 

gRNA hits that failed to validate in the scRNA-seq characterization were represented by 
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fewer cells than gRNAs that did successfully validate, reaffirming that higher gRNA 

coverage helps to resolve more subtle changes in gene expression44 (Figure S9C). For 

example, the CRISPRa CREM-targeting gRNA that validated was represented by 635 

cells, whereas the other CREM-targeting gRNA was represented only 142 cells and 

narrowly missed the significance threshold. Nevertheless, both gRNAs upregulated 

CREM and similarly affected gene expression programs (Figure S9D).  Several BATF-

targeting gRNAs were also underrepresented. To evaluate CREM and BATF gRNAs, we 

individually assayed a pair of CRISPRa gRNA hits targeting each gene and validated that 

each gRNA regulated CCR7 expression as predicted by the screen (Figure S9A-B). We 

suspect that several gRNAs were underrepresented in the scRNA-seq experiment due to 

gRNA-intrinsic features that either interfered with reverse transcription, oligo capture by 

the beads, or subsequent amplification. Underrepresented gRNAs were not depleted in 

the initial gRNA plasmid pool nor did we observe any fitness defects in individual 

validations. The same gRNAs were underrepresented in both CRISPRi and CRISPRa 

assays, further pointing to gene-independent effects. In addition to the scRNA-seq data 

confirming predicted gRNA effects on CCR7 expression, the true negative rates were 

high for both CRISPRi (96%) and CRISPRa (82%), demonstrating the specificity of sort-

based screens (Figure 3A-B).   

We next measured on-target gene silencing or activation to confirm downstream-

mediated effects, such as changes in CCR7 expression, were driven by each candidate 

gene. Of CRISPRi and CRISPRa gRNAs assigned to at least 5 cells, 56/61 gRNAs (92%) 

silenced or activated their gene target (Figure 3C). Given that CCR7 was selected as a 

surrogate marker for a memory T cell phenotype, we expected some perturbations to 

regulate subset-defining gene expression programs. Indeed, scRNA-seq revealed that 

silencing the top predicted positive regulators of memory (DNMT1, FOXO1, MYB) led to 

decreased expression of CCR7 and other memory-associated genes (such as IL7R, 

SELL, CD27, CD28, TCF7) and increased expression of effector-associated genes 

(GZMA, GZMB, PRF1) (Figure 3D). Conversely, silencing FLI1 led to increased 

expression of several memory-associated genes. Finally, we examined all DEGs 

associated with each perturbation to gain an unbiased view of the transcriptomic effects 

of silencing and activating each gene. Endogenous regulation of several TFs and 
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epigenetic-modifying proteins had widespread transcriptional effects with 6 gene 

perturbations (4 CRISPRi gene perturbations and 2 CRISPRa gene perturbations) 

altering expression of >1,000 genes (Figure 3E). These widespread transcriptional 

changes were not attributed to impaired cell fitness as these gRNAs were well 

represented after 10 days of T cell expansion. Unsurprisingly, silencing DNMT1 – a global 

epigenetic modifier – massively altered the transcriptome with 6,401 DEGs and affected 

general biological processes such as metabolism, endomembrane system organization, 

and mitotic spindle organization (Figure 3H).  

Interestingly, MYB repression with two unique gRNAs resulted in widespread and 

concordant gene expression changes with 8,976 and 7,899 DEGs (Figure 3E-F). Mouse 

models of acute and chronic infection have implicated MYB as an essential positive 

regulator of stem-like memory CD8+ T cells41 and a small and distinct CD62L+ precursor 

of exhausted T cell population45. In both contexts, MYB-deficient CD8+ T cells lacked 

therapeutic potential due to either impaired recall response or the inability to respond to 

checkpoint blockage. An important and lingering question has been whether MYB plays 

a similar role in human CD8+ T cells. Our scRNA-seq data revealed that MYB does 

indeed regulate human CD8+ T cell stemness with MYB silencing driving CD8+ T cells 

towards terminal effector T cells. MYB silencing led to downregulation of memory-

associated TFs (TCF7, KLF2), lymph homing molecules (CCR7, CD62L, S1PR1), and 

cell-cycle inhibitors (CDKN1B). In addition, MYB-silenced cells had increased expression 

of effector-associated TFs (TBX21, PRMD1, ZNF683), effector molecules (GZMB, 

PRF1), inflammatory cytokines (IFNG, TNF), and positive cell-cycle regulators 

(E2F1, CDC6, SKP2, CDC25A and KIF14) (Figure S10A-B). The two MYB CRISPRi 

gRNAs were represented by the first and third most cells across both CRISPRi and 

CRISPRa screens, suggesting that MYB silencing promoted T cell proliferation (Figure 

3E).  

Endogenous activation of several TFs including NR1D1, EOMES, and BATF3 had 

large effects on T cell state. Perturbation-driven single cell clustering revealed a distinct 

cluster with NR1D1 activation (Figure S11A). NR1D1 encodes a nuclear receptor 

subfamily 1 transcription factor and negatively regulates expression of core clock proteins 

that govern cyclical gene expression patterns. Integrative analysis of bulk ATAC-seq data 
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across 12 independent studies of CD8 T cell dysfunction in cancer and infection found 

that the NR1D1 motif was enriched in open chromatin of exhausted T cells38. The causal 

role of NR1D1 in CD8 T cells, however, has not been studied. NR1D1 activation resulted 

in 646 upregulated and 293 downregulated genes (Figure S11B). In agreement with 

NR1D1 motif enrichment38, a large set of effector and exhaustion-associated genes were 

markedly upregulated with NR1D1 activation. To better understand the magnitude of 

exhaustion induction by NR1D1, we calculated an exhaustion gene signature score using 

a defined set of 82 exhaustion-specific genes46. NR1D1-perturbed cells had a significantly 

higher exhaustion gene signature score than non-perturbed cells (Figure S11C). Many 

memory-associated surface markers (IL7R, CCR7, SELL, CD5) and TFs (TCF7, LEF1) 

were downregulated, suggesting NR1D1 activation synthetically programs a 

transcriptional profile with features of T cell exhaustion.  

Endogenous activation of EOMES, a regulator of effector T cells, drove markers 

associated with cytokine signaling and inflammatory response, but did not lead to an 

increase in exhaustion-related genes (Figure 3I). The top two BATF3 gRNA hits from our 

cell sorting CRISPRa screen had strong and concordant effects with 3,056 and 1,402 

DEGs (Figure 3E, G). Gene ontology analyses revealed that BATF3-induced genes were 

enriched for DNA and mRNA metabolic processing, ribosomal biogenesis, and cell-cycle 

pathways, suggesting that BATF3 improves T cell fitness (Figure 3I).  

 

BATF3 overexpression promotes features of memory T cells and counters 
signatures of T cell exhaustion. 
 BATF3 has been shown to promote survival and memory formation in mouse 

CD8+ T cells, however, the molecular and phenotypic effects of BATF3 in human CD8+ 

T cells has not been well defined47. Moreover, it is not known whether manipulating 

BATF3 expression in CD8+ T cells can improve T cell-mediated control of infection or 

cancer. To better understand the kinetics of BATF3 expression in human CD8+ cells, we 

performed a time course experiment where we transduced CD8+ T cells with control 

lentiviral vector (GFP or CRISPRa + NT gRNA), CRISPRa + BATF3 gRNA, or BATF3 

open reading frame (ORF) and measured BATF3 mRNA expression at five different time 

points (Figure S12A). Consistent with other studies47, 48, BATF3 expression levels spiked 
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after T cell activation and tapered back to baseline levels by day 10 post-transduction. 

Both endogenous activation and ectopic BATF3 expression increased BATF3 levels 

relative to the controls, however, ectopic expression led to significantly higher levels of 

BATF3. Given the higher expression and compact size of BATF3’s ORF (only 381 bp), 

we decided to use ectopic BATF3 expression for all subsequent assays.  

First, we found that BATF3 overexpression (OE) markedly increased expression 

of IL7R, a surface marker associated with T cell survival, long-term persistence, and 

positive clinical response to ACT49 (Figure 4A-B and S12B). Next, we performed RNA-

seq across CD8+ T cells from five donors to gain an unbiased view of the transcriptomic 

changes induced by BATF3 OE. Compared to control cells, there were over 1,100 DEGs 

distributed almost equally between upregulated and downregulated genes (Figure 4C). 

Gene ontology analyses revealed that BATF3 OE increased expression of genes involved 

in metabolic pathways such as glycolysis and gluconeogenesis, T cell proliferation (DNA 

replication), and translation (Figure 4D and Supplemental Table 4). Metabolic fitness is 

strongly associated with the potency of T cell responses. For example, central memory 

CD8+ T cells require glycolysis to mount rapid-recall responses after secondary antigen 

exposure. TCF1 supports these bioenergetic demands by preprogramming the 

mobilization of glycolytic enzymes50. Interestingly, BATF3 OE increased expression of the 

transcription factor ID3 (downstream of TCF1), which can activate glycolysis and partially 

rescue secondary response in the absence of TCF150. 

In contrast, BATF3 OE dampened T cell effector programs with downregulation of 

activation markers (CD69, CD2), inflammatory cytokines and cytotoxic molecules (TNF, 

PRF1, GNLY, NKG7) (Figure 4E-F). Additionally, BATF3 OE reduced expression of 

several markers associated with regulatory T cells, which have recently emerged as a 

predictive cell type for clinical response to ACT. In a cohort of refractory B cell lymphoma 

patients treated with CD19 CAR T cell therapy, the infused T cell product of non-

responders were enriched for Treg cells and FOXP3+ cells (across all CAR+ cells) 

compared to responders49. Albeit less characterized than CD4+ Tregs, a subset of 

CD8+FOXP3+LAG3+ Tregs suppress T cell activity by secreting CC chemokine ligand 4 

(CCL4)51. Interestingly, our RNA-seq data revealed that BATF3 OE reduced expression 

of FOXP3, LAG3, and CCL4 in CD8+ T cells (Figure 4F and S12C). BATF3 has previously 
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been shown to silence FOXP3 expression in CD4+ Tregs by directly binding to regulatory 

regions within the FOXP3 locus52, 53.  

In addition to LAG3, BATF3 silenced several other canonical markers of T cell 

exhaustion including TIGIT, TIM3, and CISH (Figure 4F and S12C). We speculated these 

effects might be amplified in the context of chronic antigen stimulation. To evaluate this, 

we acutely and chronically stimulated control and BATF3 OE T cells with CD3/CD28 

antibody-coated beads and measured expression of exhaustion-associated surface 

markers (PD1, TIGIT, LAG3, and TIM3) (Figure S13A). As previously observed54, PD1 

expression peaked after the initial stimulation and then tapered off over time, whereas 

TIGIT, LAG3, and TIM3 expression were maintained or increased after each subsequent 

round of stimulation (Figure S13B-C). Notably, BATF3 OE attenuated PD1 induction and 

restricted TIGIT, LAG3, and TIM3 expression to closely resemble that of acutely 

stimulated cells despite three additional rounds of TCR stimulation (Figure 4G and S13B-

C). As terminally exhausted T cells often co-express multiple exhaustion-associated 

markers, we quantified the proportion of cells expressing each combination of TIGIT, 

LAG3, and TIM3. Only 13% of BATF3 OE T cells co-expressed all three markers 

compared to 65% and 59% of untreated and GFP T cells (Figure 4H).   

 

BATF3 overexpression remodels the epigenetic landscape of CD8+ T Cells under 
acute and chronic stimulation.  

As an orthogonal method of inducing T cell exhaustion, we armed T cells with a 

human epidermal growth factor 2 (HER2) CAR with or without BATF3 OE and acutely 

and chronically stimulated the CAR T cells with human HER2+ cancer cells. Using assay 

for transposase-accessible chromatin with sequencing (ATAC-seq), we profiled the 

epigenetic landscape of T cells in each group. As expected, chronic antigen stimulation 

induced widespread changes in chromatin accessibility with 23,322 differentially 

accessible regions between acutely and chronically stimulated control cells. Many of 

these regions were proximal to memory and effector/exhaustion-genes (Figure S14A). 

Next, we assessed chromatin remodeling in response to BATF3 OE under acute 

stimulation. There was extensive chromatin remodeling with 5,104 differentially 

accessible regions between the groups (Figure S15A). Of these regions, roughly 60% 
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were more accessible with BATF3 OE. Most of these changes were in intronic or 

intergenic regions consistent with cis-regulatory or enhancer elements (Figure S15B). To 

better understand whether changes in chromatin accessibility corresponded to changes 

in gene expression, we jointly analyzed our ATAC-seq and RNA-seq data. We assigned 

each differential region to its closest gene to estimate genes that could be regulated in 

cis by these elements. We then quantified how many differential regions proximal to 

DEGs gained or lost accessibility. There was an enrichment of regions with increased or 

decreased accessibility proximal to upregulated and downregulated genes, respectively, 

indicative that BATF3-driven epigenetic changes affected transcription (Figure S15C). 

Approximately 25% of the genes that changed expression were associated with a 

corresponding differentially accessible region (297 out of 1,160 genes). For example, 

BATF3 OE extensively remodeled the chromatin landscape at IL7R and TIGIT (Figure 

S15D-E). BATF3 OE increased accessibility at the IL7R promoter, intronic, 3’-UTR, and 

intergenic regions and decreased accessibility at distal intergenic, 5’-UTR, and exonic 

regions of TIGIT.  

Finally, we compared the epigenetic landscapes of chronically stimulated T cells 

with or without BATF3 OE. There were 22,201 differentially accessible regions between 

control and BATF3 OE T cells with most regions in intronic and intergenic regions (Figure 

S16A). Interestingly, we observed increased accessibility at regions near both memory 

(TCF7, MYB, IL7R, CCR7, SELL) and effector-associated genes (EOMES, TBX21) 

(Figure S16C-D). This may represent a hybrid T cell phenotype or the presence of 

heterogenous subpopulations of memory and effector T cells. Consistent with RNA-seq 

and FACS data, we observed reduced accessibility at exhaustion loci such as TIGIT, 

CTLA4, LAG3 with BATF3 OE.  

 

BATF3 overexpression enhances tumor control and programs a transcriptional 
signature associated with clinical response.  

Given that BATF3 OE induced widespread changes in gene expression and 

chromatin accessibility, we hypothesized that BATF3 OE might improve CD8+ T cell 

function. To test the antitumor capacity of BATF3 OE T cells, we used an in vitro co-

culture model with T cells engineered to express a HER2-CAR and human HER2+ cancer 
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cells. We verified that cancer cell death was dependent on the presence of CAR+ T cells. 

(Figure S17A-B). At sub-curative doses of control CAR T cells, CAR T cells co-expressing 

BATF3 were more potent tumor killers than control CAR T cells across donors and 

multiple effector: target (E:T) ratios (Figure 5A and S17B). 

 Next, we evaluated whether BATF3 OE could improve in vivo control of solid 

tumors, given the known role of T cell exhaustion in limiting ACT efficacy in the solid tumor 

setting55, 56. To simplify delivery of the CAR and BATF3 transgenes, we constructed all-

in-one lentiviral vectors encoding a HER2 CAR coupled to either GFP or BATF3 via a 2A 

polypeptide skipping sequence. Using an orthotopic human breast cancer HER2+ tumor 

model in immunodeficient NSG mice, we measured tumor volumes over time as a 

function of control (GFP) CAR T cell doses (Figure S17C). Tumor control was partial in 

the cohort of mice treated with 5 x 105 CAR T cells and completely lost in the cohort 

treated with 105 CAR T cells. We proceeded to test whether BATF3 OE could improve 

the therapeutic potential of CAR T cells with several sub-curative doses. Strikingly, CAR 

T cells co-expressing BATF3 markedly enhanced tumor control at two sub-curative doses 

(2.5 x 105 and 5 x 105 CAR+ cells) compared to control CAR T cells (Figure 5B-C and 

S17F). Notably, the tumor growth of mice treated with the lower dose of 2.5 x 105 control 

CAR T cells was completely unrestrained, mimicking that of untreated mice (Figure 5C). 

In stark contrast, there was clear regression and delay of tumor growth with the matched 

dose of BATF3 OE CAR T cells. 

 To explore the mechanism driving superior tumor control with BATF3 OE, we 

repeated the in vivo experiment with T cells from two different donors and phenotypically 

characterized the CAR T cells before treatment and after collecting tumor infiltrating CAR 

T cells on day 3 and day 19 post-treatment (Figure 5D-K, S18-19). Across both sets of 

experiments, there were no differences in CAR transduction rates (>70% for all groups) 

or the total number of CAR+ T cells before intravenous injections between CAR 

constructs (Figure S17D-E). Again, we observed superior tumor control with BATF3 OE 

CAR T cells across both donors (Figure S18A-B). Although there were no statistically 

significant differences between the input CAR T cells given the small sample size, BATF3 

OE cells tended to express lower levels of several exhaustion markers including LAG3, 

TIGIT, and TIM3 (Figure S18C-E).  
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More striking differences between the two groups emerged at the day 3 post-

treatment timepoint. We detected equivalent proportions of CD8+ T cells within the tumor 

and circulating in peripheral blood, indicating that BATF3 OE was not improving tumor 

control by merely increasing T cell proliferation or tumor trafficking (Figure 5D and S18F). 

Corroborating this, expression of the proliferative marker Ki-67 was equivalent between 

the groups (Figure 5E). Rather, tumor infiltrating CAR T cells with BATF3 OE expressed 

higher levels of both TCF1 and IFN𝛾 (Figure 5F-G). BATF3 OE did not increase 

expression of TCF7 (which encodes for TCF1) under acute stimulation in vitro (Figure 

S12C). However, there were seven differentially accessible sites near the TCF7 locus 

between control and BATF3 OE CAR T cells after chronic stimulation (Figure S16C, E). 

Notably, 5/7 sites were more accessible in BATF3 OE cells including all three intragenic 

regions, while four distal intergenic regions were split evenly between the two groups 

(Figure S16E). These data suggest that BATF3 OE can partially counter 

heterochromatinization of the TCF7 locus during chronic antigen stimulation and retain 

higher levels of TCF1 expression.  

As reflected in the tumor growth curves, we detected a higher proportion of tumor 

infiltrating CAR T cells in the BATF3 OE group at the final day 19 timepoint, likely due to 

smaller tumor sizes, as the absolute number of T cells were similar between the two 

groups (Figure 5H-I). We did not detect any CAR T cells in peripheral blood for either 

group. To gain further insight into transcriptional regulation, we stained the tumor 

infiltrating CAR T cells for the following TFs: TCF1, TBET, EOMES, GATA3, ID2, ID3, 

and IRF4. Interestingly, TCF1 was no longer differentially expressed, but ID3 (a 

downstream TF of TCF1) was upregulated in the BATF3 OE group (Figure 5J-K). 

Therefore BATF3 OE T cells may have gradually transitioned from transcriptional 

programs driven by TCF1 to ID3.  

Given the enhanced tumor control conferred by BATF3 OE in CD8+ T cells, we 

were curious whether BATF3 OE programmed a transcriptional signature associated with 

clinical response to ACT.  Suggestive of this, in a recent clinical trial, non-responders to 

CD19-targeting CAR T cell therapy had a significantly higher proportion of CD8+ T cells 

in a cytotoxic or exhausted phenotype than responders49. This prompted us to 

systematically identify DEGs between the infused CD8+ CD19 CAR T cell product of 
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responders and non-responders (Figure S20A).  There were 147 DEGs between CD8+ 

T cells of responders and non-responders in this dataset. We then subset our bulk RNA-

seq data with BATF3 OE to query the expression of these genes. Of the 147 DEGs, 144 

genes were detected in our RNA-seq data. Strikingly, BATF3 OE silenced 35% (23/65) 

of genes associated with nonresponse and activated 20% (16/79) of genes associated 

with response (Figure 5L). Seven of the ten genes most strongly associated with clinical 

outcome were regulated in a favorable direction. Conversely, only 4.9% (7/144) of genes 

were regulated in a direction opposing positive clinical response, providing further 

evidence that BATF3 OE drives a transcriptional program associated with positive clinical 

outcomes.  

 

CRISPR knockout screens reveal co-factors of BATF3 and novel targets for cancer 
immunotherapy.  

BATF3 is a member of the AP-1 TF family, which regulates diverse biological 

processes across many cell types through complex and highly specific transcriptional 

control. This transcriptional specificity is enabled by combinatorial interactions between 

AP-1 TFs, which form cell-type specific homo- or hetero-dimers to regulate distinct gene 

expression programs. Several AP-1 complexes such as BATF-JUN heterodimers can 

interact with interferon-regulatory factors (IRF) at AP-1-IRF consensus elements, 

providing further flexibility in gene regulation57. BATF3 is a compact AP-1 TF with only a 

basic DNA binding domain and a leucine zipper motif. Unlike other AP-1 TFs, BATF3 

lacks additional protein domains such as a transactivation domain for gene activation57. 

We therefore speculated that BATF3 was interacting with other TFs to impact gene 

expression and chromatin accessibility. Additionally, we reasoned that other TFs might 

compete with or inhibit BATF3 and that deleting these factors would further amplify 

BATF3’s effects.  

To identify cooperative TFs, downstream factors, and barriers to T cell 

reprogramming, we conducted parallel CRISPR knockout (CRISPRko) screens with 

gRNA libraries targeting all human transcription factors genes (TFome), with or without 

BATF3 OE. We selected IL7R expression as the readout for these screens for two 

reasons. First, IL7R is expressed in 20-50% of CD8+ T cells at baseline, making it feasible 
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to recover gene hits in both directions, unlike ubiquitously silenced and highly expressed 

genes. Second, BATF3 OE profoundly increases IL7R expression (Figure 4A-B), thus 

providing a proxy for BATF3 activity. We expected that IL7R induction by BATF3 would 

be attenuated if cooperative or downstream TFs were deleted. We designed the TFome 

gRNA library by subsetting a genome wide knockout library31 (4 gRNAs per gene) for 

1,612 TFs58. We included four IL7R-targeting gRNAs as positive controls and 550 non-

targeting gRNAs as negative controls. We cloned the 7,000 gRNA library into two lentiviral 

plasmids encoding for either mCherry or BATF3 and transduced CD8+ T cells from two 

donors in parallel with each library. The following day, we electroporated Cas9 protein to 

facilitate gene editing and then expanded the edited cells21. After nine days of expansion, 

we sorted the cells into the lower and upper 10% tails of IL7R expression and sequenced 

the gRNA libraries from each population (Figure 6A).  

As expected, multiple IL7R gRNAs were the most enriched gRNAs in the IL7R low 

population across both screens (Figure 6B). Notably, BATF3 gRNAs only emerged in the 

screen with BATF3 OE as BATF3 is lowly expressed at baseline (Figure 6B). BATF3 

gRNAs indiscriminately target endogenous and exogenous BATF3, indicating that 

knocking out exogenous BATF3 nullified its effects. Many DNMT1 and FOXO1 gRNAs 

were strongly enriched in the IL7R low population, corroborating findings from our 

CRISPRi cell-sorting screens and subsequent scRNA-seq characterization of DNMT1 

and FOXO1 gene silencing. Additionally, we recovered multiple gRNA hits for many 

genes with all four gRNAs emerging for several genes (e.g FOXO1, FOXP1, and RUNX3) 

(Figure S21A). The baseline expression of target gene hits was significantly higher than 

that of non-hit genes, as knockout screens can only capture the effects of expressed 

genes (Figure S21B). 

We then compared gRNA and gene-level enrichment between the CRISPRko 

screens with or without BATF3 OE (Figure 6C-D). This enabled us to classify genes that 

regulate IL7R expression in a BATF3-independent or BATF3-dependent manner. For 

example, FOXO1 and DNMT1 were among the strongest gene hits in the IL7R low 

population across both screens, indicating BATF3-independent effects. Because BATF3 

OE increased the dynamic range of IL7R expression, we were also able to capture unique 

genes enriched in IL7R low population in the CRISPRko screen with BATF3-OE. These 
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genes represent potential co-factors or downstream actuators of BATF3-mediated 

effects. Given the known interaction between AP-1 and IRF TFs, we were particularly 

interested in members of these families that were exclusively enriched in the IL7R low 

population with BATF3 OE. BATF3, JUNB, and IRF4 were the top genes meeting these 

criteria, suggesting that BATF3 interacts with JUNB and IRF4 to mediate transcriptional 

control in CD8+ T cells (Figure 6C and S21C-D).  

Both screens also revealed candidate gene targets for further improving ACT as 

ablating these TFs led to higher levels of IL7R expression (Figure 6C). The most enriched 

genes in the TF-KO only screen included ZNF217, RUNX3, FOXP1, GATA3, GFI1, AHR, 

ETS1, ZNF626, and FOXP3. Because BATF3 OE induces IL7R expression, it was more 

challenging to detect genes enriched in the IL7R high population in the screen with BATF3 

OE. In addition, we speculated that some TFs whose effects were lost with BATF3 OE 

might be downstream targets of BATF3. Indeed, our RNA-seq analysis (Figure 4, S12) 

revealed that several of the top TFs including FOXP1, ETS1, and FOXP3 were all 

downregulated by BATF3 OE. This indicates that further reducing the expression levels 

of these TFs did not affect IL7R expression.  

Interestingly, there were three overlapping hits in the IL7R high population between 

screens: ZNF217, GATA3, and AHR, suggesting that knocking out these genes increased 

IL7R expression individually and in combination with BATF3 OE. ZNF217 was the top hit 

across both screens and has not previously been characterized in the context of T cell 

biology. GATA3 has been shown to promote CD8+ T cell dysfunction with features 

reminiscent of a regulatory T cell phenotype and targeted deletion of GATA3 improves 

tumor control59. Moreover, both GATA3 and AHR can activate FOXP3 expression in 

regulatory T cells, providing further evidence of a link between T cell dysfunction and T 

cell regulatory activity60-62.  

We individually validated the effects of knocking out IL7R, BATF3, JUNB, IRF4, 

ZNF217, and GATA3 with and without BATF3 OE (Figure 6E-G). Consistent with previous 

findings, BATF3 increased IL7R expression by >40% in control CD8+ T cells (~33% to 

77% IL7R+) with a non-targeting gRNA (Figure 6E). Ablating BATF3 led to partial 

restoration back to control IL7R levels, presumably due to incomplete nuclease activity 

across ectopic lentiviral copies of BATF3 in all cells. The effects of BATF3 OE were 
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profoundly negated with either JUNB and IRF4 knockouts with both reducing IL7R 

expression similarly (~30% decrease for JUNB and ~28% decrease for IRF4) (Figure 6E-

F). Conversely, genetic disruption of GATA3 and ZNF217 increased baseline IL7R levels 

by ~10% and ~18%, respectively (Figure 6E). Combined with BATF3 OE, the fraction of 

IL7R+ cells did not increase with GATA3 deletion, however the relative fluorescent 

intensity increased by 36%. Finally, the combined effect of BATF3 OE and ZNF217 

knockout led to a significant proportion of IL7R+ T cells (>84%) (Figure 6G and S21E).  

 

Discussion 

In this study, we developed and characterized compact and efficient dSaCas9-

based epigenome editors to systematically map transcriptional and epigenetic regulators 

of primary human CD8+ T cell state through complementary loss-of-function and gain-of-

function CRISPRi/a screens. Although we assayed the effects of 120 genes in our 

CRISPRi/a screens, this technology could readily be scaled to profile all catalogued 

human genes for their coordination of complex T cell phenotypes. Nevertheless, our 

CRISPRi/a screens recovered many known and novel regulators of CD8+ T cell state with 

a striking convergence on BATF3. A prominent effect of BATF3 overexpression was 

activation of IL7R, which encodes for the IL-7 receptor. A primary reason for 

lymphodepleting regimens before CAR T cell infusion in clinical protocols is to maximize 

the availability of homeostatic cytokines (IL-2, IL-7, and IL-15) by eliminating competing 

immune cells. Increased IL7R expression on engineered T cells therefore might increase 

their sensitivity to IL-7 signaling and enable lower doses of conditioning lymphodepletion 

agents, which increase the risk of infection and have other associated toxicities.  

BATF3 overexpression markedly enhanced the ability of CD8+ T cells to control 

tumor growth in vitro and in vivo.  The compact size of BATF3 could seamlessly integrate 

into current manufacturing processes of FDA-approved ACTs, which all use lentivirus to 

deliver the CAR or TCR to donor T cells. Before translating promising gene modules such 

as BATF3 overexpression into the clinic, it will be important to carefully assess the safety 

of engineered T cells. Although the progeny of a single TET2null CAR T cell clone cured 

an advanced refractory chronic lymphocytic leukemia (CLL) patient20, a recent study 

highlighted that biallelic deletion of TET2 in combination with sustained expression of 
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BATF3 can lead to antigen-independent clonal T cell expansion63. BATF3 OE alone does 

not induce adverse effects in T cells64, but the BATF-IRF axis can be oncogenic in the 

context of other genetic and epigenetic aberrations such as mutations, deletions, 

translocations, and duplications65-69. We did not detect increased levels of MYC or Ki-67 

expression in our RNA-seq data nor did we detect elevated numbers of CD8+CAR+ T 

cells with BATF3 OE after 9 days of in vitro expansion and nearly three weeks of in vivo 

surveillance in tumor-bearing mice. Nevertheless, future work could focus on alternative 

delivery strategies such as transient delivery of mRNA or self-amplifying mRNA encoding 

for the transgene, tuning transgene expression through regulatory elements or genetic 

circuits, or suicide switches to control the activity of T cells in vivo.  

To our knowledge, this work is the first example that combines TF overexpression 

with a TFome knockout screen to dissect co-factors and downstream factors and 

highlights the power of this approach. These screens provided insight into the mechanism 

by which BATF3 programs transcriptional changes. Specifically, our data combined with 

existing data from other cell types supports a model where BATF3 heterodimerizes with 

JUNB and interacts with IRF4 to drive transcriptional programs in CD8+ T cells. The 

dynamic and combinatorial interactions between AP-1 TFs have repeatedly been shown 

to control biological processes that dictate T cell state and function and are promising 

therapeutic candidates for ACT. This investigation also identified novel factors, such as 

ZNF217, which have not previously been associated with controlling T cell state or AP-1 

gene regulation, which will be worthy targets of additional study. Overall, this work 

expands the toolkit of epigenome editors and our understanding of regulators of CD8+ T 

cell state and function. This catalogue of genes could serve as a basis for engineering 

the next generation of cancer immunotherapies. 
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Methods 
Plasmids. All plasmids used were cloned using Gibson assembly (NEB). The all-in-one 

HER2 CAR constructs used for in vivo tumor control studies were cloned by digesting an 

empty lentiviral vector for constitutive gene expression (Addgene 79121) with MluI and 

amplifying the HER2-CAR70 and 2A-GFP or 2A-BATF3 (gblock, IDT) fragments with 

appropriate overhangs for Gibson assembly. The following plasmids were deposited to 

Addgene: pLV hU6-gRNA hUbC-dSaCas9-KRAB-T2A-Thy1.1 (Addgene 194278) and 

pLV hU6-gRNA hUbC-VP64-dSaCas9-VP64-T2A-Thy1.1 (Addgene 194279).  

 
Cell Lines. HEK293Ts and SKBR3s were maintained in DMEM GlutaMAX supplemented 

with 10% fetal bovine serum (FBS), 1 mM sodium pyruvate, 1x MEM non-essential amino 

acids (NEAA), 10 mM HEPES, 100 U mL-1 of penicillin, and 100 μg mL-1 streptomycin. 

Jurkats lines were maintained in RPMI supplemented with 10% FBS, 100 U mL-1 of 

penicillin, and 100 μg mL-1 streptomycin. HCC1954s were maintained in DMEM/F12 

supplemented with 10% FBS, 100 U mL-1 of penicillin, and 100 μg mL-1 streptomycin. 

 

Isolation and Culture of Primary Human T Cells. Human CD8+ T cells were obtained 

from either pooled PBMC donors (ZenBio) using negative selection human CD8 isolation 

kits (StemCell Technologies) or directly from vials containing isolated CD8+ T cells from 

individual donors (StemCell Technologies). For all technology development experiments, 

T cells were cultured in Advanced RPMI (Thermo Fisher) supplemented with 10% FBS, 

100 U mL-1 of penicillin and 100 μg mL-1 streptomycin. For all T cell reprogramming 

experiments, T cells were cultured in PRIME-XV T cell Expansion XSFM (FujiFilm) 

supplemented with 5% human platelet lysate (Compass Biomed), 100 U mL-1 of penicillin 

and 100 μg mL-1 streptomycin. All media was supplemented with 100 U mL-1 human IL-2 

(Peprotech). T cells were activated with a 3:1 ratio of CD3/CD28 dynabeads to T cells 

and split or expanded every 2 days to maintain T cells at a concentration of 1-2 x 106 per 

mL unless otherwise indicated.  
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Lentivirus Generation and Transduction of Primary Human T Cells. For all 

technology development experiments, lentivirus was produced as previously described34. 

For all T cell reprogramming experiments, a recently optimized protocol for high-titer 

lentivirus was used25. Briefly, 1.2 x 106 or 7 x 106 HEK293T cells were plated in a 6 well 

plate or 10 cm dish in the afternoon with 2 mL or 12 mL of complete opti-MEM (Opti-

MEM™ I Reduced Serum Medium supplemented with 1x Glutamax, 5% FBS, 1 mM 

Sodium Pyruvate, and 1x MEM Non-Essential Amino Acids). The next morning, HEK293T 

cells were transfected with 0.5 μg pMD2.G, 1.5 μg psPAX2, and 0.5 μg transgene for 6 

well transfections or 3.25 μg pMD2.G, 9.75 μg psPAX2, and 4.3 μg transgene for 10 cm 

dishes using Lipofectamine 3000. Media was exchanged 6 hours after transfection and 

lentiviral supernatant was collected and pooled at 24 hours and 48 hours after 

transfection. Lentiviral supernatant was centrifuged at 600xg for 10 min to remove cellular 

debris and concentrated to 50-100x the initial concentration using Lenti-X Concentrator 

(Takara Bio). T cells were transduced at 5-10% v/v of concentrated lentivirus at 24 hours 

post-activation. For dual transduction experiments, T cells were serially transduced at 24 

hours and 48 hours post activation.      

 

Design of CD2, B2M, and IL2RA gRNA Libraries. Saturation CD2 and B2M CRISPRi 

gRNA libraries were designed to tile a 1,050 bp window (-400 bp to 650 bp) around the 

TSS of each target gene using CRISPick32. The IL2RA CRISPRa gRNA library was 

designed to tile a 5kb bp window (-4,000 bp to 1000 bp) around the TSS of IL2RA using 

ChopChop71. Any gRNA that aligned to another genomic site with fewer than four 

mismatches was removed from the library. Each gRNA library was designed to target 

dSaCas9’s relaxed PAM variant: 5’-NNGRRN-3’. Non-targeting gRNAs were generated 

for each library to match the nucleotide composition of the targeting gRNAs. CD2, B2M, 

and Il2RA gRNA libraries can be found in Supplementary Table 1. 
 

gRNA Library Cloning. Oligonucleotide gRNA pools containing variable protospacer 

sequences and constant regions for PCR amplification were synthesized by Twist 

Bioscience. 2-4 ng of each oligonucleotide pool was input into a 7-cycle PCR with 2x Q5 

mastermix and 10 μM of each amplification primer with the following cycling conditions: 
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98C for 10s, 65C for 30s, and 72C for 15s. The gRNA amplicon was gel extracted and 

then PCR purified. The purified gRNA amplicon was input into a 20 μL Gibson reaction at 

a 5:1 insert to backbone molar ratio with 200 ng of either all-in-one CRISPRi or CRISPRa 

backbones digested with Esp3I, dephosphorylated using QuickCIP, and 1x SPRI-

selected. The Gibson reactions were ethanol precipitated overnight and transformed into 

Lucigen’s Endura ElectroCompetent Cells. Cloned gRNA libraries were purified for 

lentivirus production by midi-prepping 100 mL of bacterial culture.  

 
CD2 and B2M CRISPRi Screens in Primary Human T Cells. CD8+ T cells from pooled 

PBMC donors were transduced with all-in-one lentivirus encoding for dSaCas9-KRAB-

2A-GFP and either CD2 (n = 2 replicates) or B2M (n = 3 replicates) gRNA libraries. Cells 

were expanded for 9 days and then stained for the target gene (CD2 or B2M). Transduced 

GFP+ T cell in the lower and upper 10% tails of target gene expression were sorted for 

subsequent gRNA library construction and sequencing. All replicates were maintained 

and sorted at a minimum of 350x coverage.  

 
Construction of CRISPRa Jurkat Lines and IL2RA CRISPRa Screens in Jurkats. 
Polyclonal dSaCas9VP64 and VP64dSaCas9VP64 Jurkat cell lines were generated by 

transducing 2 x 106 Jurkats with 2% v/v of 50x lentivirus encoding for either dSaCas9VP64-

2A-PuroR or VP64dSaCas9VP64-2A-PuroR. Cells were selected for five days (days 3-7 

post-transduction) using 0.5ug/mL of puromycin. After puromycin selection, 1 x 106 

dSaCas9VP64 and VP64dSaCas9VP64 Jurkat cells were plated and transduced in triplicate 

with the IL2RA gRNA library lentivirus at a multiplicity of infection (MOI = 0.4). Cells were 

expanded for 10 days, selected for Thy1.1 using a CD90.1 Positive Selection Kit 

(StemCell Technologies), and then stained for Thy1.1 and IL2RA. Transduced Thy1.1+ 

Jurkats in the lower and upper 10% tails of IL2RA expression were sorted for subsequent 

gRNA library construction and sequencing. All replicates were maintained and sorted at 

a minimum of 500x coverage.   

 

TF and Epi-Modifier CRISPRi/a gRNA Library Construction. Genes were selected 

based on motif enrichment in differentially accessible chromatin across T cell subsets4, 36, 
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37 and a unified atlas of over 300 ATAC-seq and RNA-seq experiments from 12 studies 

of CD8 T cells in cancer and chronic infection38. The following transcriptional and 

epigenetic regulators: BACH2, TOX, TOX2, PRDM1, KLF2, BMI1, DNMT1, DNMT3A, 

DNMT3B, TET1, and TET2 were manually added to the gene list. The complete 121 

member gene list can be found in Supplementary Table 2. The TSS for each gene was 

extracted using CRISPick and 1,000 bp windows were constructed around each TSS (-

500 to +500 bp). After establishing an SaCas9 gRNA database with the strict PAM variant 

(NNGRRT) using guideScan72, the genomic windows were input into the 

guidescan_guidequery function to generate the gRNA library. Any gRNA that aligned to 

another genomic site with fewer than four mismatches was removed from the library. The 

final gRNA library contained at least seven gRNAs targeting 120/121 target gene (there 

were no PBX2-targeting gRNAs) with an average of 16 gRNAs per gene. 120 non-

targeting gRNAs were included in the library for a total of 2,099 gRNAs (Supplementary 

Table 2).   

 
TF and Epi-Modifier CRISPRi/a gRNA Screens. CD8+CCR7+ T cells were sorted and 

transduced with either CRISPRi (n = 2 donors) or CRISPRa (n = 3 donors) TF + epi-

modifier gRNA libs. Cells were expanded for 10 days and then stained for Thy1.1 (a 

marker to identify transduced cells) and CCR7 (a marker associated with T cell state). 

Transduced Thy1.1+ T cells in the lower and upper 10% tails of CCR7 expression were 

sorted for subsequent gRNA library construction and sequencing. All replicates were 

maintained and sorted at a minimum of 300x coverage.   

 

Genomic DNA Isolation, gRNA PCR, and Sequencing gRNA Libraries. Genomic DNA 

was isolated from sorted cells using Qiagen’s DNeasy Blood and Tissue Kit. All genomic 

DNA was split across 100 μL PCR reactions with Q5 2X Master Mix, up to 1 μg of genomic 

DNA per reaction, and forward and reverse primers. After initial amplicon denaturation at 

98C for 30s, gRNA libraries were amplified through 25 PCR cycles at 98C for 10s, 60C 

for 30s, and 72C for 20s, followed by a final extension at 72C for 20s. PCRs were pooled 

together for each sample and purified using double-sided SPRI selection at 0.6x and 1.8x 

to remove gDNA and primer dimer. Libraries were run on a High Sensitivity D1000 tape 
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(Agilent) to confirm the expected amplicon size and quantified using Qubit’s dsDNA High 

Sensitivity assay. Libraries were individually diluted to 2 nM, pooled together at equal 

volumes, and sequenced using Illumina’s MiSeq Reagent Kit v2 (50 cycles) according to 

manufacturer’s recommendations. Read 1 was 22 cycles to sequence the 21 bp 

protospacers and index read 1 was 6 cycles to sequence the sample barcodes. Primers 

used in this study can be found in Supplementary Table 5. 

 

Processing gRNA Sequencing and Enrichment Analysis for FACS-based Screens. 
FASTQ files were aligned to custom indexes for each gRNA library (generated from the 

bowtie2-build function) using Bowtie 273. Counts for each gRNA were extracted and used 

for further analysis. All enrichment analysis was done with R. Individual gRNA enrichment 

was determined using the DESeq274 package to compare gRNA abundance between 

high and low conditions for each screen. gRNAs were selected as hits if they met a 

specific statistical significance threshold (defined in figured legends). DESeq2 results for 

each cell sorting based screen in this study can be found in Supplementary Tables 1 and 

2.  

 

Individual gRNA Validation Using Flow Cytometry. For CD2 and B2M gRNA 

validations, CD8 T cells were transduced in triplicate with each individual gRNA and 

followed the same timeline as the CRISPRi screens. On day 9, cells were stained with 

either a CD2 or B2M antibody and measured using flow cytometry. For IL2RA gRNA 

validations, dSaCas9VP64 and VP64dSaCas9VP64 Jurkat lines were transduced with each 

gRNA hit and followed the same timeline as the CRISPRa screen. On day 9, cells were 

stained with a IL2RA antibody and measured using flow cytometry. The percentage of 

cells expressing the target gene or the mean fluorescence intensity (MFI) of the target 

gene were reported for flow cytometry data.  

 

Flow Cytometry and Surface Marker Staining. An SH800 FACS Cell Sorter (Sony 

Biotechnology) was used for cell sorting and analysis unless otherwise indicated. For 

antibody staining of all surface markers except CCR7, cells were harvested, spun down 

at 300xg for 5 min, resuspended in flow buffer (1x PBS, 2 mM EDTA, 0.5% BSA) with the 
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appropriate antibody dilutions and incubated for 30 min at 4C on a rocker. Antibody 

staining of CCR7 was carried out for 30 min at 37C. Cells were then washed with 1 mL 

of flow buffer, spun down at 300xg for 5 min, and resuspended in flow buffer for cell sorting 

or analysis. Antibody details can be found in Supplementary Table 5.  FMO controls were 

used to set appropriate gates for all flow panels.   

 
Quantitative RT-qPCR. mRNA was isolated from transduced primary human CD8+ T 

cells or Jurkats using Norgen’s Total RNA Purification Plus Kit. Reverse transcription was 

carried out by inputting an equal mass of mRNA for each sample into a 10 μL SuperScript 

Vilo cDNA Synthesis reaction. 2.0 μL of cDNA was used per PCR reaction with Perfecta 

SYBR Green Fastmix (Quanta BioSciences, 95072) using the CFX96 Real-Time PCR 

Detection System (Bio-Rad). All primers were designed to be highly specific using NCBI’s 

primer blast tool and amplicon products were verified by melt curve analysis. All qRT-

qPCR are presented as log2 fold change in RNA normalized to GAPDH expression unless 

otherwise indicated. Primers used in this study can be found in Supplementary Table 5.  
 
Characterization of TF Hits Using scRNA-seq. All 32 gRNA hits (as defined by a Padj 

< 0.05) from the CRISPRi/a screens and 8 non-targeting gRNAs were selected for 

scRNA-seq characterization. This 40-gRNA library (Supplementary Table 3) was cloned 

into the all-in-one CRISPRi and CRISPRa lentiviral plasmids. The experimental timeline 

for the scRNA-seq screens was identical to the cell sorting-based screens. CD8+CCR7+ 

T cells from three donors were transduced with CRISPRi and CRISPRa mini-TF gRNA 

libraries. T cells were expanded for 10 days and then stained and sorted for Thy1.1+ cells. 

Sorted cells were loaded into the Chromium X for a targeted recovery of 2 x 104 cells per 

donor and treatment according to the Single Cell 5’-High-Throughput (HT) Reagent Kit v2 

protocol (10x Genomics). SaCas9 gRNA sequences were captured by spiking in 2 μM of 

a custom primer into the reverse transcription master mix, as previously done for SpCas9 

gRNA capture44. The custom primer was designed to bind to the constant region of 

SaCas9’s gRNA scaffold. 5’-Gene Expression (GEX) and gRNA libraries were separated 

using double-sided SPRI selection in the initial cDNA clean up step. 5’-GEX libraries were 

constructed according to manufacturer’s protocol.  gRNA libraries were constructed using 
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two sequential PCRs (PCR 1: 10 cycles, PCR 2: 25 cycles). The PCR 1 product was 

purified using double-sided SPRI selection at 0.6x and 2x. 20% of the purified PCR 1 

product was input into PCR 2. The PCR2 product was purified using double-sided SPRI 

selection at 0.6x and 1x. All libraries were run on a High Sensitivity D1000 tape to 

measure the average amplicon size and quantified using Qubit’s dsDNA High Sensitivity 

assay. Libraries were individually diluted to 20 nM, pooled together at desired ratios, and 

sequenced on an Illumina NovaSeq S4 Full Flow Cell (200 cycles) with the following read 

allocation: Read 1 = 26, i7 index = 10, Read 2 = 90. All oligos used in this study can be 

found in Supplementary Table 5.  

 

Processing and Analyzing scRNA-seq. CellRanger v6.0.1 was used to process, 

demultiplex, and generate UMI counts for each transcript and gRNA per cell barcode. 

UMI counts tables were extracted and used for subsequent analyses in R using the 

Seurat75 v4.1.0 package. Low quality cells with < 200 detected genes, > 20% 

mitochondrial reads, or < 5% ribosomal reads were discarded. DoubletFinder76 was used 

to identify and remove predicted doublets. All remaining high-quality cells across donors 

for each treatment (CRISPRi or CRISPRa) were aggregated for further analyses. gRNAs 

were assigned to cells if they met the threshold (gRNA UMI > 4). Cells were then grouped 

based on gRNA identity. For differential gene expression analysis, we compared the 

transcriptomic profiles of cells sharing a gRNA to cells with only non-targeting gRNAs 

using Seurat’s FindMarkers function to test for differentially expressed genes (DEGs) with 

the hurdle model implemented in MAST. All significant gRNA-to-gene links can be found 

in Supplementary Table 3. Upregulated DEGs were input into EnrichR’s GO Biological 

Process 2021 database77 for functional annotation.  

 

RNA-sequencing with BATF3 Overexpression. CD8+ T cells were transduced with 

lentivirus encoding for BATF3-2A-GFP or GFP and expanded for 10 days. On day 10, 4 

x 105 GFP+ T cells were sorted for subsequent RNA isolation using Norgen’s Total RNA 

Purification Plus Kit. RNA was submitted to Azenta (formerly Genewiz) for standard RNA-

seq with polyA selection. Reads were first trimmed using Trimmomatic78 v0.32 to remove 

adapters and then aligned to GRCh38 using STAR v2.4.1a aligner. Gene counts were 
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obtained with featureCounts79 from the subread package (version 1.4.6-p4) using the 

comprehensive gene annotation in Gencode v22. Differential expression analysis was 

determined with DESeq274 where gene counts are fitted into a negative binomial 

generalized linear model (GLM) and a Wald test determines significant DEGs (Padj < 

0.01). All DEGs can be found in Supplementary Table 4.  Upregulated and downregulated 

DEGs were input into EnrichR’s GO Biological Processes 2021 database for functional 

annotation. 

 
Single cell RNA-seq analysis of CD19 CAR T cell infusion product for responders 
and non-responders. scRNA-seq data of the infused CD19 CAR T cell products from 

patients treated with tisagenlecleucel49 were downloaded from GEO:GSE197268. Patient 

data in MarketMatrix format were classified as responders (R) and non-responders (NR) 

and processed with Seurat80 4.2.0. For each patient, cells with fewer than 20% 

mitochondrial UMI counts, more than 20 gene expression (GEX) UMI counts, and in the 

bottom 95th percentile of GEX UMI counts were selected. GEX UMI counts were log-

normalized for further analysis. Individual patient data were merged (merge function in 

Seurat) into a combined Seurat object, preserving the group identity in the cellular 

barcodes. GEX UMI counts were linearly scaled and centered (ScaleData function with 

default parameters) before finding the most differentially expressed genes (Seurat 

FindVariableFeatures) using principal component analysis (PCA). Clustering was 

performed using the first 10 principal components to identify and select CD8+ T cells for 

subsequent analyses. MAST was used to identify differentially expressed genes between 

CD8+ T cells from responders and non-responders. All DEGs between responders and 

non-responders can be found in Supplementary Table 4.  
 

ATAC-seq. 5 x 104 transduced CD8+ T cells were sorted for Omni ATAC-seq as 

previously described81. Libraries were sequenced on an Illumina NextSeq 2000 with 

paired-end 50bp reads. Read quality was assessed with FastQC and adapters were 

trimmed with Trimmomatic78. Trimmed reads were aligned to the Hg38 reference genome 

using Bowtie82 (v1.0.0) using parameters -v 2 --best --strata -m 1. Reads mapping to the 

ENCODE hg38 blacklisted regions were removed using bedtools283 intersect (v2.25.0). 
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Duplicate reads were excluded using Picard MarkDuplicates (v1.130; 

http://broadinstitute.github.io/picard/). Count per million normalized bigWig files were 

generated for visualization using deeptools bamCoverage84 (v3.0.1). Peak calling was 

performed using MACS2 narrowPeak85 and filtered for Padj ≤ 0.001. Peak calls were 

merged across samples to make a union-peak set.  A count matrix containing the number 

of reads in peaks for each sample was generated using featureCounts79 (subread v1.4.6) 

and used for differential analysis in DESeq274 (v.1.36). ChIPSeeker86 was used to 

annotate the genomic regions and retrieve the nearest gene around each peak.  

 
In Vitro Tumor Killing Assay. CD8+ T cells were transduced with lentiviruses encoding 

for a HER2-CAR-mCherry at 24 hours post-activation and BATF3-2A-GFP or GFP at 48 

hours post-activation. After 12 days of expansion, CAR+GFP+ T cells were sorted and 

counted for the co-culture assay. Four hours before starting the co-culture, 2 x 105 HER2+ 

SKBR3s were plated in a 24 well plate with cDMEM to allow the SKBR3s to adhere to the 

plate. After four hours, cDMEM was discarded and mCherry+GFP+ T cells in cPRIME 

media were added at the indicated effector to target (E:T) cell ratios. After 24 hours of co-

culture, the cells were harvested by collecting the supernatant (containing T cells and 

dead tumor cells) and adherent cells (which were detached from the plate using trypsin). 

Cells were spun down at 600xg for 5 min and then stained with a fixable viability dye 

(FVD) and Annexin V to label dead and apoptotic cells according to manufacturer’s 

protocol. Stained cells were analyzed using flow cytometry. The percentage of viable 

tumor cells was quantified using the following strict gating strategy. First, T cells were 

excluded based on cell size and GFP signal. Next, a gate was set around the double 

negative (FVD-, Annexin V-) fraction containing viable tumor cells and cellular debris. 

Visualizing these events on SSC vs. FSC, a gate was set to encompass events located 

in the bottom left quadrant. This gate was then inverted to exclude debris from the viability 

calculation and moved immediately beneath the T cell exclusion gate on the gating 

hierarchy. Tumor viability was reported using the percentage of tumor cells in the final 

double negative (FVD-, Annexin V-) gate.  
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CD3/CD28 and Tumor Repeat Stimulations. For repeated rounds of CD3/CD28 

dynabead stimulation, CD3/CD28 beads were removed, cells were counted, replated at 

1-2.5 x 105 T cells, and restimulated with new CD3/CD28 beads at a 3:1 bead to cell ratio 

in a 24 well plate every 3 days. On day 12, cells were stained and analyzed for expression 

of exhaustion-associated markers using flow cytometry. For repeated rounds of tumor 

stimulation, 1 x 105 HER2 CAR T cells were transferred to a new 24 well plate with 2 x 

105 SKBR3s for a 1:2 E:T ratio every 3 days. T cells were recovered without antigen 

stimulation for two days after the final round of tumor stimulation before ATAC-seq on day 

14. For both modes of chronic stimulation, T cells were restimulated on days 3, 6, and 9.  

 

Mice. All experiments involving animals were conducted with strict adherence to the 

guidelines for the care and use of laboratory animals of the National Institutes of Health 

(NIH). All experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Duke University (protocol number A130-22-07). 6–8-week-old 

female immunodeficient NOD/SCID gamma (NSG) mice were obtained from Jackson 

Laboratory and then housed and handled in pathogen-free conditions. 

 
In Vivo Tumor Model. 2.5 x 106 HCC1954 cells were implanted orthotopically into the 

mammary fat pad of NSG mice in 100 μL 50:50 (v:v) PBS:Matrigel. T cells were expanded 

for 9-11 days post-transduction before treatment. Transduction rates were measured on 

the day of treatment using flow cytometry. For all in vivo experiments, transduction rates 

exceeded 70% for both HER2-CAR-2A-GFP and HER2-CAR-2A-BATF3 constructs. T 

cells were resuspended at 50 x 106 CAR+ cells mL-1 in 1x PBS and serially diluted to the 

appropriate cell concentrations for 200 μL injections of either 10 x 106, 2 x 106, 5 x 105, 

2.5 x 105, or 1 x 105 HER2 CAR+ T cells. 20-21 days after tumor implantation, and 

immediately prior to CAR T cell injections, mice were randomized into groups and tumors 

measured. Tumor volumes were calculated based on caliper measurements using the 

formula volume: = ½ (Length × Width2).  CAR T cells were injected intravenously by tail 

vein injection. Tumors were measured every 4-6 days. 
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Flow cytometry analysis of input and tumor infiltrating CAR T cells. Mice bearing 

HCC1954 tumors were euthanized at days 3 and 19 post CAR T cell delivery under deep 

isoflurane anesthesia via exsanguination, from which blood was collected. Blood was 

processed via RBC lysis buffer (Sigma) treatment followed by washing in PBS. Tumors 

were resected, minced, and incubated in RPMI-1640 medium (Gibco) for 45 minutes in 

100µg/ml Liberase-TM (Sigma-Aldrich) and 10µg/ml DNAse I (Roche). Single cell 

suspensions for blood and tumor were filtered through a 70mm cell strainer (Olympus 

Plastics), washed in PBS (Gibco), stained with Zombie NIR (1:250, Biolegend), washed 

in FACs buffer [2% FBS (Sigma) + PBS], and treated with 1:50 Mouse Tru-stain Fc block 

(Biolegend). Cells were then stained for cell surface markers followed by intracellular 

staining using the Transcription Factor Staining Buffer Set (Invitrogen) per manufacturer’s 

instructions.  Fluorophore conjugated antibodies against the following antigens were used 

for input and day 3 cells (All Biolegend unless otherwise noted): panel 1: myc-APC (Cell 

Signaling Technologies), CD3-BUV737 and CD8-BUV395 (BD Biosciences), TIGIT- 

BV605, LAG3-BV786, CD127-PERCPCy5.5, PD1-BV711, Tim3-PECy5, GranzymeB-

PECy7, TCF1-BV421, Ki67-BV510, and IFN-g; panel 2: myc-APC, CD3-BUV737, CD8-

BUV395, CD39-PECF594, CD56-BV605, CD45RO-BV786, CD45RA-PEcy5, CD28-

PECy7, CCR7-BV711, CD62L-BV510, CTLA4-BV421, Tbet-PERCPCy5.5, EOMEs-PE. 

For day 19 post CAR T cell delivery analyses anti-human CD45-FITC (Biolegend) staining 

was added to the above panels to increase sensitivity of CAR T cell detection, as we 

anticipated reduction in numbers, and the following additional panel was added against 

the following antigens: CD45-FITC, myc-APC, CD3-BUV737, CD8-BUV395, LAG3-

BV786, TIM3-PECy5, CXCR3-BV711, CD4-BV510, TNF-BV605, ID2-PECy7, GATA3-

BV421, IRF4-PERCPCy5.5, ID3-PE. All data were collected on a Fortessa X 20 (Duke 

Cancer Institute Flow Cytometry Core) and analyzed using Flow Jo V10.8.1. Blood/tumor 

from sham infused mice and fluorescence minus one controls were used to guide gating 

for CAR T cells and to confirm appropriate compensation, respectively.  

 

TFome CRISPRko gRNA library construction. The Brunello genome wide knockout31 

library was subset for 1,612 TFs58 and IL7R. 550 non-targeting gRNAs were included in 
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the library for a total of 7,000 gRNAs (Supplementary Table S6). This gRNA library was 

cloned into SpCas9 gRNA lentiviral plasmids with either mCherry or BATF3.  

 

TFome CRISPRko screens and validations. 20 x 106 CD8+ T cells from two donors 

were activated with CD3/CD28 dynabeads at a 1:1 ratio. At 24 hours post-activation, 

CD8+ T cells were split evenly and transduced in parallel with TFome CRISPRko gRNA 

libraries with mCherry or BATF3. At 48 hours post-activation, cells were electroporated 

with Cas9 protein. Briefly, the cells were collected, spun down at 90xg for 10 minutes, 

resuspended in 100µL of Lonza P3 Primary Cell buffer with 3.2 µg Cas9 per 106 cells, 

and electroporated with the pulse code EH115. After electroporation, warm media was 

immediately added to each cuvette and cells were recovered at 37C for 20 minutes before 

being transferred into a 6-well plate. On day 3 post transduction, cells were selected with 

2 µg/mL of puromycin for 3 days. On day 9 post transduction, cells were stained for CD8, 

IL7R, and a viability dye. Viable CD8+ T cells in the lower and upper 10% tails of IL7R 

expression were sorted for subsequent gRNA library construction and sequencing. All 

replicates were maintained and sorted at a minimum of 75x coverage. Subsequent 

individual gRNA validations were scaled down to 3.5 x 105 cells per electroporation in an 

8-well cuvette strip, but otherwise followed the same protocol and timeline as the 

CRISPRko screens.   

 

TFome CRISPRko screen analyses. gRNA enrichment was performed using DESeq2 

as explained above. Gene level enrichment was performed using the MAGeCK87 test 

module with --paired and --control sgrna parameters, pairing samples by donors and non-

targeting gRNAs as control, respectively.  

 
Statistics. Statistical details for all experiments can be found in the figure legends. ns = 

not significant, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. 
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Figure Legends. 
Figure 1. Compact and efficient dSaCas9 epigenome editors for targeted gene 
silencing and activation.  
(A) Schematic of all-in-one lentiviral plasmid encoding for dSaCas9KRAB and a gRNA 

cassette. 

(B) Schematic of CD2 and B2M promoter tiling CRISPRi screens in human CD8+ T cells.   

(C) Volcano plot of significance (Padj) versus fold change in gRNA abundance between 

CD2-high and CD2-low populations for the CD2 CRISPRi screen. Blue data points 

indicate CD2 gRNA hits with a Padj < 0.05 or log2(fc) < -1. Black data points indicate non-

significant CD2 gRNAs and gray data points indicate the 250 non-targeting (NT) gRNAs.   

(D) CD2 gRNA fold change versus gRNA position relative to the transcriptional start site 

(TSS). Dashed lines represent the previously defined optimal window32 (-50 to +300 bp 

of TSS) for CRISPRi.  

(E) CD2 gRNA fold change as a function of the final base pair of the PAM (5’-NNGRRN-

3’). x represents the number of gRNA hits and y represents the total number of gRNAs in 

the library for each PAM variant.  A one-way ANOVA with Dunnett’s post hoc test was 

used to compare the average fold change of gRNAs for each PAM variant to NNGRRT (* 

< 0.05 denotes that the fold change of gRNAs targeting NNGRRT PAMs was significantly 

different than all other PAM variants).  

(F) Validation of CD2 gRNA hits. Percentage of CD2 positive cells on day 9 post-

transduction plotted in rank order based on the mean gRNA activity (n = 3 replicates of 

CD8+ T cells from pooled PBMC donors, error bars represent SEM). A one-way ANOVA 

with Dunnett’s post hoc test was used to compare the mean percentage of CD2 positive 

cells for each gRNA to NT. The final base pair of the PAM for each gRNA is indicated 

beneath the gRNA label.  

(G) Relationship between CD2 gRNA activity and fold enrichment in screen. Relative CD2 

mean fluorescent intensity (MFI) was calculating by normalizing the MFI of each gRNA to 

the MFI of the NT population. Pearson’s correlation coefficient (r) is indicated in the upper 

left.  
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Volcano plots of significance (Padj) versus fold change in gRNA abundance between 

IL2RA-high and IL2RA-low populations for the IL2RA CRISPRa Jurkat screens (n = 3 

replicates) with (H) dSaCas9VP64 and (I) VP64dSaCas9VP64. Yellow and purple data points 

indicate respective gRNA hits (Padj < 10-5). Black data points indicate non-significant 

IL2RA gRNAs and gray data points indicate the 94 NT gRNAs.   

(J) Normalized IL2RA MFI of dSaCas9VP64 and VP64dSaCas9VP64 Jurkat lines transduced 

with indicated gRNAs (n = 2 replicates). Each gRNA was normalized to the IL2RA MFI of 

the dSaCas9VP64 Jurkat line transduced with NT. A paired ratio t-test was used to compare 

gRNA activity between dSaCas9VP64 and VP64dSaCas9VP64 Jurkat lines. 

(K) Relative IL2RA mRNA expression of Jurkat CRISPRa lines transduced with indicated 

gRNA on day 9 post-transduction (n = 2, error bars represent SEM). A one-way ANOVA 

with Dunnett’s post hoc test was used to compare each gRNA to the NT.   
 

Figure 2. CRISPR interference and activation gene screens identify transcriptional 
and epigenetic regulators of human CD8+ T cell state.  
(A) Schematic of CRISPRi/a TF screens.   

Volcano plots of significance (Padj) versus fold change in gRNA abundance between 

CCR7-high and CCR7-low populations for the (B) CRISPRi and (C) CRISPRa screens. 

Blue data points indicate gRNA hits (Padj < 0.05) and are annotated with their target gene. 

Black and gray data points represent non-significant gRNAs and non-targeting gRNAs.  

(D) Fold change of BATF3 and BATF CRISPRa gRNA hits for each donor. Blue vertical 

lines represent BATF3 or BATF gRNAs and gray vertical lines represent the distribution 

of 120 non-targeting gRNAs.  

All (E) BATF3 and (F) BATF CRISPRa gRNAs in gRNA library relative to TSS, chromatin 

accessibility, and cCREs. Blue and black vertical lines represent gRNA hits and non-

significant gRNAs, respectively.   
 
Figure 3. Single cell RNA-sequencing characterization of gene candidates.   
Volcano plots of significance (Padj) versus average fold change of CCR7 expression for 

each gRNA compared to non-perturbed cells for (A) CRISPRi and (B) CRISPRa 

perturbations. Red and blue data points indicate gRNA hits (Padj < 0.05). Gray data points 
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indicate NT gRNAs. True positive and negative rates are displayed above each volcano 

plot.  

(C) Average fold change in target gene expression for non-targeting gRNAs and targeting 

gRNAs across CRISPRi and CRISPRa perturbations. A two-way ANOVA with Tukey’s 

post hoc test was used to compare the fold change in target gene expression between 

groups.  

(D) Dot plot depicting the average expression and percent of cells expressing target 

genes, memory markers, and effector molecules for the indicated CRISPRi perturbations. 
(E) Scatter plot of the number of differentially expressed genes (DEGs defined as Padj < 

0.01) associated with each gRNA versus the gRNA effect on the target gene for both 

CRISPRi and CRISPRa perturbations.  

(F) Correlation of the union set of DEGs between the top CRISPRi MYB gRNAs.  

(G) Correlation of the union set of DEGs between the top CRISPRa BATF3 gRNAs. 

Representative enriched pathways for the top three (H) CRISPRi and (I) CRISPRa 

gRNAs.  

 

Figure 4. BATF3 overexpression promotes specific features of memory T cells and 
counters exhaustion and cytotoxic gene signatures.  
(A) Representative histogram of IL7R expression in CD8+ T cells with or without BATF3 

overexpression on day 8 post transduction.  

(B) Summary statistics of IL7R expression with or without BATF3 overexpression (n = 3 

individual donors, paired t test was used to compare IL7R expression between groups, 

lines connect the same donor).  

(C) Differential gene expression analysis between CD8+ T cells with or without BATF3 

overexpression on day 10 post transduction. Blue data points indicate differentially 

expressed genes (DEGs, Padj < 0.01, n = 5 donors).  

(D) Selected enriched and (E) depleted biological processes from BATF3 overexpression.  

(F) Heatmap of DEGs related to T cell exhaustion, regulatory function, cytotoxicity, 

transcriptional activity, and glycolysis.  

(G) Representative histograms of exhaustion markers (TIGIT, LAG3, and TIM3) on day 

12 after acute or chronic stimulation across groups.   
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(H) Stacked bar chart with average percentage of CD8+ T cells positive for 0, 1, 2, or 3 

exhaustion markers (TIGIT, LAG3, TIM3) on day 12 after chronic stimulation across 

groups (n = 3 independent donors, error bars represent SEM). 

 

Figure 5. BATF3 OE enhances tumor control in vivo and programs a transcriptional 
signature associated with clinical response to ACT.  
(A) Tumor viability after 24 hours of co-culture with GFP CARnull, GFP CAR+, and BATF3 

OE CAR+ CD8 T cells at indicated effector to target (E:T) cell ratios (n = 3 individual 

donors, error bars represent SEM). A two-way ANOVA with Dunnett’s post hoc test was 

used to compare tumor viability between GFP+CAR+ and BATF3+CAR+ T cells at each 

E:T ratio.    

Tumor volume over time for untreated mice and mice treated with (B) 5 x 105  or (C) 2.5 

x 105 CAR T cells with or without BATF3 overexpression (n = 1 donor, 4-5 mice per 

treatment, error bars represent SEM). A two-way ANOVA was used to compare the tumor 

volumes at each time point across treatments. Tumor volumes were not statistically 

different between untreated and control CAR groups at any time point. Tumor volumes 

were significantly different between untreated and BATF3 OE CAR groups from day 31 

onward. The asterisks above the blue lines indicate significant differences in tumor 

volumes between mice treated with control and BATF3 OE CAR T cells at each time 

point.    

(D) Average percentage of CD8+ T cells within each resected, dissociated tumor on day 

3 post-treatment (n = 2 donors, 2-3 mice per donor, error bars represent SEM). A Mann-

Whitney test was used to compare the percentage of CD8+ cells between groups.  

(E-G) Ki-67, TCF1, and IFN𝛾	MFI of tumor infiltrating CAR T cells on day 3 across groups 

(n = 2 donors, 2-3 mice per donor, error bars represent SEM). Unpaired t tests were used 

to compare MFI between groups.  
(H) Average percentage and (I) total number of CD8+ T cells within each resected, 

dissociated tumor on day 19 post-treatment across groups. A Mann-Whitney test was 

used to compare the percentage and total number of CD8+ cells between the two groups. 
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(J-K) TCF1 and ID3	MFI of tumor infiltrating CAR T cells on day 19 across groups (n = 2 

donors, 1-3 mice per donor, error bars represent SEM). Unpaired t tests were used to 

compare MFI between groups. 

(L) Volcano plot of significance (Padj) versus fold change between BATF3 OE and control 

CD8+ T cells for a subset of 144 genes that were negatively (red data points) or positively 

(blue data points) associated with clinical outcome to CD19 CAR T cell treatment. The 

size of each data point corresponds to the strength of association between gene 

expression and clinical response. 
 
Figure 6. CRISPRko screens reveal co-factors of BATF3 and novel targets for 
cancer immunotherapy.  
(A) Schematic of CRISPRko screens.   

(B) z scores of gRNAs for selected genes in mCherry (left) and BATF3 (right) screens. 

Enriched gRNAs (Padj < 0.01) are labeled in red or blue for each screen. Non-targeting 

gRNAs are labeled in gray.  

(C) Each gene target in the mCherry (top) and BATF3 (bottom) screens ranked based on 

the MAGeCK robust ranking aggregation (RRA) score in both IL7RLOW (left) and IL7RHIGH 

(right) populations. Red and blue data points represent enriched genes in each screen. 

Dashed lines indicate an FDR < 0.05 cutoff.  

(D) Scatter plot of z scores for each gRNA in CRISPR-ko screens with mCherry and 

BATF3 with enriched gRNAs (Padj < 0.01) colored blue, red, or dark purple.  

(E) Average percentage IL7R+ (left) and relative IL7R MFI (right) in CD8+ T cells with 

mCherry or BATF3 across gRNAs. Relative IL7R MFI was calculated by dividing the IL7R 

MFI of each targeting gRNA by the IL7R MFI of the non-targeting gRNA for each donor 

within the treatment group (n = 3 donors, error bars represent SEM).  

(F) Representative histograms of IL7R expression in CD8+ T cells with BATF3 

overexpression in combination with JUNB or IRF4 gene knockouts.  

(G) Individual and combined effects of ZNF217 knockout and BATF3 overexpression on 

the percentage of IL7R+ cells (n =3 donors, error bars represent SEM). A one-way, paired 

ANOVA test with Tukey’s post hoc test was used to compare the mean percentage of 

IL7R+ cells between groups.  
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