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Abstract

Motivation: Today, we know the function of only a small fraction of the protein sequences predicted
from genomic data. This problem is even more salient for bacteria, which represent some of the most
phylogenetically and metabolically diverse taxa on Earth. This low rate of bacterial gene annotation
is compounded by the fact that most function prediction algorithms have focused on eukaryotes, and
conventional annotation approaches rely on the presence of similar sequences in existing databases.
However, often there are no such sequences for novel bacterial proteins. Thus, we need improved gene
function prediction methods tailored for prokaryotes. Recently, transformer-based language models -
adopted from the natural language processing field - have been used to obtain new representations of
proteins, to replace amino acid sequences. These representations, referred to as protein embeddings,
have shown promise for improving annotation of eukaryotes, but there have been only limited applications
on bacterial genomes.
Results: To predict gene functions in bacteria, we developed SAP, a novel synteny-aware gene function
prediction tool based on protein embeddings from state-of-the-art protein language models. SAP also
leverages the unique operon structure of bacteria through conserved synteny. SAP outperformed both
conventional sequence-based annotation methods and state-of-the-art methods on multiple bacterial
species, including for distant homolog detection, where the sequence similarity to the proteins in the
training set was as low as 40%. Using SAP to identify gene functions across diverse enterococci, of which
some species are major clinical threats, we identified 11 previously unrecognized putative novel toxins,
with potential significance to human and animal health.
Availability: https://github.com/AbeelLab/sap
Contact: t.abeel@tudelft.nl
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
With increasing volumes of sequencing data from high-throughput
technologies, the observed diversity of protein sequences is increasing
faster than our knowledge of its functional significance. Given costs and the
inability to scale experimental and other manual approaches for function
prediction, computational approaches have a critical role in deciphering
functional diversity. Most state-of-the-art protein function prediction
methods have focused on annotation of eukaryotic proteins, leaving a gap
in our understanding of the vast landscape of protein diversity among

the bacterial domain, representing some of the most phylogenetically and
metabolically diverse taxa.

Conventional approaches to predicting gene function rely on sequence
homology. Initial methods employed sequence search tools such as BLAST
or DIAMOND to query a database of known protein sequences and their
functions (Altschul et al., 1990; Buchfink et al., 2021). While useful,
these methods are limited by the completeness (i.e., lack of homologs)
and fidelity (i.e., inclusion of annotation errors) of the databases they use.
Furthermore, it is often difficult to determine a proper threshold to transfer
gene function, resulting in low sensitivity and specificity (Zhou et al.,
2019). With increasing volumes of data, machine learning techniques for
function prediction have been explored, including using features derived
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from the sequence of interest in supervised machine learning models,
such as multilayer perceptrons, support vector machines, and k-nearest
neighbor (knn) algorithms (Jensen et al., 2003; Törönen et al., 2018). In
the most recent Critical Assessment of Functional Annotation (CAFA), a
challenge established to evaluate the state-of-the-art in automated function
prediction, GOLabeler was the top performing method for predicting
molecular function ontologies Zhou et al. (2019) (Zhou et al. 2019)
by integrating sequence alignments, domain and motif information, and
biophysical properties of protein sequences to predict gene function (You
et al., 2018).

More recently, deep learning methods that leverage ideas from natural
language processing (NLP) have gained attention for gene function
prediction. Deep learning-based protein language models were recently
used to extract embedding vectors for protein sequences that are analogous
to word embeddings (Heinzinger et al., 2019; Elnaggar et al., 2020; Rives
et al., 2021). These embedding vectors, representing protein sequences,
capture the core properties of protein sequences beyond the primary
structure, in a way that is context and species agnostic, but relevant to their
function in the cell, which makes them particularly useful for understudied
organisms Hoarfrost et al. (2022). Contextualized word embeddings have
already been demonstrated to be successful for predicting GO terms as well
as the structure and localization prediction, and refining protein family
clusters (Littmann et al., 2021; van den Bent et al., 2021).

Compared to eukaryotes (Odrzywolek et al., 2022), much less has been
done to apply NLP-based methods to bacterial function prediction. In a
recent CAFA challenge, the competing methods consistently performed
worse on bacteria than the eukaryotes, suggesting that there is room
for improvement. Furthermore, the prokaryotic track was heavily biased
toward a single, well-studied bacterial species, E. coli (Zhou et al., 2019),
pointing to a need to test methodologies on diverse bacteria. Given the vast
diversity of functional repertoire in bacterial organisms, remote homology
detection is of utmost importance.

Many functionally related bacterial genes are encoded in operons, co-
located clusters of genes encoded on the same strand, which are often co-
regulated and co-transcribed. Thus, the context of a gene is another means
to infer clues to its function (de Daruvar et al., 2002; Li et al., 2009), as it
is a source of functional information which is complementary to both the
amino-acid sequence and the embeddings-based representation of a gene.
Leveraging gene context and gene interactions as an additional feature was
shown to improve prediction performance on eukaryotes (Makrodimitris
et al., 2020; Yao et al., 2021). However, combining the information from
gene context with embeddings-based gene representations has not yet been
done for function prediction in prokaryotes.

We developed the Synteny-Aware function Predictor (SAP), a novel
synteny-aware approach to improve bacterial gene function prediction
based on protein embeddings and a comprehensive bacterial operon
database. To evaluate SAP, we performed extensive benchmarking using
ground truth data and automated function prediction (AFP) standard
approaches to show that SAP outperformed conventional sequence-based
bacterial genome annotation pipelines, more sophisticated HMM-based
approaches, and a state-of-the-art deep learning method when using
gene synteny conservation as additional input. As part of a real-world
application, we also demonstrated SAP’s utility to predict protein functions
in Enterococcus species, including predicting potential novel pore-forming
toxins related to the delta toxin family that could not be recognized using
linear sequence or protein domain information. SAP provides a powerful
new tool for protein function prediction in bacteria, combining state-of-
the-art NLP methods with a novel incorporation of syntenic information
for bacteria.

2 Materials and methods

2.1 Datasets

2.1.1 SwissProt data set for benchmarking
We retrieved all the manually reviewed entries from the SwissProt
Database (release 2021-04, retrieval date 10 November 2021) (The UniProt
Consortium, 2018), which was filtered to include proteins of length 40-
1000 amino acids and with at least one experimental GO annotation. We
selected the evidence codes EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA,
HMP, HGI, HEP, IBA, IBD, IKR, IRD, IC, and TAS. To reduce redundancy,
we clustered the proteins using CD-HIT (Li and Godzik, 2006) at 95%
sequence similarity. The final dataset comprised 107,818 proteins in total.

To benchmark the performance of our method for bacterial gene
function prediction, we created five benchmarking datasets from the
SwissProt proteins, one for each of the five most numerous bacterial
organisms in our final dataset (Table 1). Each organism’s dataset was split
into training and test sets. We also divided the full training set in different
ways to create five sets where the sequence similarity (calculated using
BLASTp (Altschul et al., 1990) of test to training set proteins was at most
40%, 50%, 60%, 70% and 80%. This resulted in a total of 30 benchmarking
sets (Table 1).

2.1.2 Enterococcus diversity dataset
We applied SAP to a set of 61,746 proteins with no experimental
annotations, representing the entire protein content of 19 different
Enterococcus species, spanning four Enterococcus clades (Lebreton
et al., 2017) (Supplementary Table S5). This collection of genomes is
representative of Enterococcus genomic diversity, hence we refer to it
as the Enterococcus diversity dataset. Full assemblies were downloaded
from the Assembly Database in NCBI (National Library of Medicine (US),
1988).

2.2 Building the bacterial operon database, SAPdb

In order to establish a comprehensive, broad compilation of putative
conserved bacterial operons in SAPdb to use as a resource for our
function prediction tool, we started with the 45,555 representative genomes
from the Genome Taxonomy Database (GTDB Release 202, retrieved on
31/03/2022) (Parks et al., 2021). We extracted all protein sequences from
the standardized GTDB annotations and clustered them using CD-HIT
(Li and Godzik, 2006) at 95% sequence identity with default parameters,
keeping only the clusters that contained at least 10 genes, resulting in
372,308 clusters of bacterial proteins. Next, we identified operons by
grouping together clusters if at least one of the cluster members was located
on the same contig and same strand, within 2000 bp (Fig. 1A). This yielded
1,488,249 non-singleton candidate operons. Finally, we removed those
with an intergenic distance larger than 300 bp, or split them into multiple
operons if possible (Fig. 1B). At the end of this procedure, SAPdb consisted
of 406,293 unique non-singleton operons, and the largest operon was 25
genes long.

We used experimentally determined operons collected in the Operon
DataBase (ODB v4) (Okuda and Yoshizawa, 2010) to help determine
threshold values used when building SAPdb, and to validate SAPdb. We
downloaded both the ODB known and ODB conserved operon databases
on 31/03/2022. We identified operons in ODB belonging to E. coli and
B. subtilis, as (i) these two organisms form the basis of a large part of the
benchmarking of SAP, (ii) we could cross-reference the protein IDs in ODB
to the locus tags in their respective genome assemblies, and (iii) they are
two of the most well-represented organisms in ODB. The ODB conserved
operon database contained 8235 unique operons, from which we extracted
descriptive statistics and common patterns found across several operons
conserved among bacterial organisms. The ODB known operon database
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Table 1. Total number of proteins in the benchmarking sets generated from the SwissProt dataset to evaluate function prediction tools on bacterial organisms. For
each organism, the test set remained constant, whereas the training set was restricted according to the maximum sequence similarity allowed between the test and
training sets.

Organism name
# proteins in
the test set

# proteins in the training set1

40% 50% 60% 70% 80% Full

Escherichia coli (EC) 3454 87014 96471 100445 102262 103229 104377
Mycobacterium tuberculosis (MT) 1666 95367 102531 105158 105917 106114 106152

Bacillus subtilis (BS) 1636 93363 101112 104325 105609 106015 106182
Pseudomonas aeruginosa (PA) 1014 94679 101338 104644 106186 106680 106804
Salmonella typhimurium (ST) 774 100928 104164 105384 105980 106340 107044

1The maximum sequence similarity between the training and test sets is stated for the first five pairs, and the "Full" column on the far right corresponds
to the case where the maximum similarity is 95% to avoid redundancy.

was used to model operon features and determine thresholds, such as an
operon length, number of genes in an operon, and the maximum intergenic
distance between adjacent genes in an operon.

To summarize each SAPdb operon, we extracted the protein embedding
vectors for the representative protein sequence of clusters found in that
operon. We used ESM-1b, a transformer-based protein language model
(Rives et al., 2021) to extract the embeddings, and we took the average
of these embeddings to obtain one embeddings vector per operon (Fig.
1C). Then, we annotated the operons in SAPdb by assigning GO terms,
if possible. Since we did not have experimental annotations, we labeled
operons based on sequence similarity. We used BLASTp (Altschul et al.,
1990) to calculate pairwise sequence similarity between proteins in SAPdb
operons and the non-redundant SwissProt database with experimentally
determined GO terms (all 107,818 entries). We transferred GO terms found
in significant hits (e-value < 1e-6 and bit score > 50) using the frequency
of each GO term among these hits as a predicted score. With this approach,
we could assign at least one GO term to 295,446 of the 372,308 clusters
of bacterial proteins (79%), which in turn yielded 388,377 non-singleton
operons (out of 406,293; 96%) annotated with at least one GO term (Table
S2).

In order to keep our operon database consistent with our benchmarking
datasets, where we evaluated SAP on training subsets with differing
sequence similarity to the proteins in the test set, we generated
corresponding subsets of SAPdb with matching sequence similarity
thresholds. We followed the same procedure as we did to generate subsets
of the SwissProt training sets with different sequence similarity thresholds:
we used BLAST to calculate the pairwise sequence identity of each query
protein to the protein clusters that form our main operon database. We
removed clusters if they were more than 40%, 50%, 60%, 70%, 80% and
95% similar to at least one of the query proteins in the test set. Since
this operation removed or altered the content of operons, we re-calculated
the intergenic distances for the remaining clusters and again split operons
where the intergenic distance exceeded our 300bp threshold, as we did
when we created the main operon database (Fig. 1B-C).

2.3 Comparison to published function prediction methods

2.3.1 Comparison to broadly used function prediction methods as
baseline

In our SwissProt benchmarks, we compared SAP to two conventional
function predictors: i) BLAST (v. 2.12.0) (Altschul et al., 1990), a
standard sequence homology-based predictor used widely in the literature
for comparisons, and ii) an HMM-based approach, which serves as a more
sophisticated baseline.

To predict function using the BLAST baseline, we transferred GO
terms from significant BLAST hits (e-value < 1e-3) of a query protein
with a predicted score of the value of the maximum sequence identity.

As an alternative, we also used the GO term frequency-based approach
(Zhou et al., 2019; van den Bent et al., 2021), but we found the maximum
sequence identity scoring method performed better in our experiments.

To predict function using the HMM-based approach, we ran HMMER
(Eddy, 2011) against the Pfam database and applied the frequency-based
approach to score transferred annotations, i.e. we transferred GO terms
from all significant HMM hits (e-value < 1e-3) to the query protein, using
the frequency of a GO term (number of instances a term was observed
among the significant hits) as the predicted score. To compare Pfam outputs
quantitatively with the rest of the methods, we used the mapping tables
provided by the GO consortium to obtain GO terms corresponding to each
Pfam ID (Ashburner et al., 2000). Since the Pfam database is independent
of the train/test pairs we generated for our experiments, we report the same
numerical results for all pairs.

2.3.2 Comparison to current state-of-the-art tools based on deep
learning methods

We also compared SAP to two newer tools based on deep learning methods.
We first opted for a simple, unsupervised approach (which we will call
the knn approach). We used the ProtT5-XL-U50 (which we will call T5)
(Elnaggar et al., 2020) and ESM-1b (which we will call ESM) (Rives
et al., 2021) protein language models to represent protein sequences. To
extract amino-acid level embedding vectors, we usedbio_embeddings
(v 0.2.2) (Dallago et al., 2021) with default settings. Then, we obtained
protein-level embeddings (1024 dimensional vectors for T5 and 1280 for
ESM) by taking the average over individual amino acid embeddings to
obtain embedding representation vectors. In preliminary experiments and
our current benchmark study, we found that the embeddings extracted
from the ESM model performed better; thus we use only the ESM model
throughout this work.

In order to transfer annotations using these embeddings, we used a
nearest neighbor predictor (named knn), which was designed in a similar
manner to goPredSim (Littmann et al., 2021). For each query protein, we
identify nearest neighbors in the training set based on embedding vector
similarity over a given threshold, which we calculate separately for each
query as the xth percentile among all pairwise similarity values, where x

parameter is set to 99 percentile. We transfer GO terms from the nearest
neighbors with a score equal to their cosine similarity to the query protein.
As the final prediction, we keep only the maximum score for each GO
term transferred from the nearest neighbors. Throughout this work, we use
cosine similarity to determine the similarity between any two embedding
vectors e⃗1 and e⃗2.

sim(e⃗1, e⃗2) =
e⃗1 · e⃗2

||e⃗1|| · ||e⃗2||
, (1)
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Fig. 1. Schematic diagram of method used to construct our operon database, SAPdb. Hashed boxes represent genes; solid boxes are numerical embedding vectors. A. 2000 bp-long gene
neighborhoods are extracted from all genomes in GTDB; shown is an example with four genes in a single genomic neighborhood (hashed grey boxes). B. After clustering all proteins from
GTDB with CD-HIT, we replace the genes with the CD-HIT clusters they belong to (hashed orange boxes) using the amino-acid sequence of the representative gene of each cluster in
place of their actual amino-acid sequence. Then, we trim potential operons to remove genes separated by > 300bp, resulting in final operon clusters (hashed green boxes). C. Once the final
operon structures are determined, we i) annotate each operon with a set of GO terms, for which we track the corresponding frequency among the gene clusters that make up the operon (blue
rectangles, darker shades mean GO terms are found in more genes within the operon), and ii) extract numerical embedding vectors for each operon (solid green boxes). We create a new
representation for each operon, which consists of the average embedding vector and a set of GO terms. The final operon database is a collection of such representative embedding vectors
and GO term frequency vectors; representations of six example operons are shown here.

where e⃗1 and e⃗2 are both real-valued vectors, e⃗1 · e⃗2 represents the dot
product between e⃗1 and e⃗2, and ||e⃗i|| is the Euclidean norm of vector e⃗i,
where i = 1, 2.

We chose DeepGOPlus (v 1.0.1) (Kulmanov and Hoehndorf, 2019)
as the second deep learning based competitor in our experiments.
DeepGOPlus, one of the state-of-the-art tools in the field, is a supervised
approach where a deep convolutional neural network model is combined
with a sequence homology based method. We used the DeepGOPlus
implementation provided by the authors; we trained the model on the
training sets in our experiments with the optimal values reported for the
hyperparameters (Kulmanov and Hoehndorf, 2019). We used the same
training set for both the BLAST queries and the deep learning based
methods.

2.4 SAP: Synteny-aware function prediction using protein
embeddings

SAP combines protein embeddings to represent amino-acid sequences by
leveraging conserved synteny among bacterial operons to help identify
function prediction, in two main steps (Fig. 2): (i) assigning operons to a
query from the pre-computed bacterial operon database, SAPdb (Fig. 2A)
and (ii) transferring GO terms from SAPdb operons to the query (Fig. 2B).

For each query, we identify the most suitable operons in our database
following the same procedure as we did for the nearest neighbor predictors
based on protein embeddings, and we use the ESM model to extract the
embedding vectors. In short, we calculate the pairwise cosine similarity
between the query point and the average embedding vectors representing
operons in the database. We assign an operon to the query if the pairwise
similarity between the operon embeddings and the query embeddings is
greater than a threshold, corresponding to the xth percentile among all
pairwise similarity values. In our current implementation, we do not have
any restrictions on operons assigned to a query protein: given that the
most suitable operons are picked among the same set of operons used to
calculate the threshold, at least one operon is assigned to each query point.

For all such operons assigned to the query, we also retrieve the GO term
frequencies. We transfer all the GO terms found in the assigned operons
using the frequency of the terms multiplied by the cosine similarity of the
query point to the operon as the predicted score. For each GO term, the
predicted score is the maximum of these values. As the final step in our
algorithm, we normalize the predicted scores separately within three GO
classes. In this work, SAP uses our operon database, SAPdb (Fig. 1).

In addition to using SAP as described above, we also tested running
a version of SAP which uses only the operon database (titled SAP-
operon). Evaluating these two methods side by side allows us to assess
the contribution of using our operon database on SAP’s performance. For
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GO terms
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×
×
×

Query 
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Fig. 2. Overview of SAP algorithm: predicting GO terms of a query protein. A. SAP
assigns an operon (or multiple operons) to the query protein (red filled rectangle on the left)
represented using embeddings from ESM-1b LM, based on cosine similarity. Consistent
with Fig. 1, green rectangles show operon embeddings paired with the corresponding GO
term frequencies (blue rectangles). In this example, three operons that passed the threshold
are assigned to the query, and their GO term frequencies are weighted by multiplying by the
cosine similarity. B. All GO terms from the assigned operons are transferred to the query,
where the final predicted score of a GO term is the maximum of all the multiplied values
for the term.

SAP-operon, we removed all singleton entries from the database and relied
only on those that were at least two genes long; thus, all gene predictions
will originate from the operons.

2.5 SwissProt benchmark evaluation

Using our SwissProt benchmarking datasets, we evaluate six different
protein prediction methods: two baselines (BLAST and Pfam), a nearest
neighbor predictor based on protein embeddings extracted using the
ESM-1b model (knn), SAP and its variant SAP-operon, where only the
operon component of SAP is retained, and DeepGOPlus. In order to
make the outputs of all tools comparable to those of DeepGOPlus, we
propagated the predicted GO term scores based on the GO hierarchy,
following the procedure in (Kulmanov and Hoehndorf, 2019). For each
GO term, we assigned the highest predicted score from among all its
children. This additional post-processing step was only implemented in our
benchmarking comparisons across tools, and not in our function prediction
across the Enterococcus genus.

We evaluated these function prediction methods as done for the
CAFA challenges, using the maximum F1-score (Fmax) and the minimum
semantic distance (Smin) as described in (Radivojac et al., 2013). We also
report the coverage, defined as the percentage of test proteins annotated
with at least one GO term at the threshold which maximizes the F1-score.
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Table 2. Known pore-forming toxin genes found in Enterococcus or
closely related genera. Protein structures for all but two genes have been
solved experimentally and were downloaded from PDB. For Leucotoxin and
Alveolysin, AlphaFold was used to predict their structure since they were not
found in the databases.

Gene Sequence ID1 Structure ID2 Species

Alpha-hemolysin P09616 3m3r S. aureus
Alveolysin P23564 - P. alvei
Cytolysin P19247 4owl V. vulnificus

Gamma-hemolysin
component A

P0A071 3b07 S. aureus

Gamma-hemolysin
component B

A0A0H3JX61 4p1x S. aureus

Heat-labile
enterotoxin B chain

P01558 3ziw C. perfringens

Hemolysin P09545 1xez V. cholerae
Leucotoxin LukE O54081 - S. aureus

epx1 WP_104660001.1 7t4e E. faecalis
epx4 WP_053766529.1 7t4d E. hirae

1Uniprot IDs for the first 8 rows, and NCBI protein IDs for the last two
rows.

2PDB identifiers.

2.6 Applying SAP to a diverse set of enterococcal
genomes, including detailed analysis of pore-forming
toxins

To demonstrate a practical application of SAP, we applied SAP to the
Enterococcus diversity dataset. We ran SAP in default mode on this full
set of genes, and compared the output to that from three other bacterial
gene annotation approaches: (i) the prokka annotation pipeline (v. 1.14.6)
(Seemann, 2014), which runs multiple sequence homology-based function
prediction tools; (ii) the Pfam database (release 32.0) (Paysan-Lafosse
et al., 2023) using HMMER (v 3.3.2) (Eddy, 2011); and (iii) eggNOG
mapper (v 2.1.10) (Huerta-Cepas et al., 2018; Cantalapiedra et al., 2021).
All tools were run using default parameter settings; for both HMMER and
eggNOG mapper, a significant hit was defined as having e-value < 1e-3.

When examining potential novel Enterococcus pore-forming toxins,
we performed additional analyses to assess the potential function of query
proteins without experimental annotations: (i) we performed a large-scale
structure search using the query protein against AlphaFoldDB and the
Protein Data Bank (PDB); (ii) we examined their similarity to known pore-
forming toxins found in Enterococcus or closely related genera (Table 2),
both in terms of structural similarity (using Foldseek), as well as in genomic
context; and (iii) we assessed the presence of key structural elements,
including N-terminal signal sequences, a common feature in most toxin
sequences which guides toxin secretion and transportation outside the cell.

In order to compare syntenic relationships between predicted and
known toxin genes, we examined five genes upstream and downstream
of toxin genes predicted by SAP, as well as for the known delta toxin
genes from Table 2, epx1 and epx4 (Xiong et al., 2022).

To predict the structure of potential novel toxin genes identified
by SAP, we used the Fold Sequence public server on ESMFold Atlas
(Lin et al., 2023) which only allows input sequences shorter than 400
amino acids. For longer proteins, we used AlphaFold (Jumper et al.,
2021). We ran AlphaFold in monomer mode with default settings using
the Docker implementation. We used Foldseek (van Kempen et al.,
2023) for both protein structure search against databases and structural
alignment. While the structure database search was performed with default
settings, we utilized both the global (--alignment-type 1) and local

alignment options (--alignment-type 2) of Foldseek. Following
the guidelines available for running Foldseek, we labeled alignments as
highly significant (structural alignment score > 0.7), significant (0.6 <
structural alignment score ≤ 0.7), nonrandom (0.5 < structural alignment
score ≤ 0.6) or random (structural alignment score ≤ 0.5). To account
for large differences in the query and target sequence length, we required
the alignment probability to be greater than 0.8 as well. We predicted
the N-terminal signal sequences using the SMART server (Schultz et al.,
1998).

3 Results
To improve gene function annotation for bacteria, we developed SAP,
which combines state-of-the-art protein embeddings based on NLP
algorithms with bacteria-specific information about the gene function
inferred from conserved bacterial operons. In brief, SAP represents amino
acid sequences using NLP-based embedding vectors and calculates protein
similarity using the distances between embedding vectors. Our custom-
built database, SAPdb, an extensive collection of bacterial operons and
their annotations, is used to find operons containing proteins similar to
the query. Annotations from these operons are transferred to the query,
allowing us to leverage additional functional information from similar
genomic neighborhoods in other organisms. SAP uses the ESM-1b protein
language model, together with a k-nearest neighbors (knn) framework for
transferring GO terms (Methods), which we found to be the best option
because it achieved the highest prediction scores in our benchmarks.

3.1 SAPdb: an operon database to leverage functional
information derived from syntenic relationships across
bacteria

To incorporate information about operon structure into SAP, we
constructed a large-scale database, which we named SAPdb, of over
400,000 operons predicted from > 45,000 representative genomes from
across the bacterial kingdom (Methods). We validated SAPdb by
comparison to the experimentally determined operons found in the
conserved Operon DataBase (ODB) (Okuda and Yoshizawa, 2010), a
similar online database. SAPdb is larger-scale and more up-to-date
than ODB, which is based on a smaller, curated list of experimentally
determined operons from the literature. Overall, SAPdb, is quantitatively
similar to the conserved ODB, in terms of operon length, number of genes
in an operon and intergenic distance within operons (Supplementary Fig.
S1-S3). SAPdb provides an extensive catalogue of conserved patterns of
gene synteny within the bacterial kingdom (Table S1).

3.2 SAP outperforms other tools in function prediction for
multiple bacterial species

To assess the performance of SAP in assigning GO terms to proteins,
we first performed benchmarking on the SwissProt database, where only
the proteins with at least one experimentally determined GO annotation
were retained. We then created benchmarking datasets for five different
bacterial species, dividing SwissProt entries into training and test sets,
thus simulating the real-world scenario of annotating predicted proteins
that lack exact matches to database entries.

We benchmarked SAP against four tools, including i) a baseline
BLAST method; ii) a basic HMM-based approach (HMMER); iii) a
simple, unsupervised deep learning method (knn); and iv) a state-of-
the-art deep learning method (DeepGOPlus) (Methods). We performed
benchmarking separately for three categories of GO terms, including
Biological Process (BPO), Molecular Function (MFO), and Cellular
Component (CCO), as these three categories are known to present different
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Table 3. Fmax scores from our benchmarking for six different function
prediction tools, for each of five bacterial species in our full SwissProt
benchmarking set. Fmax scores are tabulated separately for the three GO
categories, BPO, MFO and CCO. The highest Fmax score in each column is
shown in bold.

Bacterial species1

Method EC MT BS PA ST

Fmax scores for BPO

BLAST 0.570 0.543 0.639 0.683 0.852
Pfam 0.610 0.513 0.582 0.579 0.579
knn 0.646 0.636 0.828 0.797 0.880

DeepGOPlus 0.648 0.669 0.857 0.824 0.928
SAP-operon 0.872 0.837 0.915 0.928 0.903

SAP 0.876 0.838 0.915 0.929 0.902

Fmax scores for MFO

BLAST 0.613 0.593 0.625 0.699 0.814
Pfam 0.650 0.549 0.571 0.534 0.559
knn 0.675 0.723 0.814 0.854 0.837

DeepGOPlus 0.686 0.755 0.841 0.883 0.911
SAP-operon 0.880 0.869 0.893 0.938 0.878

SAP 0.885 0.869 0.893 0.938 0.877

Fmax scores for CCO

BLAST 0.569 0.397 0.638 0.700 0.871
Pfam 0.625 0.541 0.608 0.560 0.616
knn 0.731 0.500 0.898 0.900 0.917

DeepGOPlus 0.745 0.567 0.885 0.887 0.936
SAP-operon 0.920 0.847 0.943 0.945 0.918

SAP 0.922 0.847 0.943 0.945 0.917

1EC: Escherichia coli, MT : Mycobacterium tuberculosis, BS: Bacillus
subtilis, PA: Pseudomonas aeruginosa and ST : Salmonella typhimurium.

challenges for annotation (Radivojac et al., 2013). Overall, SAP achieved
the highest Fmax scores across all five bacterial species, for all three
GO categories, and on the full SwissProt benchmarking set, with S.
typhimurium being the only exception. On this species, DeepGOPlus
performed the best for BPO and MFO (Table 3). We observed similar
trends in prediction performance using Smin and the area under the
precision/recall curve (Supplementary Tables S5 and S6).

Also, when protein embeddings were used, even in a simple
unsupervised setting (such as knn), they provided a better representation of
protein sequence for GO term transfer than both the amino-acid sequence
itself (BLAST baseline) and the HMM profiles (Pfam baseline) (Table 3).
This agreed with recent studies on eukaryotes (Heinzinger et al., 2022).

3.3 SAP surpasses existing tools for detection of distant
homologs

We were particularly motivated to develop SAP to increase the number of
annotations for the very large number of novel proteins of completely
unknown function within bacteria, which occurs when a predicted
protein has no or very low homology to existing databases. To emulate
gene function prediction in such low homology instances, we designed
additional benchmarking sets where the pairs of training and test sets were
generated by stratifying the full SwissProt dataset based on the maximum
sequence similarity allowed between protein sequences in the training and
the test set.

For each of the five bacterial species, we constructed additional
benchmarking sets with five sequence similarity thresholds: 40%, 50%,

60%, 70%, and 80%, where 40% or less sequence similarity presents the
most challenging scenario for annotation. For consistency and to minimize
the chance that the operons could artificially inflate SAP’s performance,
i.e. information leak between the training and test sets, we also modified
our operon database to remove clusters homologous to the test sequences
and, for each pair of training and test sets, we rebuilt the operon database
consistent with its homology threshold. NLP-based embeddings (knn) far
outperformed both conventional predictors, BLAST and Pfam, across the
whole range of sequence similarities. As we did not observe any significant
differences between the species examined, we report the average Fmax

values and standard deviation for all five bacteria combined (BPO in Fig.
3). SAP was consistently the top-performing method. The difference in
prediction performance (as measured by Fmax) between SAP and all other
methods was greater as the sequence similarity between the test and the
training sequences (as well as the clusters in the operon database) increased
(Fig 3).

In addition, this benchmarking revealed that BLAST performance was
surprisingly consistent over different levels of shared homology while
the embeddings-based methods all showed incremental improvement in
performance as homology between the training and test sets increased.
This trend held for not only the average Fmax in the remaining two
ontologies (MFO and CCO), but also for each bacterial species individually
(Supplementary Tables S8-S12).

3.4 SAP provides more reliable predictions compared to
other methods

Among the tools in our benchmark, the BLAST and HMM-based Pfam
baselines had the lowest annotation coverage values (i.e. the number of test
genes that have at least one predicted GO term) on both the full SwissProt
dataset and the remote homology detection tests (Tables S13 and S14). SAP
emerged as the all-around top-performing method in terms of balancing
precision and recall. Furthermore, we found that its prediction coverage
was in line with other embeddings-based knn models on the full SwissProt
benchmarking, although it occasionally lagged behind the state-of-the-art
in terms of coverage on our other benchmark sets. Given that SAP achieved
the best Fmax values across the board, the drop in coverage means SAP’s
predictions are more reliable compared to other methods in our benchmark.

We did observe that SAP’s coverage decreased slightly for test sets
with lower homology to the training set (Table S14). In these low
homology tests, SAPdb is sparsely labeled due to a conservative annotation
methodology (Supplementary Text), limiting the annotations that can be
transferred based on synteny.

3.5 Applying SAP to a diverse set of enterococcal
genomes, including identification of five potential novel
pore-forming toxins

A key goal in the development of SAP was annotating novel genes
of unknown function, including those associated with key bacterial
features of clinical interest such as antimicrobial resistance and virulence.
Enterococcus is a diverse genus of bacteria thought to inhabit the
gastrointestinal tracts of all land animals. These organisms have an
incredibly diverse functional repertoire, yet many of their predicted
proteins are of unknown function (Lebreton et al., 2017; Schwartzman
et al., 2023). Uncovering this rich functional diversity is of primary interest
given the ubiquity and importance of this genus. Recent targeted searches
have reported the discovery of several classes of novel toxins within diverse
enterococcal species, including the discovery of a new family of pore-
forming delta toxins in E. faecalis, E. faecium and E. hirae (Xiong et al.,
2022) and new botulinum toxins in E. faecium (Zhang et al., 2018). All of
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Fig. 3. SAP outperformed conventional approaches to function prediction, averaged across five different bacterial species, for varying levels of protein sequence identity to the proteins in
the training set (x-axis). The error bars show the standard deviation for each method. The Fmax values for the Pfam baseline are identical for all 6 experiment sets. Because Pfam uses a
different training set, we were unable to modify the % sequence identity input. Thus, for Pfam we only plot a single value per species.

these newly discovered toxins exhibit low sequence homology to known
toxin sequences in other bacterial species.

Although the previous studies focused only on three clinically relevant
species of Enterococcus, we hypothesize that similar toxins could also
be found in other diverse, less well-studied species of Enterococcus,
providing insights into other ecologies in which these toxins may be
advantageous. Thus, to search for additional novel toxin genes across the
Enterococcus genus, we applied SAP to a collection of 19 Enterococcus
genomes, each representing a different species (Lebreton et al., 2017),
including 16 species not examined by Xiong et al. or Zhang et al.. We
looked specifically for genes that were labeled with a GO term describing
toxin activity and associated with the conserved genomic context of delta
toxins (Xiong et al., 2022). SAP associated 59 genes with the single delta
toxin operon from SAPdb, consisting of an enterotoxin and a putative
lipoprotein cluster, found in the unrelated Clostridium and Roseburia
species (Table S4). Of these 59 genes, 6 were predicted by Pfam to be
pore-forming toxins (e-value < 1e-3 to PF01117 or PF03318), and 3 were
annotated by Prokka as “lipoproteins” (Methods). The remaining 50 had
no functional prediction prior to running SAP.

To explore their candidacy as delta toxin encoding, we evaluated each
gene’s predicted protein structure and genomic context. Eleven (of 59) had
structural similarity to known toxin structural folds (Foldseek alignment
probability > 0.8 and alignment score > 0.5 to proteins in the AlphaFold and
the Protein Data Bank (PDB) structure databases), including several with
highly significant alignments (Table 2; Fig. 4). Of these eleven, five were
not previously identified as having a toxin annotation by either Prokka or
Pfam - these were detected only by SAP. All 11 of these genes contained
signal peptides at similar positions as those in known bacterial toxins.
The remaining 48 proteins without structural similarity had lower SAPdb
rankings than the 11 with structural similarity (Supplementary Text).

We compared the genomic context of the 11 candidate toxins identified
by SAP to the known pore-forming delta toxin genes previously reported in
Enterococcus, epx1 and epx4, and their neighborhoods (Xiong et al., 2022).
Seven of the 11 candidate toxin genes were most similar to epx1 structures
from E. faecalis and S. aureus, including five from E. haemoperoxidus
BAA-382, and two from E. pernyi ATCC882. All had surrounding genes

with some degree of structural similarity to genes within the known epx1
genomic neighborhood, including two with highly significant matches
(Fig. 4A). Among the 5 putative toxin genes, the highest amino acid
sequence identity to epx1 was less than 40% (Supplementary Table S15).
Furthermore, the gene neighborhood was conserved between the five
candidates from E. haemoperoxidus BAA-382 (Fig. 4).

Four of the 11 candidate toxin genes were most similar to the
E. hirae epx4 structure, including one gene from E. haemoperoxidus
and three genes from E. moraviensis BAA-383 (Fig. 4B). Among the
four putative epx4 genes, the maximum amino acid sequence similarity
we observed to epx4 was 60% (Supplementary Table S15). Similar
to the epx1 context, we observed that the neighboring genes of the
new epx4-like toxins predicted by SAP were structurally similar to one
another. Although some of the neighboring genes had lower Foldseek
similarity scores, the neighborhoods had nonrandom similarity among
themselves (scores ranging from 0.4 to 0.9). Thus, SAP detected novel
toxins, found in a conserved genomic context, that other tools could not
identify. The combination of structural similarity with commonalities in
the genomic neighborhood makes these genes interesting targets for further
experimental validation.

4 Discussion
In this work, we introduce SAP, a novel synteny-aware, NLP-based
function prediction tool for bacteria. SAP is distinguished from existing
tools for annotating bacteria in two ways: (i) it represents proteins
using embedding vectors extracted from state-of-the-art protein language
models, and (ii) it incorporates additional functional information inferred
from a protein’s genomic neighborhood, by leveraging conserved synteny
across the entire bacterial kingdom, tabulated in our operon database
SAPdb. To our knowledge, SAP is the only bacterial gene function
prediction tool with these two features.

While there have been several successful uses of protein language
models for protein function prediction in eukaryotes, these methods have
not yet been extensively applied to bacterial organisms (Littmann et al.,
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Fig. 4. SAP predicts 11 likely novel toxin genes in our Enterococcus dataset (aligned below the column titled “Predicted toxin gene”), including five that could not be predicted by previous
function prediction methods (red frames). A) seven genes with the highest similarity to E. faecalis epx1. These genes also shared some similarity in genomic context with epx1. B) four
genes with the highest similarity to E. hirae epx4. These genes also shared some similarity in genomic context with epx4. The operon diagrams show the known genomic contexts of epx1
and exp4 found in E. faecalis and E. hirae species that were studied, respectively (Xiong et al., 2022). Beneath this, cells in the table represent the occurrence of genes with structural
similarity to those in the known epx1 or epx4 operons. Their relative position within the operon in reference to the predicted toxin gene (# of genes away from the predicted toxin) and
structural alignment score (coloring) obtained using Foldseek to the analogous gene in the operon diagram is shown. Gene locus tags, a 4-digit number given based on their location within
the genome, for the predicted toxins are also placed within the cells. Additional details are shown in Figure S7.

2021; Yao et al., 2021). We used embedding vectors in SAP, motivated
by recent work showing significant improvements in gene function
prediction by replacing features derived from amino-acid sequences with
embedding vectors extracted from protein language models. To assess
SAP’s performance on bacteria, we designed a systematic, rigorous
experimental framework based on the SwissProt database where we
evaluated function predictors for remote homology detection as well.
We confirmed that protein embeddings surpass conventional sequence
homology-based tools across diverse bacteria, and that they provide a
better representation of genes to infer gene function (Table 3).

Although bacterial gene neighborhoods have been used previously
for function prediction, this practice has mostly been manual and
is absent from current automated annotation tools. We designed a
purely computational, bottom-up approach to incorporate this syntenic
information into bacterial gene function prediction, thereby leveraging this
valuable source of functional information. We demonstrate that conserved
synteny and protein embeddings provide complementary information for
predicting gene function, in particular for remote homology detection,
as demonstrated via our systematic, rigorous experimental framework
to evaluate function predictors based on the SwissProt database (Fig.
3). We consistently achieved the best performance when operons were
used in conjunction with the embeddings representation within the SAP
framework. Either component alone resulted in lower performance.

Finally, to explore the performance of SAP on a more practical,
real-life application, we used SAP to annotate a set of 19 Enterococcus
species, representing the phylogenetic range of this genus. Following
the recent discovery of several different types of novel toxin genes in
enterococci (Zhang et al., 2018; Xiong et al., 2022), we focused on toxin
discovery. SAP predicted 11 candidate delta toxin genes, which showed
low sequence homology to known toxins (< 30%) but showed significant
structural homology to known toxin protein structural folds. Several of
these candidates also shared similar genomic neighborhood patterns with
those of known toxin genes. Although six of these candidate toxins could
also be identified based on their Pfam domains, five of these could not be
annotated using any of the existing gene prediction tools. We assert that
these genes are strong candidates for further experimental validation of
their toxin activities.

One limitation of SAP is its reliance on a predicted operon database,
which may contain syntenic linkages which do not share a function.
In the absence of ground truth, both the operon predictions and the
functions we assigned to these operons are limited by the existing
databases (Supplementary Text). To minimize false positives in operon
annotations, we adopted a conservative approach which in turn resulted
in a sparsely annotated training set, lowering the prediction coverage
of SAP (Supplementary Tables S12 and S13). One way to alleviate
this problem would be to routinely pick unlabeled operons from our
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database, prioritizing the most common ones, to perform experiments
and identify their functions. With each new experimental annotation
available, additional operons can be labeled. We expect this iterative
approach to rapidly increase the number of labeled operons available
in the database. Another limitation of the current version of SAPdb is
its focus on broadly conserved patterns; it represents conserved synteny
across the entire bacterial kingdom. Since our goal was to develop an
all-purpose bacterial gene annotation tool, we deliberately designed our
operon database to be inclusive and to cover as many conserved syntenic
regions as possible. Thus, patterns or operons associated with rare traits
in bacteria, or functional pathways unique to novel species are not present
in the default SAPdb, but are straightforward to add for specific analyses.

Currently, SAP assigns every query gene the same number of operons,
equal to 1% of all operons available in the dataset, which we opted to be as
inclusive as possible in learning about previously unannotated genes. To
help disambiguate real matches from false positive matches, SAP reports
a rank for each of the matching operons based on their similarity to the
query gene. While we have not determined whether a universal ranking
threshold exists, our detailed examination of toxin operons in Enterococcus
suggested this ranking can be a reliable proxy for confidence. While SAP
reported 48 additional genes associated with the delta toxin operon, the
delta toxin operon only ranked among the top two operons for only the 11
candidate genes that showed structural similarity to the toxin fold. Thus,
the order of assigned operons could potentially be used as a proxy to infer
confidence in these assignments.

We demonstrated that conserved synteny and protein embeddings
both provide useful information for predicting the protein function; SAP
outperforms conventional sequence-based bacterial genome annotation
pipelines, as well as more sophisticated HMM-based approaches and more
recently developed deep learning methods. SAP can not only infer beyond
the linear sequence, at the level of protein fold, but it can also successfully
utilize conserved synteny among bacterial species to predict gene function.
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