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Abstract

To compare the immunopathology of immune checkpoint inhibitor-induced

myasthenia gravis (ICI-MG) and idiopathic MG, we profiled the respective

AChR autoantibody pathogenic properties. Of three ICI-MG patients with

AChR autoantibodies, only one showed complement activation and modula-

tion/blocking potency, resembling idiopathic MG. In contrast, AChR

autoantibody-mediated effector functions were not detected in the other two

patients, questioning the role of their AChR autoantibodies as key mediators of

pathology. The contrasting properties of AChR autoantibodies in these cases

challenge the accuracy of serological testing in establishing definite ICI-MG

diagnoses and underscore the importance of a thorough clinical assessment

when evaluating ICI-related adverse events.

Introduction

Myasthenia gravis (MG) is a rare autoimmune disease of

the neuromuscular junction (NMJ). Autoantibodies that

bind to the acetylcholine receptor (AChR) are detected in

~85% of MG patients. When MG is clinically suspected,

autoantibody detection by radioimmunoassay (RIA) or cell-

based assay (CBA) establishes a definitive diagnosis.1 Mech-

anistically, AChR autoantibodies are key mediators in the

manifestation of MG, because IgG binding to AChR results

in detrimental effects on the NMJ and failure of neuromus-

cular transmission. The pathogenic potential of AChR auto-

antibodies derives from their capacity to induce antigenic

modulation (internalization), complement fixation, and

receptor blocking.2 Although no unequivocal trigger has yet

been identified in the pathogenesis of the disease, a growing

number of MG cases has been causally associated with the

administration of immune checkpoint inhibitors (ICIs).3 In

clinical practice, ICIs have provided lasting remission for

patients with metastatic and earlier-stage cancers.4,5

Notwithstanding these beneficial effects, ICI administra-

tion can cause off-target toxicities termed immune-related

adverse events (irAEs), potentially affecting any organ.6

ICI-induced MG (ICI-MG), albeit rare, stands out from

other irAEs because of its high mortality rate of nearly

30%.7 This poor outcome has been attributed to a frequent

inflammatory overlap involving the skeletal and/or cardiac

muscle, which is hardly ever found in idiopathic MG. Fur-

thermore, AChR autoantibodies are frequently detected in

ICI-MG patients but, unlike idiopathic MG, the precise

mechanisms through which they induce pathology are cur-

rently unknown.7,8 Elucidating this immunological aspect

may provide deeper insights into disease pathogenesis and

ultimately lead to better treatment strategies. In this study,

we leveraged a suite of experimental assays to measure

autoantibody binding capacity, effector functions, and epi-

tope specificity in ICI-MG patients. Our results call into

question the pathogenic role of AChR autoantibodies in

patients diagnosed with ICI-MG and suggest that a

humoral and/or cellular factor—other than AChR
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autoantibodies—may be the true mechanistic driver of dis-

ease symptoms and outcome.

Methods

Study approval

This study was approved by the Institutional Review

Boards of Yale University, Duke University, and the Uni-

versity of North Carolina at Chapel Hill. Patients or their

legally authorized representatives consented to participate

in the study.

Patient selection

In this multicenter retrospective case series study, three

academic MG biorepositories were sourced to identify

serum or plasma samples collected between 2016 and

2020 from patients diagnosed with MG following ICI

treatment. MG diagnosis was based on a compatible clini-

cal phenotype and at least one of the following: (1) a pos-

itive AChR or muscle-specific tyrosine kinase (MuSK)

autoantibody result by radioimmunoassay (RIA); (2) dec-

remental response on repetitive nerve stimulation (RNS)

or increased jitter on single-fiber electromyography

(SFEMG); and (3) clinical response to cholinesterase

inhibitors.

Serological assays

All samples were tested on live clustered AChR, MuSK,

and low-density lipoprotein receptor-related protein 4

(LRP4) CBAs using flow cytometry, as previously

described.9 For the LRP4 CBA, human embryonic kidney

(HEK) 293T cells were transfected with human LRP4

plasmid (a generous gift from Dr. Stephan Kröger).10

Experimental CBA controls included AChR- and MuSK-

specific human recombinant monoclonal autoantibodies

(637 mAb and MuSK-1A, respectively),11,12 as well as an

anti-LRP4 recombinant mouse monoclonal antibody

(Addgene plasmid #177513). AChR autoantibody-

mediated complement fixation was evaluated with a CBA

as we have previously described.13 Autoantibody-

mediated modulation and blocking of AChR were mea-

sured jointly on a human cell line. Briefly, CN21 cells

derived from the TE671 rhabdomyosarcoma cell line were

incubated at 37°C for 18 h in the presence of heat-

inactivated serum (or plasma) samples. Surface AChR

expression was labeled with Alexa Fluor 647-conjugated

α-bungarotoxin, and changes from baseline (untreated

condition) were assessed by flow cytometry. Epitope map-

ping was performed using a Jurkat cell line genetically

engineered to express the ectodomains of single AChR

subunits. To test for the presence of AChR autoantibodies

targeting the main immunogenic region (MIR) located at

the extracellular end of α subunits, competitive binding

between serum (or plasma) samples and fluorescently

labeled MIR-specific 637 mAb was assessed on a live clus-

tered AChR CBA.14 For each assay evaluating autoanti-

body effector functions, sera from patients with an MG

diagnosis following other cancer immunotherapies (OCI-

MG), ICI-naı̈ve AChR autoantibody-positive (AChR+)

MG patients, and healthy subjects were included as

controls.

Results

Five ICI-MG patients met the inclusion criteria. The

median (range) age at symptom onset and sampling was

71 (36–86) years, and 4 (80%) were male. Table 1 sum-

marizes patients’ demographics, clinical features, labora-

tory findings, and experimental results. The control group

included 32 patients with idiopathic MG and two OCI-

MG patients (OCI-MG#1, on imatinib for leukemia, and

OCI-MG#2, on interferon alfa-2A for metastatic mela-

noma). At diagnostic workup, 3 out of 5 ICI-MG patients

(60%) and 1 out of 2 OCI-MG patients (50%) tested pos-

itive for AChR autoantibodies by RIA. Electrodiagnostic

findings in the ICI-MG cohort are summarized in Table 1.

To improve autoantibody testing sensitivity, we per-

formed a serological screening using live CBAs (Fig. 1;

Table 1). RIA results were confirmed by a clustered AChR

CBA, but neither AChR nor MuSK autoantibodies were

detected in the sera of RIA-based seronegative patients.

Neither ICI-MG nor OCI-MG patients tested positive for

LRP4 autoantibodies (Fig. S1). Within the AChR+ ICI-

MG subgroup, only one patient (ICI-MG#3) showed

complement fixation and modulation/blocking activity

when these autoantibody effector functions were assessed

in vitro, mirroring the case of OCI-MG#1 (Fig. 2A–C;
Table 1). For ICI-MG#3 (and OCI-MG#1, data not

shown), epitope mapping demonstrated a polyclonal

autoimmune response directed to multiple AChR sub-

units (Fig. 2D; Table 1), including the α subunit. The

patient’s plasma and MIR-specific 637 mAb showed com-

petitive binding to AChR, suggesting the MIR as one of

the target epitopes of ICI-MG#3’s autoantibody reper-

toire. (Fig. S2). Conversely, the two remaining AChR+

ICI-MG patients (ICI-MG#1 and ICI-MG#2) showed nei-

ther autoantibody effector functions in vitro nor reactiv-

ities to single AChR subunits.

Discussion

The immunological features of ICI-MG remain largely

unknown. To address this absence, we performed a
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serological assessment of five symptomatic patients diag-

nosed with ICI-MG using highly sensitive, quantitative

assays. We confirmed AChR autoantibody seropositivity

in three patients, while two were triple-seronegative.

Within the AChR+ ICI-MG subgroup, autoantibody-

mediated complement fixation and modulation/blocking

potency were detected in only one patient (ICI-MG#3).

Mirroring the case of idiopathic MG patients, epitope

mapping of ICI-MG#3 showed targeting of multiple

AChR subunits, including the MIR on the α subunits.

Notably, this patient, the youngest in the ICI-MG cohort,

first presented with ICI-related myositis, and MG was

Table 1. Demographics, clinical features, laboratory findings, and experimental data of ICI-MG patients.

ICI-MG#1 ICI-MG#2 ICI-MG#3 ICI-MG#4 ICI-MG#5

Sex Male Male Male Male Female

Age at symptom onset and sampling 71 69 36 86 75

Cancer Renal cell

carcinoma

Prostate

cancer

Thymoma Prostate

cancer

Renal cell

carcinoma

ICI type Anti-PD1/CTLA4 Anti-PD1/

CTLA4

Anti-PD1 Anti-PD1 Anti-PD1/CTLA4

ICI cycles before MG onset (time from first administration

to symptoms)

6 (4 months) 1 (2 days) 4 (2 years) 3 (1.5 months)

3 (1.5 months)

MGFA class at sampling I IIIB IIIB IIIB IVA

Clinical and research laboratory findings

AChR IgG RIA (nmol/L)1 15.3 0.68 15.8 Negative Negative

MuSK IgG RIA (nmol/L)1 Not performed Not

performed

Not

performed

Negative Negative

AChR CBA (IgG titer)2 Positive (1:540) Positive

(1:180)

Positive

(1:1620)

Negative Negative

MuSK/LRP4 CBAs Negative Negative Negative Negative Negative

Peak CK level (U/L)3 since MG onset Not available 4063 U/L 85 U/L4 966 U/L 37 U/L

AChR autoantibody effector functions and epitope specificity

Complement fixation No No Yes NA NA

Modulation/blocking No No Yes NA NA

AChR single subunit reactivity No No α, β, γ NA NA

Electrodiagnostic findings

Decrement on RNS No No Not

performed4
Yes Yes

Abnormal SFEMG Not performed Mildly

abnormal

Yes4 Yes Not performed

Overlap syndromes

Myopathy5 Insufficient data Yes No4 Yes No

Myocarditis6 No Yes No No7 No

Concomitant MG treatments at sampling

Pyridostigmine No Yes No Yes No

Immunosuppressants/IVIG/PLEX No Yes Yes Yes Yes

Outcome; time from MG onset No follow-up Death;

1 month

No follow-up Death;

2 months

Death; 2 weeks

AChR, acetylcholine receptor; CBA, cell-based assay; CK, creatine kinase; CTLA4, cytotoxic lymphocyte antigen-4; ICI, immune checkpoint inhibi-

tor; IVIG, intravenous immunoglobulin; LRP4, low-density lipoprotein receptor-related protein 4; MG, myasthenia gravis; MGFA, Myasthenia Gravis

Foundation of America; MuSK, muscle-specific tyrosine kinase; NA, not applicable; PD-1, programmed cell death protein 1; PLEX, plasma

exchange; RIA, radioimmunoassay; RNS, repetitive nerve stimulation; SFEMG, single-fiber electromyography.
1Autoantibody testing by radioimmunoassay; normal range <0.02 nmol/L.
2IgG serum titer was measured through six threefold serial dilutions, ranging from 1:20 to 1:14.580.
3Creatine kinase reference range: 30–220 U/L.
4Two years prior to the detection of AChR autoantibodies and MG symptom onset, the patient developed non-fluctuating bulbar and proximal

limb weakness following the first ICI administration and was diagnosed with ICI-related myositis (CK value: 2753 U/L; RNS and SFEMG tests were

normal; AChR and MuSK autoantibodies were negative by RIA).
5Diagnosis based on elevated creatine kinase levels and electrodiagnostic findings of myopathic motor unit potentials.
6Diagnosis based on clinical, laboratory, and imaging findings.
7Diagnosis of congestive heart failure.
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diagnosed after 2 years from ICI initiation (Table 1).

Because the patient had thymic cancer, the possibility of

thymoma-associated disease merits acknowledgment.

Despite no conclusive link between ICI and MG, this case

nonetheless underscores the importance of extended clini-

cal surveillance for potential late-onset irAEs.

Conversely, the other two AChR+ ICI-MG patients

(ICI-MG#1 and ICI-MG#2) showed CBA-confirmed IgG

binding to extracellular AChR epitopes but undetectable

autoantibody effector functions. RNS testing did not

reveal a functional NMJ defect in either patient. Based on

laboratory and electromyographic findings, a diagnosis of

concurrent myositis was made for ICI-MG#2. In this

patient, SFEMG performed on a clinically weak facial

muscle was only mildly abnormal, suggesting that the

facial weakness owed primarily to the concomitant myo-

pathic process (Table 1).

Taken together, such findings cast doubt on the direct

involvement of AChR autoantibodies in the muscle

pathology of ICI-MG#1 and ICI-MG#2 and corroborate

the hypothesis that, in specific contexts, AChR autoanti-

bodies are not the key mediators of disease but rather

represent a bystander autoimmune epiphenomenon.15

This hypothesis is further substantiated by the two-day

lag between ICI initiation and symptom onset in ICI-

MG#2, which suggests that AChR autoantibodies predated

ICI administration and argues against a de novo humoral

response to AChR. Overall, experimental results and

available clinical data make it tempting to reassess the

clinical manifestations of ICI-MG#1 and ICI-MG#2 as

oculobulbar presentations of ICI-associated myopathy

and challenge the diagnostic role of AChR autoantibodies

in post-ICI muscle weakness.16 These observations do not

preclude the existence of true overlap syndromes charac-

terized by a detrimental autoimmune response affecting

both the NMJ and skeletal muscle fibers. Such cases

implicate diagnostic and therapeutic pitfalls that warrant

future research.

Immunologically, the reason why AChR autoantibodies

bind to their target but do not exert apparent effector

functions in vitro remains enigmatic. Corroborating our

earlier findings,13 this study further confirmed that

AChR+ MG patients may exhibit heterogeneity in the

magnitude of autoantibody effector functions despite

sharing similar IgG binding capacity on CBA (Fig. 2C).

Several factors including IgG titer and subclasses, affinity

maturation, epitope specificity, post-translational modifi-

cations, and treatment status may play a role in confer-

ring pathogenic potential (or lack thereof) to AChR

autoantibodies. Recently, synergy among autoantibodies

of different epitope specificities has been proposed as a

further mechanism that promotes autoantibody binding

and enhances effector functions.17,18 Whether this repre-

sents an absolute requirement for autoantibody pathoge-

nicity in MG awaits confirmation. Interestingly, both ICI-

MG#1 and ICI-MG#2 samples showed IgG binding to
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Figure 1. Clustered AChR and MuSK cell-based assay results. Scatter plots of clustered AChR (A) and MuSK (B) cell-based assay screening results

using flow cytometry. Serum or plasma samples from ICI-MG patients (n = 5), 2 OCI-MG patients (n = 9 longitudinal samples), and healthy sub-

jects (n = 12 samples) were tested at 1:20 dilution. Each symbol is the mean of duplicate experiments. Alexa Fluor 647-conjugated anti-human

Fcγ was used as a secondary antibody to detect IgG binding to the AChR- or MuSK-expressing cells. For every sample tested, the median Alexa

Fluor 647 fluorescence intensity (MFI) was measured in two cell populations: GFP-positive (transfected) and GFP-negative (untransfected) HEK

293T cells. The ratio between the two MFIs was calculated (MFI ratio) and plotted on the Y-axis. The positivity cutoff (dotted line) was set at the

mean MFI ratio of healthy subjects plus 5 standard deviations. In the scatter plot of the clustered AChR CBA, three ICI-MG patients are above the

positivity cutoff (ICI-MG#1, #2, #3, shown as a red, green, and blue dot symbols respectively).
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AChR in its native conformation but no reactivity to

individual AChR subunits (Fig. 2D), potentially indicating

an autoimmune response to epitopes derived from the

interaction of adjacent subunits.

This study has several limitations, including its retro-

spective design, the limited number of patients due to the

rarity of ICI-MG, and the absence of biospecimens for

histopathology evaluation. In addition, we cannot exclude

Figure 2. Evaluation of autoantibody effector functions and epitope specificity in AChR+ ICI-MG patients. (A) Flow cytometric measurement of

AChR autoantibody-mediated complement fixation. Serum or plasma samples from AChR+ ICI-MG patients (n = 3 samples), AChR+ OCI-MG

patient (n = 1 sample), 32 idiopathic AChR+ MG patients (n = 35 samples), and healthy subjects (n = 12 samples) were included. Each symbol is

the mean of experimental triplicates. Membrane attack complex (MAC) deposition was detected using a C9 neoantigen-specific antibody and a

secondary fluorophore-labeled antibody. For every sample tested, the median fluorescence intensity (MFI) was measured in two cell populations:

GFP-positive (transfected) and GFP-negative (untrasfected) HEK 293T cells. The MFI ratio, which expresses the magnitude of MAC deposition, is

plotted on the Y-axis. The cutoff for positivity (dotted line) was set at the mean MFI ratio of healthy subjects plus 5 standard deviations. (B) Flow

cytometric measurement of combined autoantibody-mediated modulation and blocking activity. Comparison of antigenic modulation/blocking

activity using serum or plasma samples from AChR+ ICI-MG patients (n = 3 samples), AChR+ OCI-MG patient (n = 1 sample), 32 idiopathic

AChR+ MG patients (n = 35 samples), and healthy subjects (n = 12 samples). The red line corresponds to the baseline signal of Alexa Fluor 647-

conjugated α-bungarotoxin labeling untreated cells (no incubation with serum). Patients’ MFI values were normalized to the baseline signal. Each

symbol is the mean of experimental triplicates. The cutoff for positivity (dotted line) was set at the mean MFI ratio of healthy subjects minus 5

standard deviations. (C) Comparison of IgG binding strength and effector functions in a subgroup of patients including one AChR+ ICI-MG patient

(ICI-MG#1) and five ICI-naı̈ve AChR+ MG patients (AChR+ MG#1 to #5). The left Y-axis shows IgG binding strength and MAC deposition, while

the right Y-axis indicates the magnitude of modulation/blocking activity (ΔMFI %: baseline MFI– MFI of each sample %). The bar graph shows

patients with similar IgG binding strength on the CBA, but a variable degree of autoantibody effector functions ranging from high to undetect-

able values. The positivity cutoffs for IgG binding and complement fixation coincide and are shown by a single dotted line. The positivity cutoff

for modulation/blocking activity is shown by a dashed line. (D) Representative flow cytometric histograms of AChR subunit reactivities using Jurkat

cell lines expressing the ectodomains of adult (α, β, δ, and ε) and fetal (α, β, δ, and γÞ AChR subunits. IgG binding to singly expressed subunits was

detected using Alexa Fluor 647-conjugated anti-human Fcγ secondary antibody on flow cytometry. For each sample, the positivity threshold gate

(light red shaded area) was set based on the negative control (Jurkat cells expressing no AChR subunit). From left to right: (1) 637 mAb with

known epitope-specificity: α-binder; (2) lack of reactivity to any subunit (examples include one representative healthy subject, ICI-MG#1, and ICI-

MG#2); and (3) reactivity to multiple subunits (ICI-MG#3: reactivities to α, β, and γ; one representative ICI-naı̈ve AChR+ MG patient: reactivities to

α, β, δ, and γ).
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that the lack of measurable effector functions and subunit

specificities in some patients was due to suboptimal assay

sensitivity. In this respect, we recognize that our experi-

mental assays lack the molecular complexity of the NMJ

(which is a highly specialized synapse), and co-expression

of additional NMJ proteins—other than the autoantibody

target—may be required to effectively trigger autoanti-

body effector functions, as well as to measure them more

accurately. Of note, we also identified a subset of ICI-

naı̈ve AChR+ MG patients harboring autoantibodies that

did not demonstrate pathogenic capacity in our in vitro

assays, and fitting with this observation, these patients

had no clinical evidence of muscle weakness at sampling.

Conversely, in the AChR+ ICI-MG subgroup, all patients

were overtly symptomatic. Prospective investigations on

larger ICI-MG cohorts, along with direct evaluation of

IgG-mediated effects on muscle endplates, are warranted

to confirm these findings. Furthermore, given the identifi-

cation of triple-seronegative ICI-MG cases (ICI-MG#4

and ICI-MG#5), future studies will also be necessary to

elucidate the target and mechanism(s) of muscle damage

in such patients.

In sum, our study shows that patients diagnosed with

ICI-MG may harbor AChR autoantibodies with molecular

properties similar to those found in idiopathic MG. In a

subset of ICI-treated patients, however, AChR autoanti-

bodies lack pathogenic effector functions in vitro, suggest-

ing that other humoral and/or cellular factors, including

those not related to established MG pathology, may have

a more prominent role in their disease. Translated into

clinical practice, these findings challenge the accuracy of

serological testing alone in establishing a definite ICI-MG

diagnosis and corroborate the need for more in-depth

ancillary investigations when evaluating muscle-related

irAEs.19
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