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Abstract 

Aims/Hypothesis: Individuals with T2D are at an increased risk of developing cardiovascular 

complications; early identification of individuals can lead to an alteration of the natural history of 

the disease. Current approaches to risk prediction tailored to individuals with T2D are 

exemplified by the RECODe algorithms which predict CVD outcomes among individuals with 

T2D. Recent efforts to improve CVD risk prediction among the general population have included 

the incorporation of polygenic risk scores (PRS). This paper aims to investigate the utility of the 

addition of a coronary artery disease (CAD), stroke and heart failure risk score to the current 

RECODe model for disease stratification.  

Methods: We derived PRS using summary statistics for ischemic stroke (IS) from the coronary 

artery disease (CAD) and heart failure (HF) and tested prediction accuracy in the Penn Medicine 

Biobank (PMBB). A Cox proportional hazards model was used for time-to-event analyses within 

our cohort, and we compared model discrimination for the RECODe model with and without a 

PRS using AUC.  

Results: The RECODe model alone demonstrated an AUC [95% CI] of 0.67 [0.62-0.72] for 

ASCVD; the addition of the three PRS to the model demonstrated an AUC [95% CI] of 0.66 

[0.63-0.70]. A z-test to compare the AUCs of the two models did not demonstrate a detectable 

difference between the two models (p=0.97) 

Conclusions/Interpretation: In the present study, we demonstrate that although PRS associate 

with CVD outcomes independent of traditional risk factors among individuals with T2D, the 

addition of PRS to contemporary clinical risk models does not specifically improve the 

predictive performance as compared to the baseline model. 

 

Research in Context: 

• Early identification of individuals with T2D who are at greatest risk of cardiovascular 
complications can lead to targeted intensive risk-factor modification with the aim of 
altering the natural history of the disease. 

• Current approaches to risk prediction tailored to individuals with diabetes are exemplified 
by the RECODe algorithms which predict both individual and composite CVD outcomes 
among individuals with T2D. 
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• We sought to determine if the addition of a polygenic risk score to current clinical risk 
models improve predictive modeling of adverse cardiovascular events in individuals with 
type II diabetes. 

• We demonstrate that although PRS associate with CVD outcomes independent of 
traditional risk factors among individuals with T2D, the addition of PRS to traditional, 
validated models does not specifically improve the predictive performance as compared 
to the base model.  

• RECODe demonstrated modest discrimination potential at baseline (AUC = 0.66). As 
such, the lack of improved risk prediction may reflect the performance of the RECODe 
equation in our cohort as opposed to lack of PRS utility. 

• Current performance of clinical risk models appears modest. Although PRS doesn’t 
meaningfully improve performance, there is still substantial opportunity to improve risk 
prediction. 

 

Introduction 

Projected to impact up to 629 million people by 2045, Type-2 diabetes (T2D) is a leading 

cause of morbidity globally.1 Individuals with T2D are at increased risk of developing a wide 

range of cardiovascular complications.2 Early identification of individuals with T2D who are at 

greatest risk of cardiovascular complications can lead to targeted intensive risk-factor 

modification with the aim of altering the natural history of the disease. Current approaches to 

risk prediction tailored to individuals with diabetes are exemplified by the Risk Equations for 

Complications Of type II Diabetes (RECODe) algorithms which predict both individual and 

composite CVD outcomes among individuals with T2D. The RECODe were derived from the 

Action to Control Cardiovascular Risk in Diabetes (ACCORD) study and validated with the 

Diabetes Prevention Program Outcomes Study (DPPOS) and Look AHEAD (Action for Health 

in Diabetes).3  

 Recently, polygenic risk scores (PRS), which sum the genetic risk associated with 

common DNA variants across the genome have been shown to associate with complex diseases4 

and have been posited to be useful is risk stratification.4–12 Despite this, there are conflicting data 
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regarding their ability to improve clinical risk predication beyond current risk prediction 

algorithms.4–14 

In this paper, we investigate the incremental benefit of PRS, beyond that of the RECODe 

equations, in improving the prediction of incident ASCVD events among individuals with T2D 

using data form a genomic medicine cohort recruited at a large academic medical center.  

 

Methods 

Study approval was obtained from local institutional review boards and all patients 

enrolled in the PMBB provided written informed consent. 

 

Data Sources 

The Penn Medicine Biobank (PMBB) is an academic healthcare system based genomic 

and precision medicine cohort (> 60,000 individuals at time of data extraction, July 2020) that 

links participant blood and tissue samples with associated health information. Procedures for 

recruitment, consent, data collection and genotyping are detailed elsewhere.15  

Three publicly available genome wide association studies (GWAS) were used for PRS 

generation. The heart failure (HF) polygenic risk score was calculated using a GWAS from the 

Levin et. al comprised of over 115,000 HF individuals with all cause HF.16 The coronary artery 

disease (CAD) polygenic risk score was calculated using a meta-analysis from the Million 

Veterans Program, CARDIoGRAMplusC4D, the UK BioBank (UKBB) and Biobank Japan 

(BBJ)17 comprised of over 243,000 individuals with CAD. GIGASTROKE is a large-scale 

international collaboration18  that analyzed data comprised of over 110,00 individuals with 

ischemic stroke.  
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Population 

We created a prospective cohort study of incident ASCVD events following T2D 

diagnosis among PMBB participants with T2D. Diagnosis of T2D and ASCVD were defined 

based on a combination of electronic health record (EHR) diagnosis/procedure codes, medication 

prescriptions and laboratory measurements (Supplemental Table 1). Cohort participants were 

required to have at least 1 year of EHR data following their diagnosis of T2D and genome-wide 

genotype data. The date of initial T2D diagnosis served as the baseline date of entry to the 

cohort.  

Individuals were excluded from the cohort if they had baseline history of ASCVD, 

defined as the presence of a diagnostic code for any of the following: (1) stroke or 

cerebrovascular disease, including hemorrhagic stroke, ischeic stroke, and transient ischemic 

attack; (2) coronary heart disease or coronary artery disease, including myocardial infarction 

(MI), angina, and coronary insufficiency (Supplementary Table 2). The RECODe equation was 

optimized based on self-reported race, with a particular focus on White and Black individuals. In 

contrast, polygenic risk scores typically focus on subpopulations which share genetic ancestry. 

Here, we focused on subpopulations with genetic similarity to the 1000 Genomes European- and 

African-ancestry superpopulations, based on genetic principal components.  

 

Outcomes 

The primary outcome was incident atherosclerotic cardiovascular disease (ASCVD), 

defined as fatal or nonfatal ischemic stroke, fatal or non-fatal MI, or death from cardiovascular 

cause. Secondary outcomes included the individual outcomes of MI, stroke, congestive heart 
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failure (CHF) or death from any cardiovascular cause. Vital status and date and cause of death, if 

applicable, were derived from a combination of EHR and National Death Index data. ICD codes 

for all primary and secondary outcomes can be found in the Data Supplement (Supplemental 

Table 2).  

 

Risk Factors for ASCVD 

Based on the RECODe model, we considered the following traditional risk factors as in 

the calculation of 10-year composite ASCVD risk: age, sex, ethnicity, current tobacco smoking, 

systolic blood pressure, history of cardiovascular disease, statin use, use of anticoagulants, use of 

anti-hypertensives, Hb-A1C, total cholesterol, serum creatinine and the urine albumin:creatinine 

ratio. Age was defined as age at initial T2D diagnosis, sex was defined as biological sex and 

derived from the EHR, race/ethnicity was defined as genetic similarity to EUR or AFR 

superpopulations.19,20 We used genetic similarity to the EUR and AFR superpopulations as 

opposed to RECODe’s EHR defined race/ethnicity as EHR data has been shown to inaccurately 

capture race/ethnicity and to appropriately model PRS.20–22 Statin use, Anti-coagulant use, and 

Anti-Hypertensive use were defined by having any one of the prescriptions listed in 

Supplemental Table 3. Consistent with RECODe, smoking history was defined as current or 

non-current (a composite of never and former smoking). Laboratory values were taken within 30 

days of each patient’s T2D diagnosis and all values outside of 3 median absolute deviations from 

the median were treated as missing.  

 

 

Polygenic Risk Score Creation  
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PRS for CAD, ischemic stroke, and heart failure were developed based on GWAS 

summary statistics from Tcheandijeu et. al, the GIGASTROKE consortia and Levin et. al 

respectively.16–18 To reduce the total SNP set to a size amenable for PRS analysis, we extracted 

SNPs present in the HapMap 3+ reference panel (n =1,444,196 SNPs in HapMap panel; retained 

1,099,988 SNPs in the CAD GWAS, 982,552 SNPs in the stroke GWAS and 1,122,273 SNPs in 

the HF GWAS). LDPred (v 2.0) (https://github.com/privefl/paper-ldpred2) was used to generate 

the posterior mean effect of each SNP based on LD information from the HAPMAP 3+ reference 

panel. Participant level PRS values were calculated using PLINK v2.0 (https://www.cog-

genomics.org/plink). The individual PRS were scaled separately among AFR and EUR 

populations prior to all analysis.  

 

Statistical Analysis 

The analytic cohort was split into training (80%) and validation sets (20%) at random. 

This was done to avoid overfitting given the 20 models tested, (3 PRS, a model containing no 

PRS, a model containing all three PRS and 4 outcomes). The training data was used to generate a 

RECODe model with the addition of PRS and to test the association of the various PRS with 

their outcome of interest. In this newly generated model, the coefficients for each of the risk 

factors included in the original RECODE equation retained their original values, however, the 

training data was used to calculate a coefficient for various PRS. The validation set was used to 

compare the discrimination and calibration of the RECODe model with and without PRS.  

In the training dataset, we fit Cox proportional hazard models containing the RECODe 

risk factors and each of the PRS, both individually and together, to model both primary and 

secondary outcomes for a total of 20 different models (Supplemental Table 9-13). We fixed the 
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weights on the RECODe variables at those specified by the original paper and used the model to 

determine the appropriate weights for the PRS terms. Individuals without primary or secondary 

outcomes were censored to the date of their last EHR encounter or non-CVD related death. The 

proportional hazard assumptions were tested based on Grambsch and Therneau’s proportional 

hazards tests and diagnostics.23 Missing data was imputed using the multiple chain imputation 

method as implemented by the MICE package in R.24 

In the validation dataset, discrimination was assessed based on the receiver operator 

curve, and through calculating the area under the curve (AUC) as defined by Pepe et. al. AUCs, 

with bootstrapped 95% confidence intervals calculated using the survAccuracyMeasures package 

in R.25,26 To calculate these measures, high risk was defined as 20% or greater risk as per the 

ACC/AHA guidelines.27 AUC between models were compared using a z-test. Calibration was 

evaluated by comparing model predicted ASCVD to observed outcomes based on unadjusted 

Kaplan Meir statistics to account for unequal follow-up time. We also compared models based 

on the proportion of cases followed [PCF(q)], which represents the proportion of individuals who 

will develop disease who are included in the proportion q of individuals at highest risk, and the 

proportion needed to follow-up [PNF(p)], which represents the proportion of the population at 

highest risk that needs to be followed to identify the proportion p of individuals who will develop 

disease. 

All analyses we performed in R version 3.6.2. Statistical significance was set at two sided 

α = 0.05.  

Results 

 

Cohort Demographics 
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Of the 63,104 individuals enrolled in the Penn Medicine Biobank at the time of data 

extraction, there were 10,528 with T2D. Of these, 3,588 were excluded because they had CVD 

events prior to their T2D diagnosis and 2,597 because they did not have genotype data available. 

This left 4,344 (6.87%) participants who met the cohort inclusion criteria (Table 1). 

Among the analytic cohort of 4,344 participants, the median [IQR] index age was 65.1 

[56.4-72.8] years, 2,179 (50.2%) were men and 2,186 (50.3%) were genetically similar to AFR 

reference populations. Table 1 shows the baseline characteristics of this cohort. Overall, 4,328 

patients (99.6%) were smoking at baseline, 3,452 (79.5%) had a prescription for statin therapy, 

and 3,936 (90.6%) had a prescription for anti-hypertensive medication (Table 1).  

Over a median follow up time of 7.0 years (IQR 2.9-11.1) and a total of 33,742.9 person-

years of follow-up, 1,300 (30.0%) participants experienced the composite ACVD outcome and 

1,941 (44.1%) experienced secondary outcomes including: 970 (22.3%) that had incident CAD, 

575 (13.2 %), that had incident CVD, 873 (20.1%) that had incident HF, and 55 (1.3%) that died 

from a CVD event (Figure 1, Supplemental Figure 1-4, Table 2).  

 

Polygenic Risk Scores 

 Polygenic risk score optimization in the overall PMBB cohort was performed by 

LDpred2, and excluded individuals in the validation cohort. We tested the association of the HF, 

CAD and stroke PRS with their prevalent outcomes in both the overall PMBB cohort and in the 

T2D training cohort used in the following analyses. The HF PRS demonstrated a robust 

association with prevalent heart failure in both the overall cohort (OR 1.14 [95% CI 1.1-1.19]) as 

well as the T2D training cohort (OR 1.17 [95% CI 1.05-1.31]). Although both the CAD and 

stroke PRS demonstrated robust associations with their prevalent outcomes in the overall cohort 
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(OR 1.41 [95% CI 1.37-1.45], OR 1.12 [95% CI 1.09-1.16] respectively), they failed to 

demonstrate an association in the T2D training cohort (OR 1.08 [95% CI 0.99-1.17], OR 1.08 

[95% CI 0.98-1.21]). 

We first sought to understand the association of the CAD, stroke and HF polygenic risk 

scores when added individually to RECODe risk models for either their individual incident 

outcomes, CVD-Death, or composite ASCVD when tested during model creation in the training 

dataset. Few PRS demonstrated statistically significant associations with any of the outcomes of 

interest. (Supplemental Tables 4-8). There was a statistically significant association between 

the stroke PRS and ASCVD (HR 1.08 [95%CI 1.01 -1.14]) and the stroke PRS with incident HF 

(HR 1.09 [95%CI 1.01-1.17]), when added to the RECODe model for each outcome respectively 

(Supplemental Tables 4, 8). Following this, we created models for each outcome of interest 

(ASCVD, CVD-Death, MI, stroke and HF) that included all three PRS tested. The only 

associations that demonstrated statistically significant results were the stroke PRS with 

composite ASCVD (OR 1.07 [0.95% CI 1.01-1.13] and the stroke PRS with incident HF (OR 

1.09 [0.95% CI 1.01-1.17]. (Supplemental Table 4,8). 

 

Utility of adding PRS to RECODe for risk prediction 

ASCVD 

To assess the utility of the addition of a CAD, stroke and HF PRS to the RECODe 

equation for ASCVD, we first tested the discrimination of the models using time dependent AUC 

based on receiver operator curves (Figure 2). The RECODe model alone demonstrated an AUC 

[95% CI] of 0.66 [0.62-0.71] and the addition of the three PRS to the model demonstrated an 

AUC [95% CI] of 0.66 [0.62-0.70]. A z-test to compare the AUCs of the two models 
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demonstrated no difference in model discrimination with a p-value of  0.97 (Supplemental 

Table 9). Calibration was visualized by calculating the projected cumulative event rate based on 

unadjusted Kaplan Meyer model in each decile of risk (Figure 3). The raw RECODe equation 

demonstrated a slightly more consistent decrease in survival probability over consecutive deciles 

of risk, but not in a statistically significant manner. Finally, we compared the PCF(q) (proportion 

of individuals that develop disease who are included in the proportion q of individuals at highest 

risk) and PNF(p) (proportion of the population at highest risk that needs to be followed to 

identify the proportion p of individuals who will develop disease) curves for each model. The 

PCF(q) and PNF(p) curves models including and not including the PRS are comparable (Figure 

4-5). 

Secondary Outcomes 

We also tested model performance for the addition of PRS to the RECODe model in four 

secondary outcomes: cardiovascular mortality, myocardial infarction (MI), ischemic stroke (IS) 

and Heart Failure (HF). Each of these secondary outcomes was modeled by the same risk factors 

described previously as per the RECODe equation. Model performance was evaluated using the 

methods described above for discrimination and calibration. Across all secondary outcomes, the 

addition of the PRS did not improve model discrimination or calibration by AUC, survival 

probability visualization, PCF(q), and PNF(p) analysis (Supplemental Figures 5-8 and 

Supplemental Tables 10-13) 

 

Discussion 

In the present study, we demonstrate that although PRS associate with CVD outcomes 

independent of traditional risk factors among individuals with T2D, the addition of PRS to 
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clinical risk models does not specifically improve the predictive performance as compared to the 

base model. This was true across all cardiovascular disease outcomes tested and across various 

discrimination and validation techniques, suggesting that the addition of PRS would also not 

improve risk stratification in our cohort. Our findings among individuals with T2D are consistent 

with those reported for the population at large and corroborate a study by Mosely et al. in which 

they showed no significant improvement in reclassification of cardiovascular risk with models 

including both the PCE and a CAD PRS versus PCE alone despite the association of their CAD 

PRS with incident disease in the ARIC and MESA studies.28 

These results add to the growing body of literature suggesting that the relative additional 

value of PRS for risk prediction among individuals in whom the clinical risk factors are both 

manifest and measurable is likely modest to negligible. Interestingly, in our study the RECODe 

equation showed discrimination potential at baseline (AUC = 0.66). As such, the lack of 

improved risk prediction may reflect the performance of the RECODe equation in our cohort as 

opposed to lack of PRS utility.29 In other words, the performance of the RECODe equation alone 

may have hit the ceiling of predictive performance in our cohort. This could be due to 

overrepresentation of older individuals and individuals with cardiovascular disease in our cohort 

as opposed to the general population. 

It has been proposed that PRS may have a role in predicting complex diseases early in a 

person’s life course before traditional clinical risk factors may have had a chance to manifest, but 

may have less clinical utility in individuals that have a history in the healthcare system.30 Given 

the median age of onset of T2D and the frequent presence of additional CVD risk factors at the 

time of diagnosis, this implementation of PRS is unlikely to be of benefit in managing CVD risk 

in patients with T2D. They may, however, have a role predicting incident disease in patients with 
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type 1 diabetes even when they are still adolescents or young adults; this will be important to test 

in future studies. 

This study has several limitations. First, the data collected for this study come from an 

EHR-linked genomic and precision medicine cohort and does not include adjudicated disease 

status or outcomes which may have resulted in some degree of phenotype misclassification. 

Second, the RECODe equation is designed to predict 10-year risk while the median follow-up in 

this study was 7 years. Since the main outcome of the study was a comparison of the RECODe 

with and without inclusion of PRS, these limitations would be expected to affect both models 

equally and therefore have negligible effects on their relative performance. Third, the indexing of 

entry into the analytic cohort to the time of diagnosis of T2D (rather than enrollment into PMBB) 

may have introduced survival bias as participants with T2D had to survive to enroll in PMBB 

and undergo genotyping; again, this would be expected to affect all models equally.  Finally, the 

polygenic risk score in this study included low frequency and common variants (> 0.1%) and did 

not examine the predictive value of rare genetic variants known to affect CAD, HF and stroke 

risk.31 In conclusion, in the present study, we demonstrate that although CAD, HF and stroke 

PRS associate with CVD outcomes independent of traditional risk factors among individuals 

with T2D, the addition of PRS to contemporary clinical risk models does not specifically 

improve the predictive performance as compared to the baseline model.  

 

Data Availability 

Raw data for the analysis dataset are not publicly available to preserve individuals’ privacy per 
the Health Insurance Portability and Accountability Act Privacy Rule. 
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Tables  

Table 1. Cohort Demographics 

 Validation Training P-value Overall 

(N=868) (N=3476) (N=4344) 

Age     

Mean (SD) 63.8 (13.5) 63.9 (13.2) 0.884 63.9 (13.2) 

Median [IQR] 65.4 [55.8, 72.9] 65.0 [56.6, 72.8]  65.1 [56.4, 72.8] 

Gender     

Female 434 (50.0%) 1731 (49.8%) 0.946 2165 (49.8%) 

Male 434 (50.0%) 1745 (50.2%)  2179 (50.2%) 

Genetic Similarity     

African 430 (49.5%) 1756 (50.5%) 0.633 2186 (50.3%) 

European 438 (50.5%) 1720 (49.5%)  2158 (49.7%) 

BMI (kg/m2)     

Mean (SD) 32.9 (7.09) 32.9 (7.33) 0.953 32.9 (7.28) 

Median [IQR] 32.0 [28.0, 37.0] 32.0 [28.0, 37.0]  32.0 [28.0, 37.0] 

Smoking Status (Ever/Never)    

Yes 864 (99.5%) 3464 (99.7%) 0.849 4328 (99.6%) 

No 4 (0.5%) 12 (0.3%)  16 (0.4%) 

Anti-Hypertensive Medication    

Yes 793 (91.4%) 3143 (90.4%) 0.433 3936 (90.6%) 

No 75 (8.6%) 333 (9.6%)  408 (9.4%) 

Statin     

Yes 679 (78.2%) 2773 (79.8%) 0.335 3452 (79.5%) 

No 189 (21.8%) 703 (20.2%)  892 (20.5%) 

Systolic Blood Pressure (mmHg)    

Mean (SD) 131 (17.1) 131 (17.2) 0.658 131 (17.2) 

Median [IQR] 130 [120, 142] 130 [120, 142]  130 [120, 142] 

Diastolic Blood Pressure (mmHg)    

Mean (SD) 75.7 (11.1) 75.3 (11.1) 0.452 75.4 (11.1) 

Median [IQR] 76.0 [69.0, 83.0] 75.0 [68.8, 82.0]  75.0 [69.0, 82.0] 

Total Cholesterol (mg/dL)    

Mean (SD) 164 (40.5) 163 (41.1) 0.391 163 (41.0) 

Median [IQR] 161 [136, 190] 160 [133, 190]  161 [134, 190] 

HDL Cholesterol (mg/dL)    

Mean (SD) 47.4 (13.9) 46.7 (13.8) 0.208 46.8 (13.8) 

Median [IQR] 46.0 [37.0, 56.0] 45.0 [37.0, 55.0]  45.0 [37.0, 55.0] 

Max A1C (mg/dL)     
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Mean (SD) 7.13 (1.27) 7.01 (1.28) 0.0084 7.03 (1.28) 

Median [IQR] 6.90 [6.20, 7.80] 6.70 [6.10, 7.70]  6.75 [6.10, 7.70] 

Serum Creatinine     

Mean (SD) 1.00 (0.314) 1.03 (0.325) 0.0382 1.02 (0.323) 

Median [IQR] 0.950 [0.780, 1.14] 0.970 [0.790, 1.21] 0.970 [0.790, 1.20] 

Urine albumin:creatinine ratio, mg/g    

Mean (SD) 1.89 (1.89) 1.84 (1.94) 0.559 1.85 (1.93) 

Median [IQR] 1.15 [0.606, 2.47] 1.08 [0.556, 2.48]  1.09 [0.566, 2.48] 

History of CVD     

Yes 767 (88.4%) 3116 (89.6%) 0.302 3883 (89.4%) 

No 101 (11.6%) 360 (10.4%)  461 (10.6%) 

Anti Coagulant Use    

Yes 491 (56.6%) 1971 (56.7%) 0.973 2462 (56.7%) 

No 377 (43.4%) 1505 (43.3%)  1882 (43.3%) 
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Table 2. Cohort Outcome Statistics 

 Validation Training P-value Overall 

(N=868) (N=3476) (N=4344) 

MI     

Yes 101 (11.6%) 400 (11.5%) 0.963 501 (11.5%) 

No 767 (88.4%) 3076 (88.5%)  3843 (88.5%) 

HF     

Yes 174 (20.0%) 699 (20.1%) 0.875 873 (20.1%) 

No 604 (69.6%) 2379 (68.4%)  2983 (68.7%) 

Missing 90 (10.4%) 398 (11.5%)  488 (11.2%) 

CAD     

Yes 192 (22.1%) 778 (22.4%) 0.904 970 (22.3%) 

No 676 (77.9%) 2698 (77.6%)  3374 (77.7%) 

Stroke     

Yes 99 (11.4%) 476 (13.7%) 0.0848 575 (13.2%) 

No 769 (88.6%) 3000 (86.3%)  3769 (86.8%) 

Composite CVD     

Yes 239 (27.5%) 1060 (30.5%) 0.0964 1299 (29.9%) 

No 629 (72.5%) 2416 (69.5%)  3045 (70.1%) 

Death by CVD Event    

Yes 5 (0.6%) 50 (1.4%) 0.0624 55 (1.3%) 

No 863 (99.4%) 3426 (98.6%)  4289 (98.7%) 
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Figures  

 
Figure 1. Unadjusted ASCVD Event Rate Curve of event rate data to ASCVD event (in 
months) after the diagnosis of T2D. The number of events at 5, 10, 15, 20 and 25 years are 
shown in a table immediately below the survival curves. 
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Figure 2. AUC of the RECODe Model for ASCVD with and without the addition of the 
PRS. The blue curve illustrates the AUC curve of the cox model of the RECODe model without 
the addition of the PRS. The red curve illustrates the AUC of the cox model of the RECODe 
model with the addition of a CAD, stroke and HF PRS.  
 

Figure 3. Event Rate Across Deciles of Risk between the RECODe Model for ASCVD and 
RECODe model with the addition of the PRS. The blue curve illustrates the cumulative event 
rate at each decile of risk based on an adjusted Kaplan Meyer model based on the RECODe 
model without the addition of the PRS. The red curve illustrates the same event rate curve of the 
RECODe model with the addition of a CAD, stroke and HF PRS. 
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Figure 4. PCF(q) plot for the RECODe Model for ASCVD with the addition of the PRS. 
PCF(q) is the proportion of individuals who will develop disease who are included in the 
proportion q of individuals in the population at highest risk. The blue curve illustrate the PCF(Q) 
for the unadjusted RECODe model whereas the red curve illustrates the PCF(Q) for the 
RECODe model with the addition of a CAD, stroke and HF PRS.  
 

Figure 5. PNF(p) plot for the RECODe Model with the addition of the CAD, stroke and HF 
PRS. PNF(p) represents the percentage of individuals that we will capture if we follow 
individuals that are at the xth percentile of risk or higher. The blue curve illustrate the PNF(p) for 
the unadjusted RECODe model whereas the red curve illustrates the PNF(p) for the RECODe 
model with the addition of a CAD, stroke and HF PRS.  
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