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ABSTRACT: Chronological age is an imperfect measure of the aging process, which is affected by a wide range 

of genetic and environmental exposures. Biological age estimates may be derived using mathematical modelling 

with biomarkers set as predictors and chronological age as the output. The difference between biological and 

chronological age is denoted the “age gap” and considered a complementary indicator of aging. The utility of 

the “age gap” metric is assessed through examination of its associations with exposures of interest and the 

demonstration of additional information provided by this metric over chronological age alone. This paper 

reviews the key concepts of biological age estimation, the age gap metric, and approaches to assessment of model 

performance in this context. We further discuss specific challenges for the field, in particular the limited 

generalisability of effect sizes across studies owing to dependency of the age gap metric on pre-processing and 

model building methods. The discussion will be centred on brain age estimation, but the concepts are 

transferable to all biological age estimation. 
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1. Introduction 

 

Global population aging has increased the burden from 

non-communicable diseases of older age. Promotion of 

healthy aging is a public health priority. Increased age is 

associated with loss of function across organ systems and 

increased propensity to disease [1] . However, there is 

variation in age-related loss of function amongst 

individuals of the same age. Thus, chronological age is not 

always a perfect measure of biological age, which is 

influenced by a wide array of genetic and environmental 

exposures throughout the lifecourse [2]. 

Over the last 50 years many researchers have 

attempted to estimate biological age as an alternate 

measure of the aging process. In general, the premise of 

these works is the development of a mathematical model 

for estimation of biological age using biomarkers as 

model predictors and chronological age as the model 

output. The discrepancy between the model estimated 

biological age and the observed chronological age is 

denoted as an “age gap” metric, which gives more 

information about the aging process over and above 

chronological age alone [3]. Given that aging processes 

may be differential across organ systems, many 

researchers advocate organ-specific biological age 

estimation. 

The emergence of biomedical research databases, 

such as the UK Biobank [4], with availability of highly 
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detailed phenotypic characterisation of very large samples 

has provided unique opportunities to develop biological 

age estimation models. In particular, the vast expanse of 

neuroimaging data has permitted development of 

biological brain age estimation models using image-

derived phenotypes as predictor biomarkers [5]. Existing 

work has demonstrated the utility of brain age gap derived 

from these models through demonstration of associations 

with key environmental and genetic exposures [6]. Whilst 

biological age estimation is an old endeavour, it has found 

new applications in the field of brain age estimation [3]. 

There is growing interest in application of these concepts 

to understanding aging process of other organ systems [7]. 

The development and interpretation of biological age 

estimation models differs somewhat from that of 

conventional models. In this paper we review the concept 

of the age gap, assessment of model performance in the 

context of age estimation, sources of variation in 

biological age estimates, and limitations and future work 

in the field. The discussion will be centred on brain age 

estimation, but the concepts are broadly transferable to 

any biological organ age estimation. 

 

2. Brain age gap 

 

Brain age estimates provide a prediction of biological 

brain age based on neuroimaging phenotypes. A variety 

of methods can be used to estimate age as a continuous 

variable, including multiple linear regression [8], 

principal component analysis [9-11], the Hochschild’s 

method [12], the Klemera and Doubal’s method [13, 14], 

support vector regression [15], Xgboost regression [16] 

and Bayesian ridge regression [17]. Non-regression 

methods may also be used for estimation of brain age, 

such as deep learning and decision trees. In the context of 

biological brain age estimation, chronological age plays 

the role of the dependent variable, and brain phenotypes 

are the independent variables. These variables are fitted in 

a regression model as in the following equation 1 (for a 

single observation). 

 

yi = b0 + xib + εi                                             [1] 

 

where yi is the dependent variable, b0 is the intercept, 

xi is a vector (i.e., brain imaging phenotypes), b is the 

coefficient value and εi is the error. Once brain age ˆyi has 

been estimated, the brain age gap is calculated by 

subtracting chronological age from predicted brain age, ̂ yi 

− yi, this is the equivalent of the residual or the error from 

the model (though regression residuals are usually 

computed instead as yi − yˆi). 

The next step is a bias correction. Linear regression 

methods that minimise the mean squared error produce 

residuals that are uncorrelated with the fitted values 

(predicted age), but the residuals are correlated with the 

response variable (chronological age). Since this results in 

systematic over-prediction of brain age for younger 

subjects and under-prediction of older subjects, a bias 

correction is applied. While such bias corrections slightly 

increase the mean squared error, they remove this 

systematic structure from the brain age gap (see [18]  for 

details). 

The “model predicted brain age” is the conditional 

population mean, i.e., the mean age prediction given the 

covariates x. A positive brain age gap may be interpreted 

as a brain that is “older” and is indicative of increased risk 

of cognitive impairment and brain diseases. Conversely, a 

negative brain age gap can be considered as representing 

healthy or delayed brain aging [19]. The associations of 

brain age gap with exposures of interest may be examined 

to evaluate variation explained by biological brain age that 

is not already explained by chronological age. Thus, such 

association studies should include chronological age as a 

covariate. It is important to note, that while the bias 

correction method aims to ensure the age gap metric is 

uncorrelated with chronological age, the two metrics may 

be exactly uncorrelated (e.g., if analysis is performed on a 

held-out sample or different subset) or have non-zero 

partial correlation given that they will be conditional on 

other covariates in the model [18]. 

The brain age gap extracted and interpreted in this 

way has been used as a phenotype of interest in phenom-

wide association studies (PheWAS) and genome wide 

association studies (GWAS) to investigate associations of 

demographic, environmental, and genetic exposures on 

brain health represented by the brain age gap [20]. These 

studies have contributed to establishing the biological 

validity of brain age gap through demonstration of 

associations with cognitive tests, and genetic and 

environmental exposures. Furthermore, examination of 

associations with brain age gap can provide insight into 

novel determinants of brain aging. Figure1 illustrates the 

general pipeline for brain age estimation and examination 

of age gap associations. 

Thus, biological age estimated in this way can be used 

to assess aging for any organ (brain, heart, liver, etc.) and 

provides an easily understandable output which can be 

compared against chronological age and used to 

investigate the associations of a wide range of exposures 

with advanced aging. However, the biological age 

estimates provided vary by the input data used, modelling 

methods, and sample size, which limits comparability 

across studies. Furthermore, in cases where complex 

modelling methods are used, it can be difficult to interpret 

the contribution of model input variables to the estimated 

biological age. Finally, it is challenging to evaluate model 

performance in the context of biological age estimation 

using conventional methods. 
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Figure 1. General illustration of the brain age estimation pipeline and GWAS and PheWAS with the derived BAG. The path 

starts by using either the raw brain MRI or IDPs as model predictors (input variables). The model output is chronological age. The 

model is developed on a training set and tested on a held-out sample. There is then a bias correction step followed by BAG calculation. 

BAG is calculated as the model predicted age - chronological age. The BAG can then be used as phenotype of interest (indicator of 

aging) in PheWAS and GWAS to examine the association of wide range of lifestyle exposures and genetic on BAG. MRI: Magnetic 

resonance imaging; IDPs: image derived phenotypes; BAG: brain age gap; GWAS: Genome-wide association study; PheWAS: 

Phenome-wide association study. 

3. Optimal age estimation 

 

Assessment of model performance in the context of 

biological age estimation requires special considerations. 

Evaluation of model performance quantifies the accuracy 

with which the model estimates the value of interest. 

Mean Absolute Error (MAE) is one of the most commonly 

used measures of model performance. MAE represents 

the absolute difference between the predicted value and 

the observed value averaged over the n subjects in the 

sample [21]. Hence, MAE quantifies the overall error in 

the model; it can be calculated as in equation 2 

 
where yi is the actual value, ˆyi is the predicted value 

and n is the number of subjects to estimate their dependent 

variables. 

In conventional model building, we regard smaller 

MAE values as indicative of better model performance, in 

that the model predicted values are close to the observed 

values. In the context of biological age estimation there is, 

by construct, no ground truth and the model with the 

smallest error is not necessarily the one producing the 

optimal age gap estimate (ϵ) [5]. 

Fundamentally, it is important to note that 

conventional approaches to evaluation of model 

performance are not always useful for assessment of 

biological age estimation models. The purpose of 

biological age estimation is to construct a measure of the 

aging process that would provide incremental information 

over that captured by chronological age. Perfect age 

prediction would in fact produce no useful “age gap”, in 
what is known as the “biomarker paradox” [14]. As such, 

the most useful assessment of model performance lies not 

in examination of metrics such as the MAE but in the 
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strength and consistency of associations between the 

extracted age gap metric and key exposures of interest. 

 

4. Variation in biological age estimates 

 

Many studies have estimated biological brain age and 

performed PheWAS and GWAS analyses with brain age 

gap to uncover the effects of genetics variations and 

environmental exposures on brain aging [22, 20]. In these 

studies, brain age gap was significantly associated with 

many exposures that advance brain aging such as diabetes, 

alcohol, and smoking in a biologically consistent 

direction. In addition, different sets of SNPs in genes with 

known functional importance in brain diseases have been 

found to associate with brain age gap [6, 20]. The results 

are clear indications for validity of the method and 

potential of clinical translation. 

Although multiple studies highlight biologically 

consistent associations with their brain age gap metrics, 

there is significant variation in the magnitude of estimates 

reported. For instance, the effect of diabetes on brain 

aging has been reported by several studies with each 

reporting different effect sizes. Salih, et. al [22] reported 

that diabetes advances brain aging by 6 months while 

James et al. [19] reported that diabetes advances brain age 

gap by 2 years. Similar differences in effect size estimates 

were observed for associations with smoking and alcohol 

consumption. Baecker et al. report increase of 3.4 years 

and 4.1 years in brain age gap with smoking and greater 

alcohol consumption, respectively [3]; while Cole et al. 

report smaller magnitude of associations in their analysis 

of brain age gap with the same exposures [19]. 

These differing effect sizes highlight the highly 

specific interpretation required for brain age gap measures 

produced by each analysis. There are multiple sources of 

variation in biological age estimation at all levels of model 

development and in evaluation of age gap associations. 

These include characteristics of the population on which 

the model was built, the predictor IDPs and factors related 

to their acquisition and post-processing, and mathematical 

modelling methods deployed. Furthermore, there are 

likely significant variations in ascertainment and 

definition of exposure variables which further impact the 

observed associations with the age gap metric. These 

observations highlight the importance of comprehensive 

and transparent reporting of all steps in development and 

assessment of age estimation models. Ultimately 

standardisation of approaches to biological age estimation 

will be required to permit cross comparability of 

relationships. 

 
5. Limitations and future work 

 

A key limitation of biological estimation methods is the 

lack availability of adequate datasets for model 

development. This is more important in cases where study 

of a specific cohort is required e.g., young children [23] 

or individuals with an uncommon illness [24] . In these 

settings obtaining adequate training data can be extremely 

challenging. Firstly, a reliably verified disease sample 

which adequately encompasses the full spectrum of the 

condition of interest is required. Second, the expected 

atypicality of the disease cohort means that a simple age-

matched comparator cohort is likely to be insufficient with 

need for attention to other sample characteristics. More 

generally, large extensively phenotyped datasets are 

available almost exclusively in the context of dedicated 

biomedical databases such as the UK Biobank [4]. Such 

datasets provide a valuable platform for development of 

biological age estimation models as well as provide 

opportunity to examine patterns and determinants of aging 

with potential for novel insights into aging pathways. 

Such analyses may advance our understanding of the 

biology of aging and highlight exposures that may be 

tackled at a population level to promote healthy aging. A 

growing body of literature addresses these questions with 

regards biological brain aging. More recently, similar 

approaches have been taken to estimation of biological 

age across other organs, such as the heart [7]. Further 

work is required to develop optimal biological age 

estimation models that may be utilised to better 

understand the aging process within and across organ 

systems. A general limitation of such work is that broad 

generalisability of these models to other settings may be 

limited as extensive phenotyping in research datasets is 

unlikely to be widely available. A question that has not 

been adequately addressed is the potential clinical utility 

of biological age estimation, which hinges on the 

predicated age estimates providing information that is 

incremental to chronological age in terms of disease 

discrimination and event prediction. Increased availability 

of large datasets with detailed clinical phenotyping and 

longitudinal outcome tracking will permit evaluation of 

these key questions. 

 

6. Conclusion 

 

Chronological age does not always fully capture the 

biological age of an individual. Biological age estimation 

is a method of deriving an alternate measure of the aging 

process with the aim of providing information that is 

complementary to chronological age. In brain age 

estimation neuroimaging biomarkers are used as model 

predictors to predict chronological age as outcome. The 

discrepancy between model predicted age and 

chronological age is calculated to derive a brain age gap. 

The influence of genetic and environmental exposures on 
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brain aging may be studied through examination of their 

associations with brain age gap. Optimal model 

performance in the context of biological age estimation is 

best assessed through consideration of the consistency and 

strength of exposure associations with the derived age gap 

metric. There is substantial variation in brain age 

estimation models due to differences in samples, 

predictors, and modelling methods. As such, effect sizes 

may not be comparable across different studies. These 

observations underscore the importance of exact reporting 

of methods and phenotypes in biological age estimation 

work. The concepts of brain age estimation may be 

applied to derive biological age estimation for other 

organs. Further work is required to explore the 

applications of this method for examining mechanistic 

pathways of the aging process within and across organ 

systems. Existing work demonstrates potential for clinical 

and research utility of biological age estimation. Further 

work is needed to establish the additional value of 

biological age estimates over chronological age for 

prediction of clinical events. 
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