1	Auto-STEED: A data mining tool for automated extraction
2	of experimental parameters and risk of bias items from <i>in</i>
3	vivo publications
4 5	Wolfgang Emanuel Zurrer ¹ *, Amelia Elaine Cannon ¹ *, Ewoud Ewing ² , Marianna Rosso ¹ , Daniel S. Reich ³ , Benjamin V. Ineichen ^{1,2}
6	
7	Author affiliations:
8	1 Center for Reproducible Science, University of Zurich, Zurich, Switzerland
9 10	2 Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospi- tal, Karolinska Institute, Stockholm, Sweden.
11 12	3 Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Na- tional Institutes of Health, Bethesda, MD 20892, USA.
13	
14	*Equal contribution
15	
16	Correspondence to:
17 18	Benjamin Victor Ineichen, University of Zurich, Center for Reproducible Science, Zurich, Switzerland, ORCID: 0000-0003-1362-4819
19	benjaminvictor.ineichen@uzh.ch
20	
21	Conflict of interest statement
22	The authors have declared that no conflict of interest exists.
23	
24	

25 Abstract

Background: Systematic reviews, i.e., research summaries that address focused questions in a structured
and reproducible manner, are a cornerstone of evidence-based medicine and research. However, certain
systematic review steps such as data extraction are labour-intensive which hampers their applicability,
not least with the rapidly expanding body of biomedical literature.

30 Objective: To bridge this gap, we aimed at developing a data mining tool in the R programming envi-31 ronment to automate data extraction from neuroscience *in vivo* publications. The function was trained 32 on a literature corpus (n=45 publications) of animal motor neuron disease studies and tested in two 33 validation corpora (motor neuron diseases, n=31 publications; multiple sclerosis, n=244 publications).

Results: Our data mining tool Auto-STEED (Automated and STructured Extraction of Experimental Data) was able to extract key experimental parameters such as animal models and species as well as risk of bias items such as randomization or blinding from *in vivo* studies. Sensitivity and specificity were over 85 and 80%, respectively, for most items in both validation corpora. Accuracy and F-scores were above 90% and 0.9 for most items in the validation corpora. Time savings were above 99%.

Conclusions: Our developed text mining tool Auto-STEED is able to extract key experimental parameters and risk of bias items from the neuroscience *in vivo* literature. With this, the tool can be deployed to probe a field in a research improvement context or to replace one human reader during data extraction resulting in substantial time-savings and contribute towards automation of systematic reviews. The function is available on Github.

45 Keywords

- 46 Systematic review, regular expressions, automation, neuroscience, magnetic resonance imaging, motor
- 47 neuron diseases, multiple sclerosis
- 48

49 Metadata

Section	Character count
Title	20
Running head	
	Word count
Abstract	252
Introduction	345
Materials and Methods	447
Results	603
Discussion	915
Total (without abstract)	2310

- 50 Number of figures: 1
- 51 Number of tables: 2
- 52 Number of supplementary tables: N/A
- 53
- 54 Glossary
- 55 NLP, natural language processing
- 56 RegEX, regular expressions
- 57
- 58

59 1. Introduction

Synthesising evidence is an essential part of scientific progress (1). To this end, systematic reviews—
i.e. the rigorous identification, appraisal, and integration of all available evidence on a specific research
question—have become a default tool in clinical research (2). Yet, they are also increasingly employed
for preclinical *in vivo* research (3-6).

64 Systematic reviews allow the identification of trends that may be missed when reviewing individual, 65 smaller studies, and add soundness to one's conclusions. For this reason, the use of systematic reviews in animal research is an acknowledged aid to implementing the reduction, replacement, and refinement 66 67 of animal experiments (7), e.g., by gaining knowledge without the use of new animal experiments or by improving the ethical position of animal research by increasing the value and reliability of research 68 69 findings (8). Additionally, the practice of systematic reviews fosters a culture of transparent, reproducible, and rigorous scientific practice, pivotal and necessary in ensuring a responsible use of animals in 70 71 research.

72 Despite the importance of systematic reviews, the process of manual evidence synthesis is highly labo-73 rious (9). This problem is further hampered by the skyrocketing amount of publications in the biomedi-74 cal field: over 1 million papers pour into PubMed each year (10), and these numbers are set to increase 75 still further in the near future (11). With this, it becomes increasingly difficult to keep abreast with the published evidence which in turn precludes evidence-based research (12). Thus, automation of system-76 77 atic reviews is warranted to optimize the value of published data in the age of information overload. One 78 particularly labour-intensive systematic review task which would profit from automation is data extrac-79 tion (13, 14), i.e., the manual pulling of specific data from publications. Based on these shortcomings, we set out to develop a text mining tool to automatically extract key study parameters from publications 80 81 of animal research modelling motor neuron diseases and multiple sclerosis. Our endeavour is focused 82 on two key domains of experimental science, that is 1) disease model parameters such as animal models 83 and species as well, and 2) risk of bias measures such as randomization or blinding.

85 2. Methods

86 **2.1. Study protocol**

The development of the text mining tool was part of a systematic review on neuroimaging findings in motor neuron disease animal models registered as prospective study protocol in the International Prospective Register of Systematic Reviews (PROSPERO, CRD42022373146, https://www.crd.york.ac.uk/PROSPERO/).

91 2.2. Literature corpora

Three literature corpora were included in this study: one for the training of the text mining toolbox and 92 93 two for its validation. The training corpus was identified by searching Medline via PubMed for animal 94 motor neuron disease models using the search string: "motor neuron disease" OR motor neuron diseases [MeSH] OR "amyotrophic lateral sclerosis" OR "ALS" OR "MND" OR "SOD" and limiting the search 95 to the publication year 2021. The two validation corpora are derived from two in-house systematic re-96 97 views: a systematic review on neuroimaging findings in motor neuron disease animal models (PROS-98 PERO-No: CRD42022373146, manuscript submitted) and a systematic review on neuroimaging find-99 ings in multiple sclerosis animal models (15) (PROSPERO-No: CRD42019134302).

100 **2.3. Development of text mining tool**

101 We defined items of interest to extract *a priori* which belong to two domains: first, experimental param-102 eters including 1) animal sex, 2) animal species, 3) model disease, 4) number of experimental animals 103 used, and 5-7) experimental outcomes, i.e., whether a respective study assessed behavioral, histological, 104 or neuroimaging outcomes; second, risk of bias items including: 1) implementation in the experimental 105 setup of any measure of randomization, 2) any measure of blinding, 3) prior sample size calculation 106 (power calculation), 4) statement of whether conducted animal experiments are in accordance with local 107 animal welfare guidelines, 4) statement of a potential conflict of interest, and 5) accordance with the 108 ARRIVE guidelines (16). This second domain also includes an item for the data availability statement,

i.e., a statement whether and where primary study data are available. Phrases associated with these parameters were systematically collected and integrated in a regular expression-based function using the
R programming environment.

112 Performance of our text mining function was gauged using the following measures:

113
$$Sensitivity = \frac{TP}{TP + FN}$$

114
$$Specificity = \frac{TN}{TN + FP}$$

115
$$Precision = \frac{TP}{TP + FP}$$

116
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

117
$$F - score = \frac{2 * TP}{2 * TP + FP + FN}$$

With TP, TN, FP, and FN being true positive, true negative, false positive, and false negative, respectively.

All included literature corpora have undergone dual and independent manual extraction of these parameters (WEZ, AEC, BVI) constituting the "gold standard" for data extraction. Mean extraction time was measured for both the human and the automated extraction to gauge time savings by the automated extraction. As defined in the protocol, for development of the text mining function in the training set, automated extraction of individual items was considered to be sufficiently accurate if they attained a sensitivity of 85% and a specificity of 80% (i.e., with a slightly higher sensitivity as per recommendation by the Systematic Living Information Machine [SLIM] consortium).

128 3. Results

129 **3.1.** General characteristics of literature corpora

We included three literature corpora with manual human annotation by two trained and independent reviewers. The training corpus comprised 45 individual publications on motor neuron disease animal models from 2021. The validation sets comprised 31 publications on neuroimaging in motor neuron disease animal models and 244 publications on neuroimaging in multiple sclerosis animal models with median publication years 2014 and 2009, respectively.

135 Median reporting prevalence of experimental parameters was 84%, 95%, and 95% in the training and in

the two validation corpora, respectively. Median reporting prevalence of risk of bias items was 58%,

137 23%, and 25% in the training and in the two validation corpora, respectively. A detailed summary of

138 literature corpora characteristics and reporting prevalence is presented in **Table 1**.

139

140 **3.2. Architecture of text mining tool**

Due to copyright restrictions for data mining from HTML, the tool was developed to extract data at PDF 141 142 level of publications. First, the text mining function reads in and converts PDFs of respective publica-143 tions to text. The text is then cleaned from certain keywords such as "random primer" reducing false 144 positives for certain items to extract, e.g., randomization. Subsequently, the manuscript body is parsed 145 into different sections (e.g., abstract, introduction, or materials and methods). This parsing is conducted based on the appearance of certain regular expressions (RegEx) such as "materials and methods". Then, 146 147 specific paper sections are mined for certain regular expressions based on RegEx libraries for each in-148 dividual item to extract. The mining pipeline is depicted in **Figure 1**. The tool is available on Github: https://github.com/Ineichen-Group. 149

151 **3.3. Accuracy**

In the training set, the text mining function was tuned until a sensitivity of 85% and a specificity of 80% was reached for each individual item. The specificity threshold was not attained for the items "sample size calculation", "sex", and "outcome behaviour" with only 78%, 67% and 50%, respectively but with above-threshold sensitivity. Some items such as accordance with the ARRIVE guidelines or whether a conflict-of-interest statement was included reached a sensitivity close to 100%. F-scores and accuracy were above 90% for most items (**Table 2**).

The mining function performed well on both validation corpora. In the motor neuron disease corpus, the mining function accomplished above-threshold specificity and sensitivity for most items, except for "outcome behaviour" with slightly below-threshold specificity and "data availability", "sample size calculation", and "sex" with slightly below-threshold sensitivity. In the multiple sclerosis validation corpus, additional items did not reach the specificity and sensitivity thresholds. However, F-scores and accuracy were above 90% for most items in the motor neuron disease validation corpus and above 80% in the multiple sclerosis corpus, respectively (**Table 2**).

165

166 **3.4.** Time savings automated versus manual extraction

Mean time for the manual extraction was $12 (\pm 8)$, $13 (\pm 7)$, and $15 (\pm 11)$ minutes per publication and per human reader for the training corpus and the two validation corpora, respectively. This amounts to a total of 540, 403, and 3660 minutes for one reader for the three corpora, respectively. In contrast, the mining function required 0.3 seconds to mine one record amounting to 0.23, 0.15, and 1.22 minutes for the three corpora. With this, the text mining function provides time savings above 99%.

172

173 **3.5.** Reporting of items on abstract versus full text level

For the experimental parameters, we quantified how commonly the respective items were reported inthe abstract in addition to the full text. Disease models and species as well as outcome measures were

- 176 commonly reported on abstract level in all three literature corpora with reporting frequencies between
- 177 95 100%. However, animal sexes were only rarely reported with reporting frequencies between 0 and
- 178 5%.

180 Discussion

181 Main findings

182 We developed Auto-STEED (Automated and STructured Extraction of Experimental Data), a text min-183 ing tool able to automatically extract key experimental parameters such as animal models and species 184 as well as risk of bias items such as randomization or blinding from preclinical in vivo studies. The 185 function shows a high sensitivity, specificity, and accuracy for most items to extract in two validation 186 literature corpora, one in a similar field like the training corpus (motor neuron diseases) and one in a different field (multiple sclerosis) and both including older publications. Using this approach, time sav-187 ings to extract these items are above 99%. We also show that mining from abstracts instead of full texts 188 189 would be feasible for certain key experimental parameters.

190 Findings in the context of existing evidence

191 Our developed text mining tool performs well on literature corpora outside of the field they have been 192 developed in as well as in corpora with older median publication years. The tool has been developed in a literature corpus dealing with motor neuron disease animal models and only comprising publications 193 194 from 2021. In contrast, one of the validation literature corpora was in the field of multiple sclerosis 195 animal models and had a median publication year 2009 (with some papers going back to 1985). And 196 although the accuracy was slightly lower in this literature corpus, this shows that reporting of experi-197 mental parameters and risk of bias items is similar between neuroscience subfields. Thus, our developed 198 function could be applied to literature bodies of other research fields.

Despite its high accuracy, our model is not yet at a level appropriate for the evaluation of individual publications. Thus, it will not fully replace human extraction. However, such an automated approach has two potential fields of application: first, it is considered suitable for deployment on larger reference libraries (>1000 records) in a research-improvement context (17) and/or to probe a certain field or literature bodies for risk of bias and key experimental parameters. Second, such a method could be deployed to replace one human reader which would still save a substantial amount of labour (14, 18). Humanmachine disagreements could be checked manually. 206 Similar approaches have been leveraged to extract specific information—such as the study population, 207 intervention, outcome measured and risks of bias—from abstracts (19) or full texts (17, 20). Bahor and 208 colleagues developed a text mining function in a literature body of stroke animal models able to extract 209 certain risk of bias items including randomization, blinding, and sample size calculation (21). The achieved accuracy was between 67-86% for randomization (our approach: 90-97%), 91-94% for blind-210 ing (our approach: 93-97%), and 96-100% for sample size calculation (our approach: 81-97%). With 211 212 this, our developed tool has a similar accuracy scope and does complement former tool by extracting 213 additional risk of bias items such as statement of a conflict of interest, accordance with local animal welfare regulations, a data availability statement, and accordance with the ARRIVE guidelines (16). 214 215 Another text mining toolbox underpinned by natural language processing (NLP) was developed by Zeiss 216 and colleagues (19): This toolbox extracts data such as species, model, genes, or outcomes from PubMed 217 abstracts with F-scores between 0.75 and 0.95.

218 For many tasks, NLP models seem to consistently outperform RegEx-based text mining (22). Yet they 219 are more complex and labour-intensive to develop and thus only warrant application in more complex 220 extraction tasks. Wang and colleagues tested performance of a variety of models such as convolutional 221 neural networks to extract risk of bias items from preclinical studies (17). These models significantly 222 outperformed RegEx-based methods for four risk of bias items with F-scores between 0.47-0.91. The 223 validity of NLP for such tasks has also been corroborated by SciScore—a proprietary NLP tool that can 224 automatically evaluate the compliance of publications with six rigour items taken from the MDAR 225 framework and other guidelines (20). These items mostly relate to risk of bias, including compliance 226 with animal welfare regulations, blinding/randomisation, prior sample size calculation and other items 227 such as organism or sex. SciScore was developed on a training corpus from PubMed open access articles. 228 In contrast, our approach was developed on preclinical neuroscience corpora thus being more tailored 229 to this field.

Although we initially aimed to also extract used animal numbers from publications, we had to abandon this goal due to a highly unstandardized nature of reporting, i.e., in methods/results section, in tables, in figure legends, in graphs or only separately reported for different experimental and control groups. One

233	potential solution to this problem could be to consider this as an NLP categorisation task with small
234	(e.g., n<10 animals), medium (n=10-50 animals) and large (n>100 animals) studies.

235 Limitations

First, our approach has been developed and tested in the realm of preclinical neuroscience. It is currently not clear how well the tool would perform in fields outside of neuroscience research, e.g., in the preclinical cancer literature. Second, our approach requires full-text PDFs for mining. Mining in online publication versions, i.e., on HTLM would mitigate certain issues associated with converting a PDF into text including unstandardized PDF layouts and paper sections per journal. However, although text mining will be exempted from copyright restrictions in the EU within the coming years (23), expensive licences are still required to mine online versions of publications.

243 Conclusions

Our developed text mining tool Auto-STEED is able to extract key risk of bias items and experimental
parameters from the neuroscience *in vivo* literature. Accelerating the usually labour-intensive data ex-

traction during a systematic review is an important contribution towards automation of systematic re-

247 views.

249 Acknowledgments

250 We thank Robert Wyatt from Matching Mole for help with data analysis.

251

252 Funding

- 253 This work was supported by grants of the Swiss National Science Foundation (No. P400PM_183884,
- to BVI), and the UZH Alumni (to BVI). We thank all our funders for their support.
- 255 The sponsors had no role in the design and conduct of the study; collection, management, analysis, and
- 256 interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the
- 257 manuscript for publication.

258

259 **Competing interests**

260 The authors report no competing interests related to this study.

261

262 Data availability

263 The text mining function is freely available on Github: <u>https://github.com/Ineichen-Group</u>

265 Author contributions

- 266 Conception and design of study: EE, BVI
- 267 acquisition of data: WEZ, AEC, EE, BVI
- 268 analysis of data: WEZ, AEC, BVI
- 269 drafting the initial manuscript: BVI
- all authors critically revised the paper draft.

272 **References**

 Nakagawa S, Dunn AG, Lagisz M, Bannach-Brown A, Grames EM, Sánchez-Tójar A, et al. A new ecosystem for evidence synthesis. <i>Nature Ecology & Evolution</i>. 2020;4(4):498-501. Egger M, Higgins JP, and Smith GD. Systematic reviews in health research: Meta-analysis in context. John Wiley & Sons; 2022. Soliman N, Rice AS, and Voller LJ. A practical guide to preclinical systematic review and meta- analysis. <i>Pain</i>. 2020;161(9):1949. Ritskes-Hoitinga M, and Pound P. The role of systematic reviews in identifying the limitations of preclinical animal research, 2000–2022: part 1. <i>Journal of the Royal Society of Medicine</i>. 2022;115(5):186-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;6(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ Open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical splating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open</i>. 20			
 The Webbystem Technology and Smith GD. Systematic reviews in health research: Meta-analysis in context. John Wiley & Sons; 2022. Soliman N, Rice AS, and Vollert I. A practical guide to preclinical systematic review and meta-analysis. <i>Pain.</i> 2020;161(9):1949. Ritskes-Hoitinga M, and Pound P. The role of systematic reviews in identifying the limitations of preclinical animal research. 2000–2022; part 1. <i>Journal of the Royal Society of Medicine.</i> 2022;115(5):186-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews.</i> 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science.</i> 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the BS and animal welfare? Animals. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal.</i> 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ Open.</i> 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature.</i> 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: <i>A bibliometric analysis based on the number of publications</i> and cited references. <i>Journal of the Association on Information Science and Technology.</i> 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine.</i> 2012;4(151):1515p15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical lineatoresearch. <i>BMJ Open Science.</i> 2021;5(1):e100131.<td>273 274</td><td>1.</td><td>Nakagawa S, Dunn AG, Lagisz M, Bannach-Brown A, Grames EM, Sánchez-Tójar A, et al. A</td>	273 274	1.	Nakagawa S, Dunn AG, Lagisz M, Bannach-Brown A, Grames EM, Sánchez-Tójar A, et al. A
 Egger M, Higgin JP, and Smitto J. Systematic reviews in nearin research: INet-charaysis in context. John Wiley & Sons, 2022. Soliman N, Rice AS, and Vollert J. A practical guide to preclinical systematic review and meta- analysis. <i>Pain</i>, 2020;161(9):1949. Ritskes-Hoitinga M, and Pound P. The role of systematic reviews in identifying the limitations of preclinical animal research, 2000–2022: part 1. <i>Journal of the Royal Society of Medicine</i>. 2022;115(5):186-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and nu Luijk I. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2010;6(01):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA, Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ Open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornam NL, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131.	274	2	The ecosystem for evidence synthesis. <i>Nature Ecology & Evolution</i> . 2020,4(4).498-501.
 Context. John Wiley & Sons, 2022. Soliman N, Rice AS, and Voller L A practical guide to preclinical systematic review and meta- analysis. <i>Pain</i>. 2020;161(9):1949. Ritskes-Hoitinga M, and Pound P. The role of systematic reviews in identifying the limitations of preclinical animal research. 2000–2022: part 1. <i>Journal of the Royal Society of Medicine</i>. 2022;115(5):186-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E, Scientfic I Iterature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2125-52. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Frown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall U, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evide	275	2.	Egger M, Higgins JP, and Smith GD. Systematic reviews in health research: Meta-analysis in
 Soliman N, Rice AS, and Voller J. A practical guide to preclinical systematic review and meta- analysis. <i>Pwin</i>. 2020;161(9):1949. Ritskes-Holtinga M, and Pound P. The role of systematic reviews in identifying the limitations of preclinical animal research. 2000–2022: part 1. <i>Journal of the Royal Society of Medicine</i>. 2022;115(5):136-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;115(5):136-92. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Holtinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornah N, La M Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and icted references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall U, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesin Health Psychology: Current Met	276	•	context. John Wiley & Sons; 2022.
 Ritskes-Hoitinga M, and Pound P. The role of systematic reviews in identifying the limitations of preclinical animal research. 2000–2022: part 1. <i>Journal of the Royal Society of Medicine</i>. 2022;115(5):186-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk I. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;6(6):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ Open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bormann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(15):151p515. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall Li, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology review</i>. 2020:-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et a	277	3.	Soliman N, Rice AS, and Vollert J. A practical guide to preclinical systematic review and meta- analysis. <i>Pain</i> . 2020:161(9):1949.
 of preclinical animal research, 2000–2022: part 1. <i>Journal of the Royal Society of Medicine</i>. 2022;115(5):186-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornhan L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information Science and Technology</i>. 2015;66(11):215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall U, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: review. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinicial</i>. 2020:10	279	4	Ritskes-Hoitinga M. and Pound P. The role of systematic reviews in identifying the limitations
 2022;115(5):186-92. Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornman L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information Science and Technology</i>. 2015;66(11):215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-reserch. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, H	280		of preclinical animal research, 2000–2022: part 1. Journal of the Royal Society of Medicine.
 Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>. 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151515. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall U, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: current Methods and Future Prospects. <i>Health psychology review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Ave	281		2022;115(5):186-92.
 2022;103(1):1-5. Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151p:1515. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall U, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology review</i>. 2020:1-35. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021.<!--</td--><td>282</td><td>5.</td><td>Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i>.</td>	282	5.	Ioannidis JP. Systematic reviews for basic scientists: a different beast. <i>Physiological reviews</i> .
 Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ Open</i>. 2017;7(2):e012545. Landhuis E, Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bormann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Abisnta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020;102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Creebral Blood </i>	283		2022;103(1):1-5.
 an online systematic review platform: the early years of the CAMARADES Systematic Review Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Holtinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Banach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using	284	6.	Bahor Z, Liao J, Currie G, Ayder C, Macleod M, McCann SK, et al. Development and uptake of
 Facility (SyRF). <i>BMJ Open Science</i>. 2021;5(1):e100103. Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall JJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020;102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processi	285		an online systematic review platform: the early years of the CAMARADES Systematic Review
 Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BNI open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020;102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace	286		Facility (SyRF). BMJ Open Science. 2021;5(1):e100103.
 implementation of the 3Rs and animal welfare? <i>Animals</i>. 2019;9(12):1163. Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Borann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using matchine learning tools in r	287	7.	Ritskes-Hoitinga M, and van Luijk J. How can systematic reviews teach us more about the
 Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. <i>ILAR journal</i>. 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornman L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall U, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood Flow & Metabolism</i>. 2020;40(9):1769-77. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using matchine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Neey MT, Baker M, et al. Menagerie: A textminging tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):	288		implementation of the 3Rs and animal welfare? Animals. 2019;9(12):1163.
 2019;60(1):17-23. Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BNJ open</i>. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BNJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support	289	8.	Macleod M, and Mohan S. Reproducibility and rigor in animal-based research. ILAR journal.
 Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open.</i> 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature.</i> 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology.</i> 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine.</i> 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science.</i> 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review.</i> 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical.</i> 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood Flow & Metabolism.</i> 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods.</i> 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research systemsis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neuro	290		2019;60(1):17-23.
 conduct systematic reviews of medical interventions using data from the PROSPERO registry. <i>BMJ open.</i> 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. <i>Nature.</i> 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology.</i> 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine.</i> 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science.</i> 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review.</i> 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical.</i> 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood Flow & Metabolism.</i> 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods.</i> 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The R	291	9.	Borah R, Brown AW, Capers PL, and Kaiser KA. Analysis of the time and workers needed to
 BMJ open. 2017;7(2):e012545. Landhuis E. Scientific literature: Information overload. Nature. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the Association for Information Science and Technology. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. Science translational medicine. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. BMJ Open Science. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. Health psychology review. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. NeuroImage: Clinical. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Journal of Cerebral Blood Flow & Metabolism. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. Res Synth Methods. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. PloS one. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. Iscience. 	292		conduct systematic reviews of medical interventions using data from the PROSPERO registry.
 Landhuis E. Scientific literature: Information overload. <i>Nature</i>. 2016;535(7612):457-8. Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall U, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical scienc	293		BMJ open. 2017;7(2):e012545.
 Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. <i>Journal of the Association for Information</i> <i>Science and Technology</i>. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. <i>Science translational medicine</i>. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020;23(11):101698. 	294	10.	Landhuis E. Scientific literature: Information overload. Nature. 2016;535(7612):457-8.
 the number of publications and cited references. Journal of the Association for Information Science and Technology. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. Science translational medicine. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020;23(11):101698. 	295	11.	Bornmann L, and Mutz R. Growth rates of modern science: A bibliometric analysis based on
 Science and Technology. 2015;66(11):2215-22. Ioannidis JP. Extrapolating from animals to humans. Science translational medicine. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A textmining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020:23(11):101698. 	296		the number of publications and cited references. Journal of the Association for Information
 Ioannidis JP. Extrapolating from animals to humans. Science translational medicine. 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020:23(11):101698. 	297		Science and Technology. 2015;66(11):2215-22.
 2012;4(151):151ps15. Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020;23(11):101698. 	298	12.	Ioannidis JP. Extrapolating from animals to humans. Science translational medicine.
 Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020:23(11):101698. 	299		2012;4(151):151ps15.
 in preclinical meta-research. <i>BMJ Open Science</i>. 2021;5(1):e100131. Marshall IJ, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020:23(11):101698. 	300	13.	Bannach-Brown A, Hair K, Bahor Z, Soliman N, Macleod M, and Liao J. Technological advances
 Marshall U, Johnson BT, Wang Z, Rajasekaran S, and Wallace BC. Semi-Automated Evidence Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall U, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020:23(11):101698. 	301		in preclinical meta-research. <i>BMJ Open Science</i> . 2021;5(1):e100131.
 Synthesis in Health Psychology: Current Methods and Future Prospects. <i>Health psychology</i> <i>review</i>. 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical</i>. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020;23(11):101698. 	302	14.	Marshall IJ. Johnson BT. Wang Z. Rajasekaran S. and Wallace BC. Semi-Automated Evidence
 <i>review.</i> 2020:1-35. Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical.</i> 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism.</i> 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods.</i> 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	303		Synthesis in Health Psychology: Current Methods and Future Prospects. Health psychology
 Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, et al. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical.</i> 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism.</i> 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods.</i> 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	304		review. 2020:1-35.
 imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. <i>NeuroImage: Clinical.</i> 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism.</i> 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods.</i> 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	305	15.	Ineichen BV. Sati P. Granberg T. Absinta M. Lee NJ. Lefeuvre JA. et al. Magnetic resonance
 paper. Neurolmage: Clinical. 2020:102371. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Journal of Cerebral Blood Flow & Metabolism. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. Res Synth Methods. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. PloS one. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. Iscience. 2020:23(11):101698. 	306		imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white
 Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism</i>. 2020;40(9):1769-77. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020;23(11):101698. 	307		paper. NeuroImage: Clinical. 2020:102371.
 guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i> <i>Flow & Metabolism.</i> 2020;40(9):1769-77. 17. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods.</i> 2021. 18. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. 19. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A textmining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. 20. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	308	16.	Percie du Sert N. Hurst V. Ahluwalia A. Alam S. Avev MT. Baker M. et al. The ARRIVE
 <i>Flow & Metabolism.</i> 2020;40(9):1769-77. 17. Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods.</i> 2021. 18. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. 19. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. 20. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	309		guidelines 2.0: Updated guidelines for reporting animal research. <i>Journal of Cerebral Blood</i>
 Wang Q, Liao J, Lapata M, and Macleod M. Risk of bias assessment in preclinical literature using natural language processing. <i>Res Synth Methods</i>. 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev</i>. 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one</i>. 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020;23(11):101698. 	310		Flow & Metabolism 2020:40(9):1769-77
 using natural language processing. <i>Res Synth Methods.</i> 2021. Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	311	17.	Wang O. Liao J. Lapata M. and Macleod M. Risk of bias assessment in preclinical literature
 Marshall IJ, and Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	312	_/ .	using natural language processing. Res Synth Methods. 2021
 machine learning tools in research synthesis. <i>Syst Rev.</i> 2019;8(1):163. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 2019;14(12):e0226176. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 2020;23(11):101698. 	313	18.	Marshall II, and Wallace BC. Toward systematic review automation: a practical guide to using
 315 19. Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, et al. Menagerie: A text- 316 mining tool to support animal-human translation in neurodegeneration research. <i>PloS one.</i> 317 2019;14(12):e0226176. 318 20. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency 319 Index quality metric for assessing biological and medical science methods. <i>Iscience.</i> 320 2020;23(11):101698. 	314	101	machine learning tools in research synthesis Syst Rev 2019:8(1):163
 and the second second	315	19	Zeiss CL Shin D. Vander Wyk B. Beck AP. Zatz N. Sneiderman CA. et al. Menagerie: A text-
 2019;14(12):e0226176. 20. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020:23(11):101698. 	316	10.	mining tool to support animal-human translation in neurodegeneration research <i>PloS one</i>
 318 20. Menke J, Roelandse M, Ozyurt B, Martone M, and Bandrowski A. The Rigor and Transparency 319 Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 320 2020;23(11):101698. 	317		2019·14(12)·e0226176
 Index quality metric for assessing biological and medical science methods. <i>Iscience</i>. 2020:23(11):101698. 	318	20	Menke I. Roelandse M. Ozvurt B. Martone M. and Bandrowski A. The Rigor and Transparency
320 2020:23(11):101698.	319	20.	Index quality metric for assessing biological and medical science methods. <i>Iscience</i>
	320		2020:23(11):101698.

- Bahor Z, Liao J, Macleod MR, Bannach-Brown A, McCann SK, Wever KE, et al. Risk of bias
 reporting in the recent animal focal cerebral ischaemia literature. *Clinical Science*.
 2017;131(20):2525-32.
- Wang Q, Hair K, Macleod MR, Currie G, Bahor Z, Sena E, et al. Protocol for an analysis of in vivo reporting standards by journal, institution and funder. *OSF* (https://osfio/preprints/metaarxiv/cixtf/). 2021.
- 327 23. brief NSD-Tni. Space-junk spear, depression drug and the EU's digital copyright. 2019.
- 328
- 329

330 Figures

Figure 1: Architecture of the text mining function.

332

PDFs of full texts are imported into the R environment, converted to text, and cleaned. Subsequently,the text is parsed into different sections such as "materials and methods" or "results". Then, individual

- items to mine are extracted using custom-made Regex libraries and a data frame with the extracted items
- is created.

338 **Tables**

- 339 Table 1: Characteristics of included literature corpora and reporting prevalence for parameters to ex-
- 340 tract.

	Training corpus	Validation corpus 1	Validation corpus 2			
Characteristics of eligible publications						
Торіс	Motor neuron dis-	Neuroimaging in mo-	Neuroimaging in multiple			
-	ease animal mod-	tor neuron disease	sclerosis animal models			
	els	animal models				
Number of publications	45	31	244			
Publication year median	2021 (2021-2021)	2014 (2004 - 2020)	2009 (1985 - 2017)			
and range						
Number of different jour-	35	22	72			
nals						
Reporting prevalence						
Experimental parameters:						
Species	100%	100%	100%			
Sex	87%	61%	88%			
Model	100%	100%	>99%			
Outcome histology	80%	90%	85%			
Outcome behaviour	73%	42%	61%			
Outcome imaging	0%	100%	100%			
Risk of bias items:						
Randomization	58%	23%	80%			
Blinding	53%	29%	33%			
Animal welfare	98%	90%	78%			
Conflict of interest	98%	58%	25%			
Sample size calculation	29%	16%	<1%			
ARRIVE guidelines	29%	0%	1%			
Data availability	69%	19%	2%			

341

342

	Specificity	Sensitivity	Precision	Accuracy	F-score
Training corpus (motor n	euron diseases, n	=45)			
Species	NA	96	100	96	0.98
Sex	67	85	94	82	0.89
Disease model	NA	96	100	96	0.98
Outcome histology	89	92	97	91	0.94
Outcome behaviour	50	97	84	84	0.90
Outcome imaging	96	NA	NA	96	NA
Randomization	84	96	89	91	0.93
Blinding	95	92	96	93	0.94
Animal welfare	NA	86	97	84	0.92
Conflict of interest	100	98	100	97	0.99
Sample size calculation	0.78	92	63	82	0.75
ARRIVE guidelines	100	100	100	100	1.00
Data availability	85	94	94	91	0.94
Validation corpus 1 (mot	or neuron disease	es, n=31)			
Species	NA	100	100	100	1.00
Sex	100	74	100	84	0.85
Disease model	NA	90	100	90	0.95
Outcome histology	100	96	100	97	0.98
Outcome behaviour	78	85	76	81	0.79
Outcome imaging	NA	100	100	100	1.00
Randomization	100	86	100	97	0.92
Blinding	100	89	100	97	0.94
Animal welfare	100	89	100	90	0.94
Conflict of itnerest	92	94	94	94	0.94
Sample size calculation	81	80	44	81	0.57
ARRIVE guidelines	100	NA	NA	100	NA
Data availability	96	83	83	94	0.83
Validation corpus 2 (mult	tiple sclerosis, n=:	244)			
Species	NA	75	100	75	0.86
Sex	76	83	93	82	0.88
Disease model	NA	87	100	88	0.93
Outcome histology	64	96	93	91	0.95
Outcome behaviour	66	91	81	82	0.86
Outcome imaging	NA	94	100	94	0.97
Randomization	93	81	75	90	0.78
Blinding	98	85	96	93	0.90
Animal welfare	86	80	95	82	0.87
Conflict of interest	96	97	90	97	0.93
Sample size calculation	94	100	27	97	0.43
ARRIVE guidelines	100	100	100	100	1.00
Data availability	100	80	80	100	0.80

344	Table 2: Summary of	performance measures	of RegEx compared	l with manual human	ascertainment.

345

346 Specificity, sensitivity, precision, and accuracy are denoted in percentage. For details regarding

³⁴⁷ measures, please see the materials and methods section.