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OBJECTIVES: Implementing a predictive analytic model in a new clinical envi-
ronment is fraught with challenges. Dataset shifts such as differences in clinical 
practice, new data acquisition devices, or changes in the electronic health record 
(EHR) implementation mean that the input data seen by a model can differ signif-
icantly from the data it was trained on. Validating models at multiple institutions is 
therefore critical. Here, using retrospective data, we demonstrate how Predicting 
Intensive Care Transfers and other UnfoReseen Events (PICTURE), a deteriora-
tion index developed at a single academic medical center, generalizes to a second 
institution with significantly different patient population.

DESIGN: PICTURE is a deterioration index designed for the general ward, which 
uses structured EHR data such as laboratory values and vital signs.

SETTING: The general wards of two large hospitals, one an academic medical 
center and the other a community hospital.

SUBJECTS: The model has previously been trained and validated on a cohort of 
165,018 general ward encounters from a large academic medical center. Here, 
we apply this model to 11,083 encounters from a separate community hospital.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: The hospitals were found to have 
significant differences in missingness rates (> 5% difference in 9/52 features), 
deterioration rate (4.5% vs 2.5%), and racial makeup (20% non-White vs 49% 
non-White). Despite these differences, PICTURE’s performance was consistent 
(area under the receiver operating characteristic curve [AUROC], 0.870; 95% CI, 
0.861–0.878), area under the precision-recall curve (AUPRC, 0.298; 95% CI, 
0.275–0.320) at the first hospital; AUROC 0.875 (0.851–0.902), AUPRC 0.339 
(0.281–0.398) at the second. AUPRC was standardized to a 2.5% event rate. 
PICTURE also outperformed both the Epic Deterioration Index and the National 
Early Warning Score at both institutions.

CONCLUSIONS: Important differences were observed between the two institu-
tions, including data availability and demographic makeup. PICTURE was able to 
identify general ward patients at risk of deterioration at both hospitals with consistent 
performance (AUROC and AUPRC) and compared favorably to existing metrics.

KEY WORDS: clinical decision support; dataset shift; deterioration index; model 
generalization; predictive analytic

As predictive artificial intelligence models and Early Warning Systems 
(EWSs) are increasingly developed and deployed in the clinical en-
vironment (1–14), there is increasing interest in the “last-mile” chal-

lenges that delay implementation and often render these EWSs ineffective, or 
in the worst case, counterproductive when used clinically (15–17). One such 
problem is termed dataset shift (18). This occurs when the real-time data seen 
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by a model differs from that on which it was trained 
(19). In addition to intra-institution challenges such 
as changing reimbursement models, updated data ac-
quisition devices, and new information technology 
practices that can cause changes in underlying data, 
differences between hospital systems can also change 
the ways in which a given predictive model behaves 
(18, 19). For example, different patient populations, 
different practice guidelines, and different equipment 
could all affect the types and quality of data being col-
lected—among many other factors. Accounting for 
these differences are a necessary challenge whenever a 
model is implemented in a new hospital. As such, ex-
ternal validations is necessary to ensure these models 
remain useful outside their home institutions (20, 21).

To illustrate these differences, we validated our 
previously described predictive model, Predicting 
Intensive Care Transfers and other UnfoReseen Events 
(PICTURE), using a large retrospective dataset from 
an outside institution (22). PICTURE is a predic-
tive model using structured data such as laboratory 
values and vital signs from the electronic health re-
cord (EHR) to identify patients at risk of deterioration 
such as death, ICU transfer, or mechanical ventilation. 
We compare against two commonly used deteriora-
tion metrics, the Epic Deterioration Index (EDI) and 
National Early Warning Score (NEWS), both in terms 
of predictive performance as well as prediction lead 
time (see Supplement 1, http://links.lww.com/CCM/

H305, for descriptions of EDI and NEWS). However, 
one key limitation of our initial study is that the model 
was developed and tested at a single academic medical 
center. While we made several important choices when 
designing the model in an attempt to prioritize gen-
eralizability (a novel imputation mechanism to mask 
patterns in missingness which can change between 
institutions [23] and excluding variables such as medi-
cations which reflect clinician behavior [22]), these de-
sign choices were backed mostly by simulations.

Our single center, Michigan Medicine (MM), is a 
large academic research hospital with a level 1 trauma 
center and advanced transplant and cardiac care facili-
ties, which has key differences with the community 
hospitals that account for most of the U.S. population’s 
healthcare (24). To this end, we externally validated 
PICTURE at Hurley Medical Center (HMC) in Flint, 
MI. In contrast to MM’s status as an academic referral 
hub, HMC is a large 443-bed community hospital. 
Although both hospitals use the same EHR vendor 
(Epic Systems, Verona, WI), differences in both patient 
care patterns and structural/informatics organization 
coalesce into changes in feature distribution, deterio-
ration rate, and other factors affecting the model. Here, 
we quantify these differences to understand the degree 
of dataset shift between the two hospitals and investi-
gate the similarities and differences in how the model 
performs considering these changes.

METHODS

Study procedures were followed in accordance with the 
Helsinki Declaration of 1975 and were approved with 
a waiver of informed consent by Institutional Review 
Boards (IRBs) of both institutions, with MM acting 
as the IRB of record. At MM, the study was initially 
approved on September 4, 2014, under HUM00092309: 
“Development of Clinical Decision Support Tools 
in Acute Care.” At HMC, it was approved January 5, 
2021, as 1686064: “External Validation of PICTURE-
Suite Model Performance at Hurley Medical Center” 
(see Supplement 2, http://links.lww.com/CCM/
H305, for details). PICTURE was developed using 
XGBoost v0.90 (https://xgboost.readthedocs.io/en/re-
lease_0.90/index.html) using a logistic objective func-
tion with a maximum depth of three layers, a learning 
rate of 0.005, and early stopping via area under the 
precision-recall curve (AUPRC) after 30 rounds. It 
was initially evaluated on a composite target of death, 

 
KEY POINTS

Question: Do the predictions made by Predicting 
Intensive Care Transfers and other UnfoReseen 
Events (PICTURE), a Clinical Decision Support tool 
developed at a single academic medical center, gen-
eralize to a second community-oriented hospital?

Findings: In this retrospective analysis, PICTURE’s 
performance did not drop significantly (α = 5%) 
when moving to a second hospital, despite im-
portant clinical and information-technology differ-
ences between the institutions.

Meaning: Implementing a predictive analytic model 
in a new clinical environment is fraught with chal-
lenges, due in part to the phenomenon of dataset 
shift. PICTURE was able to overcome these differ-
ences and performed well at an outside institution.
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ICU transfer, mechanical ventilation, and cardiac 
arrest within 24 hours on a cohort of adult inpatients 
admitted to the general wards. Missing value imputa-
tion was done with a combination of forward fill and 
using the mean of the posterior distribution from a 
multivariate Bayesian regression model as described in 
Gillies et al (23). Further details on model construc-
tion and internal validation, data preprocessing, and 
prediction explanations have been previously reported 
and are also available in Supplement 3–5 (http://links.
lww.com/CCM/H305) (22). A full list of input features 
is available in Supplement 6 (http://links.lww.com/
CCM/H305). Although this study uses retrospective 
data, PICTURE is currently implemented in real-time 
at MM, with prospective data currently being collected 
to assess performance.

PICTURE’s performance was evaluated on data con-
sisting of patients between the ages of 18 and 89 whose 
status was inpatient or other observation status, and 
whose first ICU transfer, if present, was from a general 
ward. PICTURE, as well the EDI and NEWS, was first 
assessed using the area under the receiver operating 
characteristic curve (AUROC) and AUPRC. The lat-
ter metric reflects the balance between sensitivity and 
positive predictive value (PPV). These are calculated 
using two levels of granularity: observation level and 
encounter level. On the observation level, we consider 
any prediction in which the patient deteriorated within 
24 hours of the observation to be positive. On the en-
counter level, we compare the maximum score over 
the patient’s entire length of stay to the ultimate out-
come of that encounter. Two additional analyses were 
applied to further investigate the behavior of the three 
models. First, lead time, which refers to the amount of 
advanced warning that clinicians receive between the 
score generation and the patient’s deterioration, was 
assessed by censoring the data at increasing intervals 
leading up to the deterioration event. Second, we dem-
onstrate the variability in threshold selection between 
institutions by quantifying the change in threshold 
performance both with and without calibration.

RESULTS

Cohort Details

Our initial data pull contained data from patients 
who had been admitted between January 1, 2015, and 
November 23, 2020. Since data from before December 

31, 2018, had been previously used to train the model, 
these patients were excluded from the MM portion of 
the analysis. After selecting patients meeting our in-
clusion criteria, there remained 59,863 encounters 
from MM and 36,947 encounters from HMC. To fa-
cilitate comparison with the EDI, the PICTURE and 
NEWS scores were aligned from their native frequency 
(updated each time new data are resulted) to the ex-
isting EDI scores at both institutions (see Supplement 
7, http://links.lww.com/CCM/H305, and [22] for 
details). This effectively resampled them to an up-
date frequency of 15 minutes at MM and 20 minutes 
at HMC, and reduced our cohort to 44,202 encoun-
ters at MM and 11,083 at HMC that had overlapping 
PICTURE and EDI scores. PICTURE scores were 
aligned to the EDI, rather than vice versa, to give the 
EDI any potential benefit from the alignment proce-
dure. PICTURE’s performance on the full, nonaligned 
cohort can be found in Supplement 8 (http://links.
lww.com/CCM/H305), and performance on each com-
ponent of the target label (e.g., ICU transfer, death) in 
Supplement 9 (http://links.lww.com/CCM/H305). 
Table 1 below presents the demographic makeup of 
our cohort across both institutions.

Characterization of Institutional Differences

Differences in Input Variables. One method of charac-
terizing the differences between institutions is by com-
paring the distributions of the input features. Figure 
1 displays the standardized mean differences between 
MM and HMC for each of the numeric features. With 
the exception of one variable (mean platelet volume, 
MPV, Fig. 1C), the mean of all differences was within a 
single sd. There were also large differences in the miss-
ingness rates between institutions for individual vari-
ables, reflecting differences in care patterns between 
the two hospitals.

Differences in Patient Transfer Patterns. An addi-
tional key difference between the two institutions was the 
source of patients—while in both cases, the Emergency 
Department (ED) represented the most common ways 
for patients to enter the hospital system, this proportion 
was much lower at MM (66.0%) than HMC (91.7%). 
We believe this is due to two factors: first, there are mul-
tiple other level 1 trauma centers within close proximity 
to MM. Second, MM sees a much higher proportion 
of patients come through surgical pathways such as 
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operating rooms (ORs) and catheterization laboratory 
values (19.6%) than HMC (5.9%). To further visualize 
these workflow differences, directed network graphs were 
constructed based on the Admission, Discharge, and 
Transfer (ADT) table for each encounter (Supplement 
10, http://links.lww.com/CCM/H305) (25).

Differences in Demographic Makeup. The demo-
graphic makeup of the two institutions are very distinct 
in terms of both race and biological sex. A subset analysis 
was performed to ensure we perform equally well across 
groups. Table 2 presents the results of these subsets. The 
primary institution (MM) had a noticeably higher event 
rate in non-White patients (4.8–5.5% compared with 
4.4% in White patients). This effect was less noticeable at 
the second institution (HMC, 2.6 vs 2.4%). Despite these 
institutional differences, the model performed simi-
larly at both hospitals. The model performed similarly 
well across ethnicities at the first institution, but there 
were too few deteriorations (4/258) in Hispanic/Latino 

patients at the second institution to provide a reliable 
estimate of model performance in this population. At 
MM, all three models performed better in females than 
in males. This is also true at HMC, but there is overlap 
between the CI estimations, possibly due to the smaller 
sample size. In both cases, the proportion of males who 
deteriorated is greater than that of females.

Comparison of PICTURE Versus EDI and 
NEWS

The performance of the three predictive tools is pre-
sented in Table 3 below. PICTURE outperformed both 
models at both institutions, even when resampled to 
the EDI’s native frequency. On the observation level, 
PICTURE’s AUROC and adjusted AUPRC increased 
slightly at HMC when compared with MM. The en-
counter level performance metrics fell well within the 
CIs for both AUROC and AUPRC.

TABLE 1.
Cohort Demographics

Dataset Michigan Medicine Hurley Medical Center p 

Encounters, n 44,202 11,083 NA

Patients, n 30,374 8,010 NA

Date range (date of admission) January 1, 2019, to  
November 23, 2020

January 1, 2015, to  
November 23, 2020

NA

Age (yr), median (interquartile range) 61.5 (47.6–71.8) 58.2 (44.2–70.3) < 0.001

Race, n (%)

  Asian 855 (2.0) 18 (0.2) < 0.001

  Black 5,575 (12.6) 5,044 (45.5) < 0.001

  White 35,480 (80.3) 5,641 (50.9) < 0.001

  Other 2,292 (5.2) 380 (3.4) < 0.001

Ethnicity, n (%)

  Hispanic/Latino 1,196 (2.7) 258 (2.3) 0.026

  Non-Hispanic/Latino 42,210 (95.5) 10,776 (97.2) < 0.001

  Other 652 (1.5) 49 (0.4) < 0.001

Female sex, n (%) 21,592 (48.8) 6,000 (54.1) < 0.001

Event rate, n (%) 1,998 (4.5) 278 (2.5) < 0.001

  Death 360 (0.8) 69 (0.6) 0.040

  ICU transfer 1,610 (3.6) 200 (1.8) < 0.001

  Mechanical ventilation 28 (0.1) 9 (0.1) 0.516

NA = not available.
Cohort size, sex, racial and ethnic makeup, and target prevalence. Statistics are calculated per-encounter. For the event rate percentages, 
in the case that multiple outcome criteria were met, only the first event was counted. p values are calculated across the two datasets 
using a Mann-Whitney U test for continuous variables (age) and a χ2 test for categorical variables.

http://links.lww.com/CCM/H305


Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

Clinical Investigations

Critical Care Medicine www.ccmjournal.org     779

Prediction Lead Time Simulation

Lead time refers to the amount of advanced warning 
clinicians receive between the score generation and 
the patient’s deterioration. It is an important com-
ponent of a predictive model’s utility in a clinical 

environment. Here, it was assessed in a threshold-
independent manner by comparing the classifica-
tion performance of both PICTURE and the EDI 
while excluding varying intervals extending out 
before the deterioration event. PICTURE’s perfor-
mance was higher than the EDI at all timepoints 

across both institutions, al-
though the larger CIs at the 
second institution shared 
some overlap. PICTURE’s 
AUROC remained above 
0.8 at both hospitals even 
when limited to predic-
tions 24 hours in advance 
of the deterioration. Figure 
2 displays the performance 
of PICTURE and the EDI 
at each interval.

Calibration and 
Simulated Alert 
Thresholds

To demonstrate the effect of 
dataset shift on the selection 
of an alerting threshold, 
two simulations were con-
structed: one in which the 
same threshold is used on 
both institutions, and a 
second using recalibrated 
values. Figure 3 displays 
PPV, sensitivity, and speci-
ficity across varying thresh-
olds at both institutions. 
In a live clinical environ-
ment, the threshold may be 
selected based on provider 
preference and feedback 
which likely vary between 
clinical settings. Work-up 
to detection ratio (WDR) 
has been suggested as a pos-
sible metric for threshold 
selection, defined as the 
number of alerts required 
for each true positive (the 
inverse of PPV) (26).

Figure 1. Standardized mean difference (Cohen’s d) between the two institutions at encounter 
level. A, For each feature, the median value of each hospital encounter was first calculated to 
avoid biasing the calculations toward patients with more frequently drawn laboratory values, which 
may indicate sicker patients. The mean difference of these encounter level statistics was taken 
(Michigan Medicine [MM]–Hurley Medical Center [HMC]) and normalized to the pooled sd.  
B, Difference in encounter level missing rate between institutions (MM–HMC). 
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As a starting point, an initial threshold value was 
chosen corresponding to an encounter level sen-
sitivity of 0.5 using data from MM. This threshold 
resulted in an adjusted PPV of 0.257 (WDR 3.9) and 
specificity of 0.962. When the same threshold was 
applied to HMC, it resulted in higher PPV (0.452, 
WDR 2.2) and specificity (0.989), but at the cost of 
a lower sensitivity (0.360) than originally calibrated. 
However, if a new threshold is chosen at HMC (again 
using a sensitivity of 0.5), the PPV (0.279, WDR 3.6) 
and specificity (0.967) become more consistent with 
their intended values. For comparison, at a sensitivity 
of 0.5, the EDI only achieved a PPV of 0.146 (WDR 
6.8) at MM, and 0.160 (WDR 6.3) at HMC after recali-
bration. A full table of threshold performance is avail-
able in Supplement 11 (http://links.lww.com/CCM/
H305).

DISCUSSION

Characterization of Institutional Differences

In the strictest sense, any difference between two 
institutions can result in significant dataset shift. As 
Subbaswamy and Saria (19) phrase it: “Even slight 

deviations from the train-
ing conditions can result 
in wildly different perfor-
mance.” Understanding 
and quantifying these dif-
ferences is an important 
step in countering this last-
mile problem. Changes in 
how the input features are 
distributed is perhaps the 
most nebulous and have 
a direct effect on the ulti-
mate model performance. 
One source of this shift can 
be information manage-
ment. Examples include 
variables being reported 
in different units or with 
different names or map-
pings. Using standardized  
clinical ontologies such 
as Logical Observation 
Identifiers Names and 
Codes (LOINC) codes or 
the Observational Medical 

Outcomes Partnership common data model could sig-
nificantly expedite this process (27, 28).

Data shift can also occur due to clinical differences 
that are more difficult to detect. Examples include using 
different equipment with different measurement prop-
erties and reference ranges; alternate treatment pat-
terns, which affect the frequency and timing of orders; 
and differences in disease prevalence and patient demo-
graphics. In particular, this can affect missingness rates 
which can have an outsized effect on predictive perfor-
mance if the model is allowed to rely on them (23).

Another key difference we identified was in transfer 
patterns. While both institutions have level 1 Trauma 
Center certification, MM has several other trauma 
centers within close proximity, whereas HMC is the 
only such hospital in the region. This may account for 
the larger percentage of HMC patients being admitted 
through the ED, while a larger proportion of admis-
sions at MM are through the OR or catheterization 
laboratory values. This may have important implica-
tions for the types of patients seen by each hospital. 
Additionally, OR to general floor transfers were con-
siderably higher at MM than at HMC (Supplement 10, 
http://links.lww.com/CCM/H305).

Figure 1. (Continued). C, Histogram of mean platelet volume (MPV), which had the largest mean 
difference between the two institutions. Features were summarized over the encounter level (e.g., 
did the patient have a measurement taken during the encounter). BUN = blood urea nitrogen,  
GCS = Glasgow Coma Score, INR = international normalized ratio, MAP = mean arterial pressure, 
MCH = mean corpuscular hemoglobin, MCHC = MCH concentration, MCV = mean corpuscular 
volume, RDW = red cell distribution width, PT = prothrombin time, PTT = partial thromboplastin 
time, Spo2 = oxygen saturation.
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TABLE 2.
Evaluation of Predicting Intensive Care Transfers and Other Unforeseen Events, Epic 
Deterioration Index, and National Early Warning Score Across Demographic Groups

Demographic 
Group n (%) 

Predicting Intensive 
Care Transfers and Other 

Unforeseen Events 
Epic Deterioration 

Index 
National Early 
Warning Score Event Rate 

Michigan Medicine

  Total 44,202 0.870 (0.859–0.880) 0.830 (0.819–0.841) 0.817 (0.805–0.828) 4.5% (1,998/44,202)

  Race

   Asian 855 (2.0%) 0.845 (0.773–0.917) 0.843 (0.771–0.916) 0.817 (0.740–0.893)5.5% (45/855)

   Black 5,575 (12.6%) 0.862 (0.834–0.889) 0.802 (0.771–0.833) 0.820 (0.789–0.850)5.1% (282/5,575)

   White 35,480 (80.3%) 0.871 (0.860–0.882) 0.835 (0.822–0.847) 0.816 (0.803–0.829) 4.4% (1,561/35,480)

   Other 2,292 (5.2%) 0.878 (0.835–0.920) 0.830 (0.783–0.878) 0.824 (0.775–0.872) 4.8% (110/2,292)

  Ethnicity

   Hispanic/
Latino

1,196 (2.7%) 0.908 (0.870–0.952) 0.823 (0.766–0.891) 0.821 (0.756–0.888)3.9% (47/1,196)

   Non-
Hispanic/
Latino

42,210 (95.5%) 0.868 (0.859–0.877) 0.830 (0.820–0.840) 0.816 (0.807–0.826)4.5% (1,910/42,210)

   Other 652 (1.5%) 0.885 (0.821–0.972) 0.815 (0.731–0.911) 0.809 (0.729–0.909)4.9% (32/652)

  Sex

   Female 21,592 (48.8%) 0.885 (0.870–0.899) 0.850 (0.833–0.867) 0.838 (0.821–0.855)3.8% (829/21,592)

   Male 22,610 (50.5%) 0.855 (0.842–0.869) 0.811 (0.796–0.827) 0.802 (0.786–0.817)5.2% (1,169/22,610)

Hurley Medical Center

  Total 11,083 0.875 (0.848–0.902) 0.835 (0.805–0.864) 0.819 (0.789–0.850)2.5% (278/11,083)

  Race

   Asian 18 (0.2%) NA NA NA 0% (0/18)

   Black 5,044 (45.5%) 0.887 (0.850–0.924) 0.857 (0.816–0.897) 0.834 (0.792–0.877) 2.6% (133/5,044)

   White 5,641 (50.9%) 0.863 (0.824–0.903) 0.815 (0.771–0.859) 0.801 (0.755–0.846)2.4% (135/5,641)

   Other 380 (3.4%) 0.865 (0.720–1) 0.804 (0.638–0.969) 0.867 (0.721–1) 2.6% (10/380)

  Ethnicity

   Hispanic/
Latino

258 (2.3%) 0.703 (0.426–1.00) 0.698 (0.496–0.912) 0.732 (0.506–1.00) 1.6 (4/258)

   Non-
Hispanic/
Latino

10,776 (97.2%) 0.878 (0.856–0.902) 0.838 (0.812–0.869) 0.821 (0.793–0.855)2.5% (271/10,776)

   Other 49 (0.4%) 0.989 (0.979–1.00) 0.883 (0.765–1.00) 0.648 (0.506–0.795)6.1% (3/49)

  Sex

   Female 6,000 (54.1%) 0.899 (0.864–0.935) 0.869 (0.830–0.909) 0.859 (0.818–0.900)2.2% (131/6,000)

   Male 5,083 (45.9%) 0.850 (0.810–0.889) 0.803 (0.760–0.846) 0.786 (0.741–0.830) 2.9% (147/5,083)

NA = not applicable.
Encounter level area under the receiver operating characteristic curve (AUROC) for each of the three analytics is presented below, 
separated by subgroup. Performance metrics are reported as encounter level AUROC (95% CI) on the Epic Deterioration Index-matched 
cohort. Event rate is reported as both a percentage and fraction of encounters. AUROC values are reported as NA if no patient in the 
subgroup met a deterioration outcome.
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Geographic differences between the two hospitals 
produce significant variations in the demographic 
makeup, for example, MM’s population contains signif-
icantly more White and fewer female patients (Table 1). 
Despite differences in event rates at both institutions, 
there was no significant difference in PICTURE’s per-
formance across any of the races at either institution 
(Table  3). While males were more likely to deterio-
rate than females, all three scores performed better in 
females than in males at both institutions.

Evaluation of PICTURE Performance Across 
Institutions

PICTURE’s performance was consistent between 
the two institutions, with a slight increase in both 

observation and encounter level AUROC and AUPRC 
at the second institution, although the encounter level 
results fell well within their 95% CIs. Thus, despite the 
many inter-institutional differences, PICTURE was 
able to successfully generalize outside its home institu-
tion and account for the last-mile problem of dataset 
shift. While both the EDI and NEWS scores also saw 
a similar slight increase in performance between the 
two institutions, the comparison between the two hos-
pitals for EDI and NEWS is different than in the case of 
PICTURE. This is because both MM and HMC repre-
sent external sites for the EDI and NEWS. Hence, the 
similarity between the performance of EDI and NEWS 
at the two hospitals does not reflect generalization 
from model development to external validation. Unlike 
PICTURE, a prior study demonstrated that NEWS 

TABLE 3.
Evaluation of Predicting Intensive Care Transfers and Other Unforeseen Events, Epic 
Deterioration Index, and National Early Warning Score

Granularity Metric 

Predicting Intensive 
Care Transfers and Other 

Unforeseen Events Epic Deterioration Index
National Early Warning 

Score

MM HMC MM HMC MM HMC 

Observation AUROC 
(95% CI)

0.813a,b 
(0.812–0.815)

0.844a,b 
(0.841–0.848)

0.769b 
(0.768–0.770)

0.776 
(0.771–0.780)

0.751 
(0.749–0.752)

0.777 
(0.773–0.781)

AUPRC 
(95% CI)

0.077a,b 
(0.075–0.078)

0.094a,b 
(0.089–0.098)

0.051b 
(0.050–0.052)

0.060 
(0.056–0.063)

0.040 
(0.039–0.041)

0.056 
(0.053–0.059)

Event rate 0.8% 0.6% 0.8% 0.6% 0.8% 0.6%

Encounter AUROC 
(95% CI)

0.870a,b 
(0.861–0.878)

0.875a,b 
(0.851–0.902)

0.830b 
(0.821–0.840)

0.835 
(0.808–0.863)

0.817 
(0.806–0.827)

0.819 
(0.792–0.851)

AUPRC 
(95% CI)

0.298a,b 
(0.275–0.320)

0.339a,b 
(0.281–0.398)

0.201b 
(0.182–0.218)

0.231 
(0.180–0.276)

0.171 
(0.154–0.184)

0.233 
(0.180–0.281)

Event rate 4.5% 2.5% 4.5% 2.5% 4.5% 2.5%

AUPRC = area under the precision-recall curve, AUROC = area under the receiver operating characteristic curve, HMC = Hurley 
Medical Center, MM = Michigan Medicine.
If no simulations had a difference less than 0, the p value is reported as p < 0.001, indicated by
a(vs Epic Deterioration Index [EDI]) and
b(vs National Early Warning Score [NEWS]).
AUROC and AUPRC were used to describe performance at two levels of granularity: the observation level, where each observation is 
treated independently (i.e., did the patient deteriorate in the next 24 hr?), and the encounter level, which describes a patient’s maximum 
score during their encounter compared with their ultimate outcome (i.e., did they ever deteriorate during their encounter?). Due to 
the difference in observation and encounter level event rates between the two institutions, precision (and thus AUPRC) at hospital 1 
(MM) was standardized to match the event rate at hospital 2 (HMC) to facilitate a more direct comparison. 95% CIs were computed 
for encounter level statistics via bootstrap with 1,000 replications to compute pivotal CIs. For observation level statistics, the bootstrap 
was blocked to ensure randomization both between encounters and in observations within an encounter. p values were computed for 
differences in AUROC and AUPRC by counting the fraction of bootstrapped differences in evaluation metrics < 0. Compared with 
its original published performance (AUROC 0.87), NEWS was observed to experience a substantial drop in performance both in (26) 
(0.72–0.76) and in our own analysis (0.751 at MM, 0.777 at HMC). Publicly available information surrounding the training of the EDI is 
scarce, but Epic’s large data resources spanning many institutions likely contributes to its successful performance at both MM and HMC.
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sustained an 11–15% drop in AUROC (0.87 vs 0.72–
0.76) when moving from its original dataset to two 
external test sets (AUPRC was not reported), which is 
roughly consistent with the MM and HMC AUROCs 
(0.751 and 0.777) reported here (26). In other words, 
NEWS has already experienced a drop in performance. 
There is little information publicly available surround-
ing the training of the EDI, but Epic’s large data re-
sources spanning many institutions likely contributes 
to its successful generalization at both MM and HMC.

We attribute PICTURE’s ability to generalize to 
two factors: a carefully designed multiple imputation 
mechanism which disguises missingness patterns and 

our focus on physiologic features (in contrast to indica-
tors of clinician behavior). Both of these guard against 
changing patterns in patient care guidelines, which can 
change both between institutions and in time and alter 
performance (23). Additionally, the EDI was trained 
on a multicenter cohort, and NEWS similarly con-
structed from existing EWSs at multiple hospitals in 
the U.K.’s National Health System (29, 30). In all com-
parisons, however, PICTURE significantly (p < 0.001) 
outperformed both tools. PICTURE also performed 
consistently across varying lead times. This lead time 
gives clinicians an increased opportunity to act on the 
alert before the patient deteriorates.

Figure 2. Lead time simulation. Area under the receiver operating characteristic curve (AUROC) and area under the precision-recall 
curve (AUPRC) were evaluated for Predicting Intensive Care Transfers and other UnfoReseen Events (PICTURE) and Epic Deterioration 
Index (EDI) by calculating the maximum prediction score prior to x hr before the deterioration event, with x ranging from 0.5 to 24 hr. 
Twenty-four hr was selected as the limit since, during model training, only observations less than 24 hr in advance of the deterioration 
were labeled as positive. AUPRC is again adjusted to the event rate of 2.5% to match the second hospital (Hurley Medical Center 
[HMC]). Error bars representing 95% CIs are reported using the 1,000-replicate bootstrap described previously. A, AUROC at hospital 1 
(Michigan Medicine [MM]) for PICTURE and EDI scores. B, AUROC at hospital 2 (HMC). C, AUPRC at MM. D, AUPRC at HMC.
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Alert thresholds are another critical piece of model 
implementation, as they allow control over the number 
and quality of alerts generated and impact clinician 
perception of the model. For example, if the threshold 
is set too low, alerts will be generated too frequently 
and PPV will decrease, contributing to alert fatigue. In 
the other direction, a threshold set too high will miss 
patients (low sensitivity). However, dataset shift—
and most notably, changes in event rate—can impact 
the performance of a set threshold. Customizing the 
alert threshold between institutions can be used to en-
sure the model is fitting the needs of clinical practice 
at each location. Thus, it is important to validate not 
only aggregate model performance (e.g., AUROC and 
AUPRC) but also individual alert thresholds.

Limitations

While we were successfully able to demonstrate 
PICTURE’s generalizability at a second institution, 
validation across further hospitals would ensure porta-
bility across a wider variety of clinical settings. Second, 
this study uses retrospective data from both hospi-
tals. The model is currently implemented in real-time 
at MM, and prospective data are being collected for 
further validation. A follow-up study is underway to 
evaluate methods for alert implementation, including 
threshold selection and notification delivery.

CONCLUSIONS

Moving a predictive model to a new clinical environ-
ment outside that which it was trained is fraught with 
challenges. Key differences were observed between the 
initial academic tertiary care center and a second large 
community hospital, including changes in the distri-
bution of laboratory values and vital signs, frequency 
of deterioration, and changes in demographic makeup. 
Despite these differences, PICTURE was able to con-
sistently predict deterioration events and outperform 
existing metrics at both institutions, and supports its 
suitability as an early-warning reminder tool to predict 
deterioration in general ward patients across different 
clinical settings. However, despite this initial success, it 
remains critically important to continuously monitor 
EWSs both throughout and long after implementation 
to account for ongoing dataset shifts in an evolving 
healthcare system.
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Figure 3. Positive predictive value (PPV), sensitivity, and specificity change with alert threshold. PPV, sensitivity, and specificity are 
plotted at varying thresholds. A candidate threshold was selected at a sensitivity of 0.5 using data from hospital 1 (A, dark dashed line), 
and then applied to data from hospital 2 (B, dark dashed line). Note that PPV at hospital 1 is adjusted to reflect the event rate at the 
second institution. A second candidate alert threshold (light dotted line) was chosen using the same procedure on data from hospital 2 to 
indicate the possible desirability of choosing separate thresholds to better fit clinical care in the different environments. HMC = Hurley 
Medical Center, MM = Michigan Medicine.
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