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Abstract 
Custer randomized trials are often used to study large-scale public health interventions. In large 
trials, even small improvements in statistical efficiency can have profound impacts on the 
required sample size and cost. Pair matched randomization is one strategy with potential to 
increase trial efficiency, but to our knowledge there have been no empirical evaluations of pair-
matching in large-scale, epidemiologic field trials. Location integrates many socio-demographic 
and environmental characteristics into a single feature. Here, we show that geographic pair-
matching leads to substantial gains in statistical efficiency for 14 child health outcomes that span 
growth, development, and infectious disease through a re-analysis of two large-scale trials of 
nutritional and environmental interventions in Bangladesh and Kenya. We estimate relative 
efficiencies ≥1.1 for all outcomes assessed and relative efficiencies regularly exceed 2.0, 
meaning an unmatched trial would have needed to enroll at least twice as many clusters to 
achieve the same level of precision as the geographically pair-matched design. We also show 
that geographically pair-matched designs enable estimation of fine-scale, spatially varying effect 
heterogeneity under minimal assumptions. Our results demonstrate broad, substantial benefits of 
geographic pair-matching in large-scale, cluster randomized trials.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2023. ; https://doi.org/10.1101/2023.04.30.23289317doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.04.30.23289317
http://creativecommons.org/licenses/by-nd/4.0/


 

 2 

Introduction 
 
In cluster randomized trials, investigators randomly allocate groups of individuals to receive an 
intervention that manipulates the physical or social environment, or cannot be delivered to 
individuals.1 Cluster randomized trials are especially common in studies of infectious or 
contagious outcomes, where estimating the effect of an intervention deployed to groups of 
individuals is paramount.2 The number of cluster randomized trials indexed in PubMed has 
increased almost exponentially from 12 in the year 2000 to 458 in 2022 (Supplementary Fig. 
1). Many of the early cluster randomized trials were small, randomizing fewer than 30 units,3 but 
in recent years many large-scale trials have enrolled hundreds and even thousands of clusters.4–9 
Large-scale cluster-randomized trials have become increasingly common in the Global South to 
study real-world (pragmatic) interventions with a goal toward improved generalizability in 
diverse populations.2  Large trials are often expensive, so methods to improve their efficiency or 
gain additional insights from them can have an important impact on their value. Here, we assess 
geographic pair-matching as a logistically simple design strategy with the potential to increase 
the value of large cluster-randomized trials through improved efficiency (decreased sample size) 
and through unique insights from spatially explicit analyses of effect heterogeneity under 
minimal assumptions.  
 
In cluster randomized trials, random allocation within strata or pair-matched clusters can 
improve statistical efficiency if the variable(s) used to stratify or match are strongly correlated 
with the outcome.3 Restricted randomization is another strategy sometimes used in trials to 
ensure balance on baseline covariates, but since the restricted randomization process is generally 
ignored in the analysis it is unlikely to improve statistical efficiency.3 Pair-matching is an 
extreme form of stratification whereby investigators first create pairs of clusters that are similar 
by some measure, such as the baseline outcome, and then randomly allocate one cluster to 
receive an intervention and the other to serve as a control. The main benefits of pair-matching 
are that it ensures balance on characteristics used to match and that it can increase statistical 
power if trial outcomes are highly correlated within matched pairs.  
 
In large trials, the decision of whether to pair-match or stratify the randomization can have 
profound consequences for the conduct, power, and cost of the trial. Yet, there are mixed 
recommendations about pair-matching in the methods literature. Early methodologic studies 
generally recommended against pair-matching on the basis of analytic drawbacks and loss of 
statistical power through fewer degrees of freedom in the analysis, which can be an issue in 
small trials with fewer than 20 clusters.10–13 Later methodologic contributions drew on empirical 
examples from economic outcomes in Mexico’s Seguro Popular public insurance program, 
which used a large cluster-randomized, pair-matched design (74 matched pairs), and argued 
strongly for use of baseline characteristics to pair-match randomization based on considerations 
of statistical efficiency and robustness to unexpected events, such as co-interventions or 
epidemics.14–16  
 
A major logistical concern for pair-matching in large-scale trials is the availability of baseline 
information used to pair-match at the time of randomization.2 Any potential savings through 
reduced sample size due to pair-matching could be offset by costs imposed by obtaining the 
information used to match. In large-scale trials, enrollment and baseline measurements could 
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require months or even years to complete, and it is often impractical to delay randomization and 
treatment until the relevant information is available to match. Even if done, gains in statistical 
efficiency are not guaranteed from pair-matching. For example, members of our team conducted 
a cluster randomized trial of household water treatment in rural Bolivia in which 22 communities 
were pair-matched by the baseline incidence of the primary outcome, diarrhea,17 only to find 
afterward that baseline incidence was uncorrelated with incidence during the trial (and thus 
would not have improved efficiency).18 
 
Geographic location is one characteristic, known in advance, that can be used to pair-match and 
randomize clusters in real-time, without the need to census the entire study population before 
randomization. Location integrates many complex environmental and socio-demographic 
characteristics that often play a central role in human health and wellbeing,19 so pair-matching by 
location could balance myriad population characteristics, many that are unknown or 
unmeasurable. As field teams progress through enrollment, geographically proximate clusters 
can be paired and randomized. If a trial uses rolling enrollment with geographic pair-matched 
randomization, the design also pair-matches on calendar time — an important consideration for 
seasonally varying outcomes or interventions. Geographic pair-matching ensures that 
intervention and control groups are evenly balanced over a study region, which means that any 
independent programs or policy changes that could influence a portion of the study population 
defined by geography are evenly balanced between groups — one such co-intervention 
overlapped one of the trials we study here.20 Despite the potential value of geographic pair 
matching for cluster randomized trials, to our knowledge there have been no studies of its 
potential cost or benefit in the context of large-scale epidemiologic field trials.  
 
Here, we assessed the potential benefit of geographic pair-matching in cluster randomized trials, 
using empirical results from two trials of improved nutrition and WASH (water, sanitation, and 
handwashing) interventions in Bangladesh and Kenya: the WASH Benefits study.4,5,21 The trials 
were large in scale (>700 clusters each), used geographic pair-matching in the design, and 
measured a broad set of health and development outcomes among children born into study 
compounds. Our main objective was to assess the effects of geographic pair-matching on 
statistical efficiency across 14 outcomes spanning child growth, infectious disease, and cognitive 
development. We compared efficiency gains from geographic pair-matching with other 
randomization strategies and studied key drivers of efficiency gains with respect to outcome 
prevalence, outcome clustering, and the trials’ spatial scale to provide insight into the design of 
future large-scale trials. Additionally, we illustrate how geographic pair-matching enables 
estimation of effect heterogeneity by geographically continuous modifiers under minimal 
assumptions, which can be used to extrapolate trial effects to adjacent populations or help inform 
targeting of future health interventions.  
 
Results 
 
WASH Benefits study design, study population, and setting 
 
The WASH Benefits study included two cluster-randomized trials conducted between 2012-2016 
in Bangladesh and Kenya that enrolled pregnant mothers and their newborn children.4,5,21 Study 
populations were rural and selected to be representative of areas of each country with high 
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burdens of child growth faltering and diarrhea (Fig. 1a). Between 8-12 geographically 
proximate household compounds with pregnant mothers were grouped into clusters, and 8 
(Bangladesh) or 9 (Kenya) contiguous clusters were grouped into blocks for randomization. In 
each matched block, two clusters were randomized to control, and six clusters were randomized 
to different interventions (Fig. 1b). The Kenya trial included one additional cluster in each block 
for a passive control that included no visits beyond measurement (Methods). Interventions 
included household improvements for chlorine-based water treatment (W), compound-level 
sanitation (S), household handwashing with soap (H) or their combination (WSH). Additional 
groups received a nutritional intervention (N) or a combined package of all interventions 
(WSH+N, details in Methods). Newborn children were followed for two years, with outcomes 
measured at approximate ages 12 and 24 months. 
 
In the present analysis, we limited the study population to the geographically matched control 
and nutritional intervention clusters (N, WSH+N) to create a simplified, balanced design with 
which to focus on the methodologic aspects of geographic pair matching (Fig. 1c). The 
nutritional intervention promoted exclusive breastfeeding through age six months and continued 
breastfeeding through age 24 months plus complementary feeding practices and, from ages 6-24 
months, a daily small-quantity lipid based nutrient supplement (SQ-LNS) that included micro- 
and macronutrients. In Bangladesh, this included 90 matched pairs (360 clusters) and in Kenya 
this included 72 matched pairs (288 clusters). We included in the analysis 14 previously 
published endpoints from the trials that spanned child growth,4,5 child development22,23 and 
infectious disease4,5,24–26 and captured a broad variety of outcome types that might be measured 
in large-scale field trials (Supplementary Tables 1, 2). Sample sizes were similar within 
pairs in Bangladesh (Supplementary Fig. 2) and Kenya (Supplementary Fig. 3), with 
slightly more variability in Kenya. 
 
Efficiency gains resulting from geographic pair-matching 
 
A common parameter of interest in a trial is the mean difference between the intervention and 
control groups, which is often called the Average Treatment Effect (ATE). The relative 
efficiency of a pair-matched design compared to an unmatched design can be defined as the ratio 
of the variances of the ATE of the unmatched to pair-matched design, which reduces to a simple 
function of the outcome correlation between matched pairs (details in Methods):15,27  𝑅𝑒𝑓𝑓 =
(1 − 𝑟)!", where 𝑟 is the correlation between matched pairs. For 𝑟 = 0.5, the predicted relative 
efficiency is 2, suggesting that an unmatched trial would need to enroll twice as many clusters as 
a pair-matched trial to achieve the same level of precision. We used group means in each 
geographically pair-matched block to estimate the pair-wise outcome correlation. Additionally, 
ignoring pairs in the analysis of a pair-matched design is an unbiased estimate of the variance 
under an unmatched design.15 We could therefore estimate the observed relative efficiency by 
comparing the variance of the unmatched versus pair-matched analyses (Methods). 
 
Geographic pair-matching led to pair-wise outcome correlations that ranged from 0.15 to 0.65 in 
Bangladesh and 0.05 to 0.70 in Kenya, with corresponding relative efficiency gains that were 
substantial, ranging from 1.1 to 3.3 (Fig. 2a). Outcome rank and magnitude of pairwise 
correlation differed between countries. In Bangladesh, child growth outcomes had high pair-wise 
correlation and child development outcomes much lower correlations, while the reverse was 
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generally observed in Kenya. In both countries, particularly large efficiency gains were observed 
for Ascaris sp. and Giardia sp. infections and length-for-age z scores. 
 
Observed efficiency gains that compared the variance of the pair-matched estimator with an 
estimator that ignored pairs were very close, albeit slightly larger, than gains predicted based on 
weighted correlation of pair-wise outcomes (Fig. 2b), suggesting that the approximate 
relationship between correlation and relative efficiency worked well in these trials.  
 
Correlations that weighted pairs by their sample size were as high or higher than unweighted 
estimates, sometimes substantially higher in the Kenya trial (Supplementary Fig. 4a), 
consistent with a previous analysis of economic outcomes.15 Unlike the close relationship 
between observed and predicted relative efficiency using weighted correlation (Fig. 2b), 
observed relative efficiency gains were generally larger than predicted based on unweighted 
correlation (Supplementary Fig. 4b). This result reinforces the increased efficiency of 
analyses that weight by cluster size even when cluster sizes are relatively similar and 
independent of the outcome. 
 
Outcome characteristics and efficiency gains from geographic pair-matching 
 
Given the observed differences in efficiency gains between outcomes and countries, we sought to 
identify underlying features of the trials or outcomes that could help explain the observed 
differences. We focused on three features related to the spatial aggregation and variation in 
outcomes: outcome intra-cluster correlation (ICC), outcome spatial autocorrelation measured by 
Moran’s I, and outcome prevalence for binary, infectious disease outcomes. We estimated the 
ICC, Moran’s I, and prevalence using only control group clusters to avoid the potential influence 
of intervention. 
 
There was a positive relationship between efficiency gains and outcome ICC, spatial 
autocorrelation, and outcome prevalence (Supplementary Fig. 5). The results help illustrate 
that spatial variation in the outcome underlies efficiency gains achieved through geographic pair-
matching, but substantial variation in the relationships suggest that there are unique features of 
geography that contribute to efficiency gains that these summary statistics fail to capture.  
 
Trial size and efficiency gains from geographic pair matching 
 
Trials that enroll clusters over larger geographies might include more variation in outcomes 
through inclusion of more diverse populations or environmental characteristics. If true, we 
reasoned that pair-wise outcome correlation, and thus relative efficiency gains, would be higher 
for trials with larger geographic footprints. To study the effect of trial size, we conducted a 
resampling study that sampled with replacement geographically proximate matched pairs for trial 
sizes ranging from 10 to the maximum number of pairs in each country, 90 in Bangladesh, 72 in 
Kenya. For each trial size, we estimated the mean pair-wise outcome correlation and 
corresponding relative efficiency across replicates. The specific relationships estimated through 
the approach are empirical and particular to each outcome and trial.  
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Relative efficiencies > 1 were observed for nearly every outcome at any trial size, even as small 
as 10 geographically contiguous matched pairs (Fig. 3, with underlying correlation and 
uncertainty in Supplementary Figs. 6, 7). The trials used an approximate 1 km buffer 
between clusters to prevent spillover effects, so the number of proximate matched pairs roughly 
corresponds with the maximum distance between pairs in km in both trials, as a measure of the 
simulated trials’ geographic footprint (Supplementary Fig. 8). There was no obvious 
relationship between trial size and relative efficiency of geographic pair matching for outcomes 
that had smaller efficiency gains in the full sample. However, for outcomes with relative 
efficiency >1.4 in the full sample, relative efficiency of geographic pair matching increased with 
trial size and in many cases exceeded 1.8 at sample sizes of 50 or more matched pairs (Fig. 3).  
 
Geographic pair-matching versus stratification or pair-matching on primary 
outcomes 
 
Geographic pair-matched randomization results in a very fine stratification by geography. An 
intermediate design strategy, often favored in guidance on the design of cluster randomized 
trials,3,11,12 is to stratify randomization by geographic areas such as district or subdistrict, with the 
rationale that the stratification would still balance groups by geographic characteristics but would 
use fewer degrees of freedom and allow for greater flexibility in the analysis. We re-analyzed the 
trials, stratifying the analysis by subdistrict-level administrative units in each country — 19 zillas 
in Bangladesh, and 10 sub-counties in Kenya (shown in Fig 1a). This alternate analysis mimics 
a design with stratified randomization, albeit optimistically since pair-matching ensures a more 
even spatial distribution of control and intervention clusters than would be expected by chance 
under unrestricted randomization within subdistrict strata. We compared the variance of 
differences between intervention and control groups in the stratified analysis with the unstratified 
analysis to estimate relative efficiency.  
 
The subdistrict stratified analysis improved efficiency for most outcomes compared to an 
unadjusted analysis, but for nearly every outcome the pair-matched estimator had the lowest 
variance (highest relative efficiency)— in many cases, the subdistrict stratified analysis was 
substantially less efficient compared with the pair-matched analysis (Fig. 4). For five outcomes 
in Bangladesh, all efficiency gains were lost with subdistrict stratification. These results show 
that fine stratification by geography obtained through pair-matching has potential to further 
improve efficiency compared with a design that stratifies on small administrative units, which 
implies there is substantial outcome variation at spatial scales below subdistrict.  
 
Another alternative randomization strategy is to pair-match clusters using baseline measures of 
the primary outcome.3 The rationale is that a baseline measure will likely be correlated with the 
primary outcome and would thus improve efficiency. If pair-matching by a baseline covariate 
results in perfect balance in the covariate between groups, then the within-pair outcome 
correlation can be approximated by the squared correlation between the covariate and the 
outcome (Methods).10 We used this relationship to approximate the relative efficiency that could 
be obtained had each trial pair-matched by mean length-for-age z, a primary outcome. The 
estimates are optimistic since they rely on two strong assumptions: (i) correlation between 
length-for-age z and the other outcomes measured contemporaneously at the end of the trial is 
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the same as the correlation between each cluster’s mean baseline length-for-age z and other 
outcomes measured 2 years later and (ii) perfect matching on length-for-age z.  
 
We estimated that had the trials pair-matched exactly on cluster-level mean length-for-age z, 
there would be large efficiency gains for weight-for-age z (highly correlated with length-for-age 
z) but there would have been no efficiency gains for more than half of the outcomes we studied. 
Compared with relative efficiency expected under a pair-matched design using length-for-age z 
to match, we found that geographic pair matching led to substantially higher efficiency gains for 
all but one outcome (Supplementary Fig. 9). This result suggests that if trials wish to 
optimize their design around a single outcome or a small number of highly correlated outcomes 
then pair-matching by that outcome at baseline could be superior to geographic pair-matching, 
but that geographic pair-matching leads to far broader efficiency gains across diverse outcomes.  
 
Estimates of spatially varying effect heterogeneity 
 
Pair-level treatment effects estimated in matched trials provide a unique, unbiased outcome 
measure not possible under stratified or unrestricted randomization.15 Here, we show how 
geographic pair-matching enables semi-parametric estimates of spatial effect heterogeneity, 
which would not be possible in unmatched trials without more elaborate, parametric modeling. 
We chose one illustrative outcome in each trial where the nutrition intervention led to lower 
levels of infection and where there was spatial heterogeneity in control group outcomes — 
diarrhea in Bangladesh4 and Ascaris sp. infection in Kenya.26 These were not pre-specified 
analyses, but instead are intended to demonstrate the methodology. We used a universal kriging 
approach to spatially interpolate pair-level average treatment effects. The model makes no 
assumptions except for smoothness in the treatment effects across geography and spatial 
outcome correlation following a Matérn function (Methods). From the geostatistical model fit, 
we simulated predictions at each location to estimate an approximate posterior probability of 
treatment benefit throughout each study region — a measure that combines the magnitude and 
uncertainty of predicted treatment effects. 
 
Diarrhea prevalence varied over the Bangladesh study region (Fig. 5a), with spatially varying 
average treatment effects that were larger in regions with higher prevalence (Fig. 5b). Posterior 
probabilities of a nutrition benefit showed highest probability in the northeastern part of the 
study region (Fig. 5c). Ascaris sp. infection in control clusters was spatially heterogeneous in 
the Kenya trial (Fig. 5d), but there was minimal heterogeneity in average treatment effects (Fig. 
5e) or posterior probabilities of a treatment benefit (Fig. 5f) which suggests a more 
homogeneous effect throughout the study region. 
 
A natural extension of the previous analyses in pair-matched designs is to examine heterogeneity 
in pair-level effects by spatially varying covariates. In principle, geo-located pair-level 
differences can be spatially joined to any continuous surface such as environmental covariates 
measured through remote sensing or spatially modeled sociodemographic layers. Population 
remoteness from urban areas is one such potential effect modifier, since remoteness could 
influence both exposure to environmentally mediated pathogens and access to treatment once 
infected. We joined pair-level estimates to 1 km gridded surfaces of modeled travel time to cities 
in 201528 — in Bangladesh, we estimated travel time to Dhaka using the underlying friction 
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surface29 because Bangladesh’s dense settlement pattern meant there was almost no 
heterogeneity in the previously generated travel time to cities layer.  
 
There was substantial variation in pair-level differences in Bangladesh, but non-parametric, 
locally weighted regression fits show higher diarrhea prevalence and larger reductions in the 
nutrition group in pairs further from Dhaka (Fig. 6). In Kenya, Ascaris sp. prevalence was lower 
in more remote clusters, and average treatment effects were slightly larger among pairs at 
intermediate distances of 10-20 minutes from the nearest city, albeit substantial variation in pair-
level differences (Supplementary Fig. 10).  
 
Discussion 
 
Across a broad set of child health outcomes measured in large-scale cluster randomized trials in 
Bangladesh and Kenya, we found that geographic pair-matching led to substantial improvements 
in statistical efficiency. Of 26 outcomes assessed across the two trials, all had positive efficiency 
gains and 11 had relative efficiencies between 2.0 and 3.3, meaning an unmatched trial would 
have needed to enroll at least 2 to 3 times as many clusters to achieve the same level of precision 
as the pair-matched design. In large-scale biomedical field trials, such differences in sample size 
are non-trivial. In the Bangladesh trial, for example, that would have meant 180 to 270 additional 
clusters (1,440 to 2,160 newborns) per group, a prohibitive increase in scale based on logistics 
and costs. Additionally, we demonstrated how geographic pair-matched randomization enabled 
unique, semi-parametric analyses of spatial effect heterogeneity not possible through an 
unmatched design. Effect heterogeneity is typically relegated to exploratory, secondary analyses 
of cluster randomized trials. Yet, geographically explicit treatment effect estimates, even if 
exploratory, can help inform subsequent scale-up of programs that often follow large-scale trials 
of interventions that prove effective, as has recently been recommended for the nutritional 
intervention studied here.30 
 
Our empirical results confirm the theoretical predictions for efficiency gains through pair-
matched randomization and provide new insights into the unique benefits of matching by 
geography in large-scale trials. The Bangladesh and Kenya trials’ pair-matched design was 
inspired by theoretical and empirical arguments developed in the context of public policy and 
health economics, which showed large benefits of pair-matching (not by geography) in Mexico’s 
Seguro Popular universal health insurance trial.14–16 Imai et al. concluded that “randomization 
by cluster without prior construction of matched pairs, when pairing is feasible, is an exercise in 
self-destruction. Failing to match can greatly reduce efficiency, power and robustness, and is 
equivalent to discarding a large portion of experimental data or wasting grant money and 
investigator effort.”15 Near-universal increases in statistical efficiency demonstrated herein 
support this strong claim, and provide new results for child health outcomes where all but one 
pair-wise correlations exceeded the “break-even” correlation for a design with as few as 20 
clusters, or 10 matched pairs (Supplementary Fig. 4a).10 Unique to geographic pair-matching, 
we showed that efficiency gains scale with a trial’s geographic footprint, with higher levels of 
outcome clustering (ICC, Moran’s I), and with higher outcome prevalence (binary outcomes). 
These results suggest that geographic pair-matching capitalizes on spatial variation in underlying 
sociodemographic and environmental conditions that ultimately influence child growth, 
development, and infectious disease transmission. The consistency of results across diverse 
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outcomes from two trials in different populations suggests generalizability of the empirical 
findings. Although we present results from only two settings, the observed, spatial clustering of 
health determinants and outcomes in across myriad populations19 suggests that large 
epidemiologic field trials with spatially heterogeneous outcomes would likely benefit from 
geographic pair matching in the design. 
 
Logistical considerations are magnified in large-scale trials, and any added complexity in a trial’s 
design can make its logistics more difficult, threatening its internal validity. Pair-matching using 
geographic location has the key logistical advantage that it is immediately available and requires 
no baseline measurements in the study population. An additional benefit of geographic pair-
matching is that geography alone captured variation across diverse child health outcomes in the 
contexts we studied. For complex interventions, such as the nutritional and environmental 
improvements delivered in the WASH Benefits trials, there are often many outcomes of interest 
beyond the trial’s primary endpoint. Geographic pair-matching leads to much broader and, in 
general, larger efficiency gains across outcomes compared to gains expected under pair-matching 
by length-for-age z, a primary outcome (Supplementary Fig. 9). Moreover, we found that 
pair-matched randomization using each cluster’s precise location led to far larger efficiency 
gains for most outcomes than if the trials used subdistrict stratification, which suggests stratified 
randomization, even within small administrative areas, leaves substantial power on the table 
(Fig. 4).  
 
Geographic pair-matching was universally beneficial with respect to efficiency gains in the 
outcomes we studied, but the magnitude of efficiency gains is unlikely to be known at the design 
stage of the trial. These analyses suggest that efficiency gains are more likely in larger scale 
trials, and if information is known about outcome spatial heterogeneity (ICC, Moran’s I) then 
outcomes with more clustering are more likely to benefit from geographic pair-matching. 
Alternatively, trials that use geographic pair-matching could ignore potential efficiency gains at 
the design stage for primary outcomes and use it as an insurance strategy for bias and power. The 
broader benefits beyond primary outcomes may be useful given that trials are rarely 
independently powered for secondary outcomes. Indeed, both WASH Benefits trials used 
geographic pair-matching in the randomization, but their sample size calculations for primary 
outcomes ignored pair-matching to be conservative, given this uncertainty.21  
 
Semi-parametric analyses of spatial effect heterogeneity illustrated how geo-located, pair-level 
estimates of the ATE, albeit noisy on their own, can be smoothed to create a continuous 
treatment effect surface and can be joined to any spatially continuous covariate to assess effect 
heterogeneity using a simple, locally weighted regression. In principle, such analyses at fine 
spatial scales could be done without geographic pair-matching but would require fitting separate 
outcome models for each group (intervention, control) and then taking the difference between 
model fits to estimate the ATE — an approach that would have more variability because of the 
joint uncertainty in the separate outcome processes. An intermediate strategy that averages 
cluster-level outcomes within well-defined geographic units (such as subdistricts) would be 
possible under simple randomization but would lose some of the very fine scale information that 
a continuously smoothed ATE surface provides if there is variation within administrative areas, 
as there was in the case of diarrhea in Bangladesh (Fig. 5b).  
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Our results identified situations where geographic pair-matching might be less beneficial. Paired 
outcome correlations estimated in these trials would not favor geographic pair-matching with 
fewer than 10 pairs. Pair matching did not appreciably improve efficiency for binary outcomes 
with prevalence below 5%, likely due to minimal variation in the outcome (Supplementary 
Fig. 5c). Future studies could assess whether geographic pair-matching improves efficiency for 
rare outcomes in trials with larger cluster sizes or more longitudinal measurements within 
clusters, effectively providing more information to estimate cluster-level means.  
 
There are some caveats to these analyses. Cluster sizes were small in both trials and within-pair 
sample sizes were generally well balanced between groups by design. It is therefore unclear how 
well our results would generalize to trials with larger clusters that have hundreds or thousands of 
measurements or to trials with large between-group differences in paired cluster sizes. Ensuring 
similar cluster sizes within pairs has theoretical advantages in terms of bias in the non-parametric 
estimator,15 and validity of permutation tests in matched-pair designs31 so should be preferred in 
matched designs whenever feasible. Another caveat is that all efficiency comparisons focused on 
non-parametric, cluster-level estimators of the ATE. Regression-based estimators that use 
individual-level responses with appropriate variance corrections provide an alternative analysis 
approach,3,15  but since we used weighted estimators we would not expect appreciable 
differences in variance estimates. Additionally, we did not study the effect of geographic pair-
matching on efficiency of permutation tests.32,33 Inference based on the paired t test and the 
permutation test is very similar for large sample sizes anticipated in large-scale cluster 
randomized trials, which we demonstrated for primary outcomes in both trials,4,5 but it may be an 
interesting topic for future studies. Finally, the enrollment and pair-matching of geographically 
proximate clusters occurred sequentially over the course of a year, meaning that clusters were 
effectively pair-matched on geography and calendar time. This means that observed spatial 
heterogeneity could also embed seasonal heterogeneity for seasonally-varying outcomes, such as 
diarrhea in Bangladesh. Trials that wish to separately study spatial heterogeneity and temporal 
heterogeneity would need to measure geographically pair-matched clusters in a more random 
order, rather than sequentially over a study region. 
 
In conclusion, this empirical analysis of geographic pair-matching in large-scale trials of in rural 
Bangladesh and Kenya confirmed predictions based on statistical theory and demonstrated 
substantial, universal gains in statistical efficiency across child health outcomes that were often 
the equivalent of increasing the sample size by 2-3 times compared with an unmatched design. 
Geographically pair-matched designs enabled estimation of continuous effect surfaces and effect 
heterogeneity by continuously varying spatial covariates with almost no modeling assumptions 
— a valuable extension in large-scale trials where inference at smaller geographic scales may be 
warranted. Based on these substantial benefits with few logistical or analytical costs, geographic 
pair-matching should be considered in the design of future large-scale, cluster randomized trials. 
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Methods 
 
Ethics Statement 
 
Trial protocols were reviewed and approved by ethical review committees at the International 
Centre for Diarrhoeal Disease Research, Bangladesh (PR-11063), the Kenya Medical Research 
Institute (protocol SSC-2271), University of California, Berkeley (protocols 2011-09-3652, 
2011-09-3654), and Stanford University (protocols 23310, 25863). All participants provided 
informed consent.  

 
Study design 
 
The WASH Benefits study protocol and primary outcome papers include details of the design, 
rationale, and intervention procedures.4,5,21 The Bangladesh and Kenya trials shared overall 
objectives and major design features, but were designed as separately powered, replicated trials. 
In Bangladesh, field teams identified groups of 8 pregnant mothers in their second trimester 
living geographically close enough for a local health promotor to visit them regularly. This 
formed a cluster, and randomization was at the cluster level to enable a single health promoter to 
deliver a consistent intervention to all 8 pregnant mothers and their children. The field team 
traveled at least 1 km before starting a new cluster to prevent between-cluster spillover effects.34 
Geographically proximate blocks of 8 clusters were pair-matched and randomized to a double-
sized control group (2 clusters) or one of 6 intervention groups, described below. The 
Bangladesh trial included 90 blocks of 8 clusters, for a total of 720 clusters (Fig. 1a).  
 
In Kenya, the design was almost identical to Bangladesh, but clusters were slightly larger (12 
pregnant mothers per cluster on average) and geographically pair-matched blocks included 9 
clusters rather than 8 to allow for a passive control group. In Kenya, the double-sized control 
group included monthly mid-upper arm circumference measurements and the passive control 
group included no visits to assess whether visits alone influenced outcomes (there was no 
difference).5 The Kenya trial included 89 blocks of up to 9 geographically pair-matched clusters, 
but 21 blocks were incomplete so the trial enrolled a total of 702 clusters (Fig. 1a). 
 
The six intervention groups included: household water treatment (W), improved latrines for all 
households in intervention compounds (S), improved handwashing facilities with soap at the 
latrine and kitchen (H), improved nutrition for birth cohort children (N), combined WSH and 
combined WSH+N. The improved nutrition intervention included promotion of Infant and 
Young Child Feeding recommendations such as exclusive breastfeeding through age 6 months 
and continued breastfeeding through age 24 months, plus a daily Small Quantity Lipid Based 
Nutrient Supplement (SQ-LNS) from ages 6 to 24 months. Interventions primarily focused on 
children in the birth cohort and their household. Households were located within multiple-
household family compounds and the sanitation intervention improved latrines for the entire 
compound. For all interventions, community health promotors who lived in study communities 
delivered an in-depth behavior change program that was developed over several years of pilot 
studies ahead of the main trials. 
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Since our focus in this analysis was on design methodology and statistical properties of 
geographically pair matched designs, we restricted the analysis to clusters in the double-sized 
control group and those that received the nutrition intervention (N, WSH+N). This created a 
balanced design within matched pairs, with each geographic pair including 4 clusters (Fig. 1c). 
All 90 blocks in the Bangladesh trial were complete but in the Kenya trial we limited the analysis 
to 72 pair-matched blocks that were complete with respect to the 4 clusters of interest. Clusters 
that received the nutrition intervention were analyzed as a single intervention group as there has 
been no evidence for differences between the N and WSH+N group for any outcome we 
included, with outcome-specific references provided in the following section. 

 
Outcome measurements 
 
The analysis included 14 previously published endpoints in the trials (Supplementary Tables 
1,2). We chose outcomes that were measured in the full birth cohort (not a substudy), included 
continuous and binary measures, and represented a broad range of child health outcomes 
measured in biomedical field trials (growth, development, infectious diseases). The number of 
measurements varied by outcome due to slightly different measurement strategies for each. 
 
Child length, weight, and head circumference measurements were included from each trial’s 
final visit when children were approximately 24 months old. Anthropometric measures were 
converted into length-for-age z, weight-for-age z, weight-for-height z, and head circumference z 
using the median of triplicate measurements, child’s age in days, and the 2006 World Health 
Organization reference standards.4,5,35  
 
The trials used the Extended Ages and Stages Questionnaire (EASQ) to measure gross motor, 
communication, and personal-social skills when children were approximately 24 months old. 
EASQ scores in the control group were normalized (mean 0, standard deviation 1) to create z 
scores within 2-month age bands for the study population.22,23 The Bangladesh trial additionally 
measured language development using a locally validated version of the MacArthur Bates 
Communicative Development Inventory (CDI) for verbal comprehension and expression.22 
 
Both trials measured diarrhea using caregiver reported symptoms when children were 
approximately 12 and 24 months old. Symptoms were measured using a 7 day recall period and 
diarrhea was defined as three or more loose or watery stools in 24 hours or a single stool with 
blood.4,5 The trials measured parasite infection in whole stool among birth cohort children when 
they were approximately 24 months old plus older children living in study compounds: in Kenya 
up to one older child (ages 3-15 years) and in Bangladesh up to two older children (ages 3-12 
years), with preference given to older siblings living in the birth cohort child’s household.25,26 
Stool specimens were tested for soil transmitted helminth infections including: Ascaris 
lumbricoides, Trichuris trichiura, and hookworm (Ancylostoma duodenale, Necator americanus) 
using the double-slide Kato-Katz technique. Stool specimens were additionally tested for 
Giardia duodenalis infection using qPCR in Bangladesh and ELISA in Kenya.24,26  

 
Relative efficiency as a function of pair-wise outcome correlation 
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We defined relative efficiency as the ratio of the variance of group differences in a design with 
unrestricted randomization versus a design with matched pair randomization. For outcome 𝑌# 
measured in the control group with variance 𝜎#$ and 𝑌" measured in the intervention group with 
variance 𝜎"$, in an unmatched design  𝑌# and 𝑌" are independent and so the variance of the 
difference is 𝜎%$ = 𝜎"$ + 𝜎#$. Pair-matching can induce correlation between outcomes, such that 
the variance of the difference is then 𝜎&$ = 𝜎"$ + 𝜎#$ − 2𝐶𝑜𝑣(𝑌", 𝑌#). Defining the pair-wise 
correlation as, 𝑟 = 𝐶𝑜𝑣(𝑌", 𝑌#)/(𝜎"𝜎#), the variance of matched pair differences is 𝜎"$ + 𝜎#$ −
2𝜎"𝜎# ⋅ 𝑟. If the variance is equal in the two groups, the unmatched variance is 2𝜎$ and the 
matched pair variance is 2𝜎$(1 − 𝑟), with relative efficiency: 𝑅𝑒𝑓𝑓 = 𝜎%$/𝜎&$ = (1 − 𝑟)!". If 
variances are unequal in the two groups, 𝑅𝑒𝑓𝑓 = (1 − 𝑥)!" where 𝑥 = 2𝐶𝑜𝑣(𝑌", 𝑌#)/(𝜎"$ +
𝜎#$). Thus, relative efficiency scales with the correlation between the paired outcomes. Note that 
this simple relationship holds under a model for the paired t test,27 and for non-parametric 
estimators of pair-matched differences.15 Furthermore, 𝑟 can represent the unweighted 
correlation or weighted correlation using, as in this study, the number of individuals measured in 
each pair as weights. Our primary analyses favored a weighted correlation since it aligned much 
more closely with empirical efficiency gains (Fig. 2b, Supplementary Fig. 4b).  
 
To see the relationship between relative efficiency and trial sample size, let 𝑆 be the sample 
standard deviation of cluster-level outcomes with 𝑚% clusters enrolled in an unmatched design 
(𝜎%$ = 𝑆$/𝑚%) and 𝑚& clusters enrolled in a pair-matched design (𝜎&$ = 𝑆$/𝑚&). Assume equal 
variance in the intervention and control group and set the variances of the unmatched and pair-
matched designs equal: 2𝜎%$ = 2𝜎&$(1 − 𝑟),  2

'!

("
= 2 '!

(#
(1 − 𝑟), and 𝑚% = 𝑚&(1 − 𝑟)!". The 

number of clusters required in an unmatched design, 𝑚%, is thus the number required in a pair-
matched design 𝑚& multiplied by the relative efficiency 𝑅𝑒𝑓𝑓 = (1 − 𝑟)!". 
 
We estimated group means for control and nutritional intervention groups within matched pairs 
(90 in Bangladesh, 72 in Kenya) and then estimated a weighted correlation between outcomes 
with weights equal to the total number of children in the matched pair. To estimate 95% 
confidence intervals for weighted correlation of within-pair outcomes and corresponding relative 
efficiency, we used a non-parametric bootstrap resampling approach, resampling pairs with 
replacement and 1,000 iterations.  
 
For labeling in figures, we also computed the “break-even” correlation for different trial sizes — 
the minimum correlation in paired outcomes matching must induce for the matched pair design 
to be able to detect smaller differences compared with an unmatched design.10 We assumed 80% 
power and 5% Type I error in the calculation. For example, the break-even correlation for 10 
pairs is r = 0.11.  
 
Relative efficiency estimates from pair-matching on other variables 
  
Many trials might consider pair-matching on a baseline covariate	𝑥,  such as a baseline measure 
of the primary outcome, to ensure balance and gain efficiency in the primary analysis. If the 
primary outcome is denoted 𝑦, then under a perfect match between clusters on 𝑥, the within-pair 
outcome correlation is equal to the squared correlation between 𝑥 and 𝑦:10  𝑟)) = 9𝑟*):

$. We 
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estimated the correlation in pair level means in control clusters for all outcomes included in the 
analysis.  
 
To provide an estimate of the efficiency gains possible under pair-matching by the trials’ primary 
outcome, length-for-age z, we translated the correlation between length-for-age z score (𝑥) and 
each outcome (𝑦) to an estimate of the within-pair outcome correlation using the above 
relationship and then to relative efficiency compared with an unmatched design: 91 − 𝑟)):

!". 
The estimates of relative efficiency are approximate and optimistic because they make two 
strong assumptions: perfect matching in cluster-level means of length-for-age z, and the 
correlation between length-for-age z and other outcomes measured contemporaneously is the 
same as if we had access to true baseline means in length-for-age z, measured two to three years 
in the past. 

 
Relative efficiency of pair-matched and subdistrict stratified estimators 
 
We compared empirical variances of the ATE estimated in the trials using different estimators: 
pair-matched analysis, an unmatched analysis, and a subdistrict stratified analysis. Our parameter 
of interest was the mean difference in outcomes between children that received the nutritional 
intervention, 𝑌", versus those that did not, 𝑌#: 𝜓 = 𝐸[𝑌" − 𝑌#]. Non-parametric estimators and 
their variance for pair-matched and unmatched designs follow those proposed by Imai and 
colleagues.15  Given a pair-matched design, ignoring the pair-matching in the analysis provides 
an unbiased estimate of the variance under an unmatched design.15 
 
For 𝑚 matched pairs, 𝑐+ clusters in matched pair 𝑘, and 𝑛,+ children in cluster 𝑗 and pair 𝑘, the 
sample ATE is: 𝜓-./0 = "

1
∑ ∑ ∑ 9𝑌"	3,+ − 𝑌#	3,+:

1$%
34"

5%
,4"

(
+4" . 

A non-parametric, unbiased estimator is the weighted average of pair-level differences in group 
means. The treatment assignment of cluster 𝑗 in matched pair 𝑘 is 𝐴,+ (1 intervention, 0 control): 
 

𝜓E-./0 =
1

∑ 𝑤+(
+4"

⋅ G𝑤+

(

+4"

HI
∑ 𝑛,+𝐴,+ ∑ 𝑌3,+

1$%
34"

5%
,4"

∑ 𝑛,+𝐴,+
5%
,4"

J − I
∑ 𝑛,+91 − 𝐴,+:∑ 𝑌3,+

1$%
34"

5%
,4"

∑ 𝑛,+91 − 𝐴,+:
5%
,4"

JK 

 
with weights defined as the number of children in the matched pair, 𝑤+ = ∑ 𝑛,+

5%
,4" .  A 

conservative estimate of the variance is: 
 
𝑉𝑎𝑟(𝜓-./0 ) =

𝑚
(𝑚 − 1)𝑛$

⋅ G N𝑤+ HI
∑ 𝑛,+𝐴,+ ∑ 𝑌3,+

1$%
34"

5%
,4"

∑ 𝑛,+𝐴,+
5%
,4"

J − I
∑ 𝑛,+91 − 𝐴,+:∑ 𝑌3,+

1$%
34"

5%
,4"

∑ 𝑛,+91 − 𝐴,+:
5%
,4"

JK −
𝑛𝜓E-./0

𝑚 O

$(

+4"

 

 
In a study with a total of 𝑛 children and 𝑐 clusters, and 𝑛, children in cluster 𝑗, we defined the 
unmatched ATE for potential outcomes of child 𝑖 in cluster 𝑗 as: 𝜓-./% = "

1
∑ ∑ 9𝑌"	3, −

1$
34"

5
,4"

𝑌#	3,:. The non-parametric estimator is: 
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𝜓E-./% =
1
𝑛GGQ𝐴,𝑌3, − 91 − 𝐴,:𝑌3,R

1$

34"

5

,4"

 

 
A conservative estimate of the variance is a function of variability in weighted cluster level 
means: 𝑉𝑎𝑟(𝜓-./% ) = $5

1!
Q𝑉𝑎𝑟9𝑤S, ⋅ 𝑌6"TTTT: + 𝑉𝑎𝑟(𝑤S, ⋅ 𝑌6#TTTT)R, where 𝑌67TTTT = ∑ 𝑌3,7/𝑛,

1$
34"  for 𝑎 = 0,1. 

We used weights equal to the cluster size, 𝑤S, = 𝑛,. 
  
As a final comparator, we considered a subdistrict stratified ATE, defined as  𝜓-./' =
∑ [𝐸(𝑌|𝐴 = 1, 𝑆 = 𝑠) − 𝐸(𝑌|𝐴 = 0, 𝑆 = 𝑠)] ⋅ 𝑃𝑟(𝑆 = 𝑠)8  for geographic subdistricts 𝑆 that 
included 19 zillas in Bangladesh (administrative level 3) and 10 sub-counties in Kenya 
(administrative level 2). These are the smallest administrative levels recognized in each country 
above the village level. We estimated this parameter using weighted least squares regression of 
cluster level means on a treatment indicator and subdistrict level indicators, with weights equal 
to the number of children in each cluster. We used the variance on the treatment coefficient in 
the model for estimates of relative efficiency. As an internal consistency check, we confirmed 
that a similar model, stratified on matched pair rather than subdistrict (equivalent to a weighted, 
paired t test), provided identical point estimates and highly similar variance to the nonparametric, 
pair-matched estimator. 
  
For each outcome, we defined the observed relative efficiency as the ratio of the variance 
estimated in the unmatched analysis to the variance of the pair-matched estimator or the 
subdistrict-adjusted estimator. We then compared the observed relative efficiencies with one-
another, and with the relative efficiency predicted by weighted correlation estimated using pair-
matched outcomes, as defined in the previous section. 
 
Influence of trial size on efficiency gains through geographic pair-matching 
  
To study the effect of trial size on relative efficiency gains through geographic pair-matching, we 
conducted a resampling analysis that used a modified bootstrap to down sample the trial, using 
smaller, geographically contiguous subsamples to represent smaller trials. We identified 
subsamples of size 𝑠 = 10, 15, 20, … ,𝑚 pairs in increments of 5 (m = 90 in Bangladesh, m = 72 
in Kenya). For subsample of size 𝑠, we randomly sampled with replacement a matched pair and 
identified the 𝑠 − 1 geographically closest pairs. We estimated the weighted correlation of pair-
matched outcomes for each randomly selected, geographically contiguous subsample, and the 
corresponding relative efficiency using the relationship defined above, 𝑅𝑒𝑓𝑓 = (1 − 𝑟)!". We 
repeated the modified bootstrap resampling process 1,000 times, and summarized the mean 
relative efficiency and the maximum distance between pairs (in km) across bootstrap replicates 
for each outcome and subsample of size 𝑠. 
 
Estimation of outcome intra-cluster correlation and spatial clustering 
  
We examined outcome intra-cluster correlations (ICC), defined as ratio of between-cluster 
outcome variance to the total variance. A higher ICC indicates higher outcome correlation within 
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clusters. We fit an intercept-only linear regression model on individual-level outcomes that 
included a random effect for pair. We estimated the ICC as the between-pair variance divided the 
total variance, and estimated its 95% confidence interval using a non-parametric bootstrap with 
1,000 iterations.36 We characterized global spatial clustering in outcomes using Moran’s I as a 
measure of spatial autocorrelation, using the inverse-distance between pair centroids as 
weights.37,38 Estimates of the ICC and Moran’s I were restricted to control clusters only to avoid 
the potential influence of intervention on each measure. 
 
Estimation of spatially varying effect heterogeneity 
  
A unique feature of pair-matched cluster randomized trials is that each pair provides an estimate, 
albeit noisy, of the average treatment effect. In geographic pair-matched designs, pair-level 
effects are georeferenced by their location, enabling non-parametric or semi-parametric 
summaries of geographic heterogeneity in treatment effects that would not be possible without 
the pair-matching. We used universal kriging, a semi-parametric smoothing technique, to 
spatially smooth pair-level effect estimates for one outcome in each trial: diarrhea in Bangladesh 
and Ascaris sp. infection in Kenya. We chose these two outcomes from the large list studied to 
demonstrate the technique because both outcomes exhibited spatial heterogeneity in underlying 
prevalence and were reduced by the nutrition intervention in the trials. 
  
The kriging model conditioned on the observed pair-level treatment effects and allowed them to 
vary by longitude (𝑥) and latitude (𝑦), with pair-level outcomes weighted by the number of 
children in each pair: 𝐸Q𝜓E-./0 	|	𝑥, 𝑦R = 𝛼 + 𝛽"𝑥 + 𝛽$𝑦 + 𝑆(𝑥, 𝑦). The 𝑆(𝑥, 𝑦) term allowed for 
spatial correlation in the outcomes using a Gaussian process with Matérn covariance function 
with smoothness 𝜈 and scale 𝜌 parameters. We fit the model with maximum likelihood.39 The 
only assumptions of the approach are that the outcome surface is smooth and the spatial outcome 
correlation follows the Matérn function — thus, inference relies principally on the pair-matched 
randomization and not on the statistical model. To visualize spatial heterogeneity in the 
underlying outcome prevalence we fit the same model to pair-level control group means.  
 
Conditional on the geostatistical model parameter fit, we simulated 1,000 predicted treatment 
effects at each location over a fine grid of the study area,39 within 10 km of matched pair 
centroids. At each location, we used the proportion of 1,000 simulated outcomes where there was 
a reduction in prevalence due to intervention as an estimate of the posterior probability of benefit 
Pr(𝜓-./ < 0	| 𝑥, 𝑦) — a quantity that combines the magnitude of effect and conveys uncertainty 
in the predictions.40  

 
Estimation of effect heterogeneity by travel time to cities 
 
To demonstrate how geographic pair matching allows for non-parametric assessment of effect 
heterogeneity by continuous, spatially varying covariates, we extended the effect heterogeneity 
analyses of diarrhea in Bangladesh and Ascaris sp. infection in Kenya. We considered travel time 
to cities as an example effect modifier because of its potential influence on access to treatment 
(antibiotics, anthelmintics) or exposure to environmentally mediated pathogen transmission. 
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We joined pair-level differences to modeled surfaces of travel time to cities in 2015.28 In 
Bangladesh, there was almost no heterogeneity in modeled travel time to cities given rural 
Bangladesh’s dense settlement pattern so we estimated travel time to Dhaka using the underlying 
friction surface and a previously published algorithm.29 We joined the spatial layers to mean 
prevalence in the control clusters and pair-level differences, and then summarized the 
relationship between continuous travel time and mean outcomes, along with approximate (t 
distribution) pointwise standard errors, using a locally weighted regression with default 
parameters in R.41  
 
Data and materials availability 
 
De-identified data and replication files required to conduct the analyses are available through the 
Open Science Framework (https://osf.io/cxb5e). Analyses used R statistical software (version 
4.2.2, 2022-10-31 "Innocent and Trusting"). Geographic location data required to make maps 
and conduct spatial analyses are not publicly available to protect participant confidentiality but 
are available from the corresponding author upon request, pending appropriate human subjects 
review and approval. 
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