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Abstract  

The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, 

perceptual, and behavioral environments to minimize variability and rule-out confounding sources 

of activation during testing conditions. Here, we investigated how temporally-distal environmental 

inputs, specifically metal exposures experienced up to several months prior to scanning, affect 

functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We 

implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated 

information from multiple exposure biomarkers to predict rs dynamics in typically developing 

adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health 

Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, 

lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, 

blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global 

efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on 

ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological 

sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores 

were used to evaluate feature importance. Measured versus predicted rs dynamics from our model 

utilizing chemical exposures as inputs were significantly correlated (p< 0.001, r  = 0.36). Lead, 

chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a 

significant component of rs dynamics, comprising approximately 13% of observed variability in GE, 

is driven by recent metal exposures. These findings emphasize the need to estimate and control for 

the influence of past and current chemical exposures in the assessment and analysis of rs functional 

connectivity.   

 

 

Introduction 

Intrinsic functional connectivity of the brain has been widely investigated through the analysis of 

spontaneous (task- independent) blood-oxygen level dependent (BOLD) fluctuations at rest. 

Resting-state fMRI (rs) allowed the discovery of multiple functional networks
 
underlying cognitive, 

behavioral and perceptual processing
1,2

 and facilitated further understanding of the temporal and 

spatial correlation patterns of interconnected brain regions. These correlation patterns are 

observed in controlled conditions to ensure that variability in sensory, perceptual, or behavioral-

evoked neural processing is minimal, thus providing a baseline to characterize connectivity patterns 

at rest. However, this use of task-free data inherently presumes that the impact of the environment 

on rs signal is essentially concurrent, or minimally lagged, during data acquisition. Here, we 

investigated how temporally-distal environmental inputs, specifically metal exposures experienced 

up to several months prior to testing, affect rs functional dynamics. 

To fully characterize the impact of metals exposure on the brain, recent studies have begun 

investigating the combined or synergistic effect of multiple co-exposures, which may better capture 

the complex exposure landscape encountered in “real-world” circumstance
3–56

.  A challenge in this 

approach, and in any assessment of exposure, is that differential toxicokinetics involved in varying 

metal exposures yield a heterogenous distribution of metal biomarkers among different biological 
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media. Therefore, each medium (i.e. blood, urine, etc) provides complementary information on 

different biological processes. To accommodate this reality, recent studies leverage mixtures-based 

methods to combine information from multiple exposure matrices
78–10

. These metals mixture-based 

models demonstrated a more-negative impact on neurodevelopment than single metal model
11–15

. 

However, these mixture-based statistical approaches require a large sample size to allow 

appropriate cross-validation procedures, limiting their utility in smaller studies.  

In this study, we introduce a novel, alternative and interpretable approach to link high-

dimensional environmental exposure assessment to functional connectivity utilizing a machine 

learning (ML) based predictive framework that allows us to: (a) evaluate the model performance 

based on the predictive efficacy of the model and (b) leverage all available data simultaneously, 

much as a mixture approach aims to achieve, while implementing a robust leave-one-out cross 

validation paradigm to ensure generalizability. The XGBoost model used here has the ability to 

capture complex interactions among features as well as non-linear relationships between features 

and classification labels. To help interpretability, a game-theory based measure of variable 

importance, the Shapley Additive Explanation (SHAP)
16

 method was used to evaluate the 

importance of each feature in our final model. SHAP scores previously have been applied to explore 

gene-gene and gene-environment interactions. Here for the first time, we applied SHAP scores to 

investigate brain-environment dependencies.   

 We leveraged this platform to explore the importance of temporally-distal environmental 

chemical inputs on rs intrinsic functional connectivity. Utilizing multi-modal exposure assessment 

combined with a ML-based modeling platform, we generated a predictive model to determine the 

extent to which contemporaneous rs functional connectivity could be predicted from 

environmental inputs experienced up to months prior. Critically, our results suggest that the role of 

past chemical exposures is a critical variable for future rs studies to control for in the evaluation of 

rs functional connectivity. These findings highlight the utility of leveraging interpretable machine 

learning algorithms in neuroexposomic investigations for discovering overlooked interactions 

between the brain and environmental exposures. 

Results 

The complete pipeline of rs fMRI data analysis, model implementation and feature analysis is 

presented in Figure 1; additional details of the ML model are provided in SI Appendix. Observed GE 

was significantly correlated with predicted GE from the XGBoost model trained with all metal 

concentrations (Mn, Pb, Cr, Cu, Ni and Zn) measured in blood, urine, hair, saliva, fingernails and 

toenails as inputs (p< 0.001) with a correlation coefficient of 0.36. Based on this correlation, the 

explained variance of the final model was computed (VE= 13%). To interpret the influence of each 

feature in the model (i.e., individual metal exposure in each medium) on predicting GE, SHAP scores 

were calculated to measure feature importance, both at the level of the absolute mean SHAP score 

(Figure 1b), and in consideration of SHAP scores relative to feature distributions (Figure 1c). These 

results indicate that urinary and nail Pb, blood Cr, and salivary Cu exposures contributed most to 
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the prediction of global efficiency. Further, analysis of SHAP scores relative to the distribution of 

urinary Pb (UPb) values (Figure 1c) indicates a negative association between UPb and predicted GE; 

that is, as UPb increased, the predicted value of GE decreased. In contrast, high blood zinc (BZn) 

values result in positive SHAP scores, indicating a positive association between BZn and predicted 

GE.  
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Figure 1 - Overview of ML predictive framework. A. Resting-state fMRI data were processed and the averaged time-serie

were extracted using the Harvard-Oxford atlas. Then, the global efficiency (GE) metric was computed for each participant

Small solid gray circles represent nodes of the graphs (brain regions), while gray connecting lines are the edges of the grap

(functional connections). Larger dotted circles represent segregated sub-graphs/networks at the whole brain level. For the

exposure, six biological samples (blood, saliva, hair, urine, fingernails and toenails) were collected and processed for six m

concentrations (manganese, lead, chromium, copper, nickel and zinc). B. XBoost model was used to predict the GE metric

all exposure biomarkers data ("features"). C. For model training, 500 iterations of leave-one-out cross validation were use

all features were utilized in the model training. D. The performance of the XGBoost model was evaluated by computing th
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correlation between predicted GE metric versus scaled GE metric (adjusted for age and biological sex) in the hold out subjects 

obtaining a p< 0.001, r =0.36 and an explained variance (VE) of 13% (Panel a). Then, SHAP scores were computed for all 

features (metals exposures) used in the model and  the average absolute SHAP value was used to quantify the feature 

importance. In Panel b, each bar shows the mean absolute SHAP value of each feature, sorted in decreasing order. The most 

impactful features are displayed and higher SHAP score indicates a more significant contribution in the model prediction, in 

this case in the prediction of GE metric. Panel c shows the beeswarm plot of SHAP values distribution for the highest ranking 

features of our model. Feature values associated with a single GE prediction are color-coded, yellow/purple corresponding to 

low/high metals exposure values, respectively. On the x-axis, the SHAP values are shown representing the impact of a feature 

with respect to the prediction of the GE metric. Features are sorted using the mean absolute SHAP value in descending order 

with most important features at the top. Each dot corresponds to one subject. Plots are based on the XBoost model with all 

features included and leave-one-out-cross validation. BOLD: blood oxygen-level dependent. Features abbreviations: the first 

letter represents the medium (S=saliva, B=blood, U=urine, H=hair, F=fingernails, T=toenails) and the second and third letters 

represent the metals (Mn=manganese, Pb=lead, Cr=chromium, Cu=copper, Ni=nickel, Zn=zinc). 

Discussion  

We present a novel ML-based framework to evaluate the brain’s distinctive response to temporally-

distal environmental inputs, specifically metal exposures occurring up to several months prior to 

scan. Our findings emphasize that traditional perspectives on environmental control, i.e. 

homogenization of stimulus and behavioral conditions, fail to account for a critical source of 

environmentally-driven variance among participants. Leveraging the predictive information 

provided by the ML model together with SHAP scores, we successfully disentangle, interpret and 

quantify the strong influence of concurrent and recent past metal exposures that explain 13% of 

current brain dynamics in adolescents. Finally, this method accurately predicts rs metrics and 

highlights the power of simultaneously using exposomics data and interpretable ML algorithms for 

discovering overlooked interactions between environmental exposures and the brain.  

 

Environmental neuroscientists typically assess brain-environmental interactions by investigating the 

association between individual components of exposure, in our case environmental metals, and 

brain metrics
17,18

. Based on their unique chemical properties and similar neurobiological 

mechanisms of actions, several studies report synergistic neurotoxic effects of metals-exposure
19

. 

Metals within our mixture have been shown to produce such synergistic neurotoxic effects
20–22

, and 

epidemiological studies suggest that co-exposure to multiple metals, compared to individuals, 

increases disruption to human neurodevelopment
9,13,14,23

. Few neuroimaging studies account for 

this synergistic action of multiple metals mixture on neurophysiological dynamics
15

 and rather focus 

on single-metal assessments
3,4

. Here, we applied a multi-modal exposure assessment (i.e., multiple 

metals in several media) combined with ML-based modeling to investigate the impact of mixed 

metal exposures on brain dynamics while retaining the discrete information regarding each 

individual metal.  

 

Our findings reveal a clear link between temporally-distal environmental exposures and current 

neurophysiological dynamics. When acquiring rs dynamics to assess brain activation patterns, we 

typically control for sensory and perceptual environments during testing conditions by removing all 
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external stimuli (room lights or visual stimuli) and encouraging the participant to remain still and 

relaxed and either keep eyes closed or focused on a non-stimulation fixation point (i.e., seascape or 

cross). Notably, these co-occurring sensory and perceptual inputs operate on the brain signals 

within timescales of millisecond-to-second intervals as shown in task-based fMRI data
24

. In contrast, 

here we show that chemical environmental inputs, in particular exposures that have occurred 

weeks and months previously, are also important determinants of neurophysiological dynamics. 

These results may be particularly relevant in the context of the current reproducibility crisis; that is, 

neuroimaging studies suffer from high variability and lack of reproducibility
25

. This challenge may be 

explained, at least partially, by addressing the impact of overlooked external stressors (i.e. 

sociodemographic metrics, -omics data, environmental factors) on the functional brain signals. In 

this study, we confirm that the past chemical environment is certainly critical to control or account 

for. Accordingly, future studies should consider how environmental, social and other past exposures 

might play a role in shaping the recorded brain signals.  

 

Given the high dimensionality of multiple exposures, compounded by multiple exposure media, 

other typical approaches might be considered (i.e., mixtures-based). More classical mixtures-based 

approaches (i.e., BKMR
7
, WQS

26–28
) assess multiple mixtures simultaneously and are applied in an 

explanatory setting, i.e. either to test hypotheses, or to estimate the effects of contributing 

chemicals. These methods require a large sample to allow appropriate cross-validation procedures  

and have not been leveraged in a predictive framework to assess the extent to which past metals 

co-exposures drive the contemporaneous underlying brain dynamics. An additional strength of our 

approach is the combination of XGBoost and SHAP scores allowing us to explain the contribution of 

each feature at both a global level, and at a fine-scale relative to the distribution of each 

measurement. For example, the distribution of SHAP scores for urinary Pb (UPb), the top 

contributor to rs dynamics prediction, relative to the observed values of UPb indicated a non-linear 

association, with high UPb values contributing disproportionally to model efficacy. Globally, UPb 

values were negatively associated with global efficiency, consistent with previous studies showing 

high lead levels disrupt neuronal activity
15

 and are associated with altered structural connectivity 

and functional activation patterns in children and adults
29

. 

 

 

Despite the accuracy and interpretation of the ML-based framework presented here, there are 

several limitations. Our results show a significant correlation between the observed and predicted 

rs signal from the XGBoost model that trained with all available metal concentrations. However, in 

this study, we considered only exposure to six metals. Future studies should also consider 

examining the effect of additional exposures and omics data (i.e., epigenomics, proteomics, 

transcriptomics and metabolomics) and sociodemographic metrics to capture the social and 

physical environment and their impact on the functional brain signals. Given the small sample size 

of our dataset and the limited exposure assessment, it was not possible to validate with 

independent and external cohorts to further generalize these results. To account for this, we 
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implemented a leave-one-out cross validation in our model. Finally, this study focuses exclusively on 

resting state dynamics, these brain-environment interactions may influence task-based functional 

signals as well. 

 

Utilizing multi-modal exposure assessment combined with a ML-based modeling, we were able to 

quantify the impact of the temporally-distal environmental on current neurophysiological dynamics. 

Our work highlights how this continuous brain-environment interaction is key to advance our 

understanding of neural mechanisms and can inform on both disease pathogenesis and future 

public health policies.  

Materials and Methods  

Participants 

The Public Health Impact of Metal Exposure (PHIME) cohort investigates associations between 

metal exposure from anthropogenic emissions and developmental health outcomes in adolescents 

and young adults living proximate to the ferro-manganese industry in northern Italy. Details of the 

study have been described elsewhere 
30,31

. Inclusion criteria were: birth in the areas of interest; 

family residence in Brescia for at least two generations; residence in the study areas since birth. 

Exclusion criteria were: having a severe neurological, hepatic, metabolic, endocrine or psychiatric 

disorder; using medications (in particular with neuro-psychological side effects); having clinically 

diagnosed motor deficits or cognitive impairment and having visual deficits that are not adequately 

corrected. Detailed description of this recruitment process and study design can be found in 

previous publications 
31,32

. A convenience-based sample of 202 participants (53% female, ages 13-25 

years) were selected and willing to participate in a multimodal magnetic resonance imaging (MRI) 

study, PHIME-MRI. They completed multimodal MRI scans, neuropsychological tests, including 

measures of IQ (Kaufman Brief Intelligence Test, Second Edition (KBIT-2))
33–35

, memory and motor 

functions. All participants satisfied eligibility criteria for MRI scanning (i.e., no metal implants or 

shrapnel, claustrophobia, no prior history of traumatic brain injury, body mass index (BMI) ≤ 40). 

Manganese, lead, chromium, copper, nickel and zinc (Mn, Pb, Cr, Cu, Ni, Zn, respectively) were 

measured in saliva, hair, fingernails, toenails, blood and urine, for each PHIME-MRI participant. 

Complete exposure data (i.e., all metals in all media for a total of 6 components), MRI and 

covariates data were available for 124 participants (57% females; with an average age of 19.04 

years, range=13-25) included in this analysis (69 missing biomarkers and 9 poor MRI quality). 

Written informed consent was obtained from parents, while participants provided written assent. 

Study procedures were approved by the Institutional Review Board of the University of California, 

Santa Cruz, the ethical committees of the University of Brescia, and the Icahn School of Medicine at 

Mount Sinai. Details are provided in SI Appendix. 
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Biomarker measures of exposure 

Biological samples including venous whole blood, spot urine, saliva, hair, fingernails and toenails 

were collected from each subject upon enrollment, as described in detail in previous studies 
36–39

. 

Biological samples were processed and analyzed for metal concentrations using magnetic sector 

inductively coupled plasma mass spectroscopy (Thermo Element XR ICP-MS), as described 

elsewhere 
30,37–39

. A complete overview of biomarkers can be found in Table 1, while Pearson's 

correlations between biomarkers is reported in Figure 1.  Samples with values less than the LOD 

were substituted with LOD/square root of 2
40

.  

 

 

 

 

 

 

 

 

 

 

 

Table 1 - Metal concentrations (Mn, Pb, Cr, Cu, Ni and Zn) measured in blood, urine, hair, saliva, fingernails and 

toenails collected from 124 adolescent participants included in the PHIME-MRI study. 
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Note: GM = Geometric mean; GSD = Geometric standard deviation; LOD = limit of detection; SE = standard error of the 

mean. *Metrics used to measure metal concentrations within each medium were: blood and saliva (ng/mL), hair (ug/g), 

urine (ug/mL). 
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Figure 1 - Heatmap of metals exposure.  Spearman's correlations and hierarchical clustering between all biomarkers 

collected in PHIME-MRI. Components abbreviations: the first letter represents the medium (S=saliva, B=blood, U=urine, 

H=hair, F=fingernails, T=toenails) and the second and third letters represent the metals (Mn=manganese, Pb=lead, 

Cr=chromium, Cu=copper, Ni=nickel, Zn=zinc). 

MRI and fMRI data acquisition 

Magnetic resonance imaging (MRI) and functional MRI (fMRI) data acquisition was performed on a 

high-resolution 3-Tesla SIEMENS Skyra scanner using a 64-channel phased array head and neck coil, 

at the Neuroimaging Division of ASST Spedali Civili Hospital of Brescia. For each participant, a high-

resolution 3D T1-weighted structural scan was acquired using a MPRAGE sequence (TR =2400 ms, 
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TE= 2.06 ms, TI=230 ms, acquisition matrix=256x256 and 224 sagittal slices with final voxel size=0.9 

mm
3
). Fifty contiguous oblique-axial sections were used to cover the whole brain where the first 

four images were discarded to allow the magnetization to reach equilibrium. For each subject, a 

single 10-minute continuous functional sequence using a T2*weighted echo-planar imaging (EPI) 

sequence (TR=1000 ms, TE=27 ms, 70 axial slices, 2.1 mm thickness, matrix size 108x108, covering 

the brain from vertex to cerebellum) was acquired. During resting-state scans, lights of the MRI 

room were off, and participants were instructed to stay awake, relax and daydream (not think 

about anything) while keeping eyes open. They were presented with an image of a night skyline 

figure projected on a MRI compatible monitor. Padding was used for comfort and reduction of head 

motion. Earplugs were used to reduce noise. Data were read by a board-certified radiologist to 

determine quality and possible incidental findings - no findings were reported.  

fMRI data analyses 

Image pre-processing, global efficiency calculation, and statistical analyses were performed using 

SPM12 (Wellcome Department of Imaging Neuroscience, London, UK), Brain Connectivity toolbox 
41,42

 and customized scripts, implemented in MatLab 2016b (The Mathworks Inc., Natick, 

Massachusetts) and R (v3.4). 

Image preprocessing 

For each subject, the structural magnetic resonance image was co-registered and normalized 

against the Montreal Neurological Institute (MNI) template and segmented to obtain white matter 

(WM), gray matter (GM) and cerebrospinal fluid (CSF) probability maps in the MNI space. FMRI data 

were spatially realigned, co-registered to the MNI-152 EPI template and subsequently normalized 

utilizing the segmentation option for EPI images in SPM12. All normalized data were denoised using 

ICA-AROMA 
43

. Additionally, spatial smoothing was applied (8 millimeters) to the fMRI data. No 

global signal regression was applied. Based on the Harvard-Oxford 
44

 atlas, 111 regions of interest 

(ROI; 48 left and 48 right cortical areas; 7 left and 7 right subcortical regions and 1 brainstem) were 

defined. In this atlas, the brain areas were defined using T1-weighted images of 21 healthy male 

and 16 healthy female subjects (ages 18-50). The T1-weighted images were segmented and affine-

registered to MNI152 space using FLIRT (FSL), and the transformations then applied to the 

individual brain areas’ label. For each ROI, a time-series was extracted by averaging across voxels 

per time point. To facilitate statistical inference, data were “pre-whitened” by removing the 

estimated autocorrelation structure in a two-step generalized linear model (GLM) procedure 
45,46

. In 

the first step, the raw data were filtered against the 6 motion parameters (3 translations and 3 

rotations). Using the resulting residuals, the autocorrelation structures present in the data were 

estimated using an Auto-Regressive model of order 1 (AR(1)) and then removed from the raw data. 

Next, the realignment parameters, white matter (WM) and cerebrospinal fluid (CSF) signals were 

removed as confounders on the whitened data. 
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Network analysis 

Global Efficiency (GE) was computed using the Brain Connectivity toolbox 
41,42

 on the defined ROI 

time course data per subject. GE builds on the concept of efficient integration of communication in 

a network at a global level. GE is defined as the inverse of the average characteristic path length 

between all nodes in the networks 
47,48

. For each individual node, with each node defined as an ROI, 

the shortest number of intermediary nodes required to traverse a path from one node to another 

was computed. Then, the average number of shortest steps to all defined nodes was computed 

separately for each node. To correct for the total number of connections between nodes, the 

inverse of the average number of shortest steps for each node was summed across all network 

nodes and normalized. GE was scaled from 0 to 1, with a value of 1 indicating maximum GE in 

observed distribution. 

Statistical analysis 

Descriptive statistics 

Visual inspection and descriptive statistics (geometric mean, geometric standard deviation, and 

Spearman’s correlation) were used to characterize the metal concentrations in different media.  

Predictive Modeling 

The goal of the predictive modeling was to utilize descriptive statistics (“features”) generated in the 

descriptive analysis of exposure biomarkers to predict GE metric. The model utilized for predictive 

classification was a form of ensemble gradient boosting
49

, referred to as XGBoost (“Extreme 

Gradient Boosting”). This approach was selected for the utility of tree-based models for capturing 

non-linear dependencies and interactions among features, while also leveraging the efficacy of 

gradient boosting. For hyperparameter tuning, 500 iterations of leave-one-out cross validation were 

implemented to evaluate the best-performing set of hyperparameters. Following this, the optimal 

hyperparameter set was used to train a model with leave-one-out holdout validation, and the 

performance of this model evaluated by computing the correlation between predicted GE metric 

versus measured GE metric in each hold out subject. Based on the Pearson correlation coefficient 

(r), we finally calculated the explained variance of the model (VE). 

Features importance analysis 

Given the ensemble decision trees used in the XGBoost classification algorithm, one feature can be 

used in multiple locations across the decision trees algorithm making it challenging to interpret the 
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feature importance of the model. For this reason, the Shapley Additive Explanation (SHAP)
16

 

method was used to evaluate each feature’s importance in our final model. Based on the trained 

model, a unique SHAP score was estimated to quantify the contribution of each measurement to 

model predictions. This score quantifies the effect of each feature on the classification model by 

measuring the deviation from the average prediction brought by the value of a specific feature. This 

approach allows the evaluation of non-linear aspects of feature importance; for example, if a given 

feature contributes to predictive efficacy primarily in cases of extreme scores. In contrast, we 

subsequently computed the average absolute SHAP value for each feature to capture global 

importance.  

Software Implementation 

All descriptive statistical analyses and predictive modelling were implemented using R (version 

4.2.1) programming language. The following libraries were used: “data.table” and “imputeTS” for 

data manipulation; “mlr” and “xgboost” for model training, fitting, and prediction; 

“SHAPforxgboost” and “ggplot2” libraries were used to quantify and visualize model prediction by 

computing SHAP scores for each feature, respectively.     
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