
RESEARCH ARTICLE

Plasma GFAP associates with secondary Alzheimer’s
pathology in Lewy body disease
Katheryn A. Q. Cousins1 , David J. Irwin1 , Alice Chen-Plotkin1, Leslie M. Shaw2,
Sanaz Arezoumandan1 , Edward B. Lee2, David A. Wolk1, Daniel Weintraub3 ,
Meredith Spindler1, Andres Deik1, Murray Grossman1 & Thomas F. Tropea1

1Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
2Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
3Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Correspondence

Katheryn A. Q. Cousins, Penn

Frontotemporal Degeneration Center,

Department of Neurology, Richards Medical

Research Laboratories, Suite 600B, 3700

Hamilton Walk, Philadelphia, PA 19104, USA.

E-mail: katheryn.cousins@pennmedicine.

upenn.edu

Funding Information

This work is supported by funding from the

National Institute of Aging (P01-AG066597,

U19-AG062418, P30-AG072979, and R01-

AG054519), the National Institute of Neuro-

logical Disorders and Stroke (K23-NS114167),

the Alzheimer’s Association (AARF-D-619473,

AARF-D-619473-RAPID), and the Penn Insti-

tute on Aging.

Received: 6 January 2023; Revised: 13 March

2023; Accepted: 14 March 2023

Annals of Clinical and Translational

Neurology 2023; 10(5): 802–813

doi: 10.1002/acn3.51768

Abstract

Objective: Within Lewy body spectrum disorders (LBSD) with α-synuclein
pathology (αSyn), concomitant Alzheimer’s disease (AD) pathology is common

and is predictive of clinical outcomes, including cognitive impairment and

decline. Plasma phosphorylated tau 181 (p-tau181) is sensitive to AD neuropath-

ologic change (ADNC) in clinical AD, and plasma glial fibrillary acidic protein

(GFAP) is associated with the presence of β-amyloid plaques. While these

plasma biomarkers are well tested in clinical and pathological AD, their diag-

nostic and prognostic performance for concomitant AD in LBSD is unknown.

Methods: In autopsy-confirmed αSyn-positive LBSD, we tested how plasma p-

tau181 and GFAP differed across αSyn with concomitant ADNC (αSyn+AD;
n = 19) and αSyn without AD (αSyn; n = 30). Severity of burden was scored

on a semiquantitative scale for several pathologies (e.g., β-amyloid and tau),

and scores were averaged across sampled brainstem, limbic, and neocortical

regions. Results: Linear models showed that plasma GFAP was significantly

higher in αSyn+AD compared to αSyn (β = 0.31, 95% CI = 0.065–0.56, and
P = 0.015), after covarying for age at plasma, plasma-to-death interval, and sex;

plasma p-tau181 was not (P = 0.37). Next, linear models tested associations of

AD pathological features with both plasma analytes, covarying for plasma-to-

death, age at plasma, and sex. GFAP was significantly associated with brain β-
amyloid (β = 15, 95% CI = 6.1–25, and P = 0.0018) and tau burden (β = 12,

95% CI = 2.5–22, and P = 0.015); plasma p-tau181 was not associated with

either (both P > 0.34). Interpretation: Findings indicate that plasma GFAP

may be sensitive to concomitant AD pathology in LBSD, especially accumula-

tion of β-amyloid plaques.

Introduction

Lewy body spectrum disorders (LBSD) are a group of

movement disorders that include Parkinson’s disease

(PD), PD with dementia (PDD), and dementia with Lewy

bodies (DLB). While α-synuclein (αSyn) is the primary

pathology associated with LBSD, concomitant Alzheimer’s

disease (AD) pathology is common. Nearly 50% of cases

have significant accumulations of β-amyloid plaques and

tau neurofibrillary tangles (intermediate or high AD neu-

ropathologic change [ADNC]), justifying a secondary

diagnosis of AD at autopsy.1,2 Concomitant AD may

describe much of the clinical heterogeneity across LBSD,3

and is associated with memory and linguistic

impairments,4–6 postural instability and gait,7 and

reduced survival.2,6 Thus, the in vivo detection of con-

comitant AD is important for prognosis and disease man-

agement of LBSD8 and may inform clinical trial design.9

Yet, biofluid markers that are well established in canoni-

cal AD must still be validated in LBSD to test sensitivity

to concomitant ADNC. Two factors may affect biomarker

accuracy to detect secondary AD. First, overall burden of
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ADNC is relatively less severe in LBSD compared to AD,

with high proportions of intermediate ADNC.1,2 Second,

cerebrospinal fluid (CSF) biomarkers of AD have an

altered profile in LBSD. In particular, CSF tau phosphory-

lated at threonine 181 (p-tau181) is inversely associated

with αSyn pathology, which can reduce its sensitivity to

concomitant AD.10 Another study shows that CSF p-

tau181 is significantly lower in early PD than controls, fur-

ther evincing that concentrations are reduced in LBSD.11

Thus, as plasma biomarkers for AD are developed, it

becomes important to validate their efficacy to detect AD

copathology in LBSD.

Two candidate AD plasma biomarkers in LBSD are

plasma p-tau181 and glial fibrillary acidic protein (GFAP).

Several studies in autopsy and living participants have

shown that plasma p-tau181 can detect AD12,13 and is

associated with accumulation and spread of brain β-
amyloid and tau pathology.13 GFAP is a cytoskeletal fila-

ment protein highly expressed in astrocytes, and concen-

trations of GFAP are raised in the CSF and blood

following astrogliosis and the degeneration of astrocytes.14

Neuroinflammation plays a key role in AD pathogene-

sis,15 and plasma GFAP may be an early marker corre-

lated with brain β-amyloid pathology,16,17 as well as white

matter disease.18,19 Still, the majority of work has studied

both analytes in the context of primary AD. Utility of

these plasma biomarkers in LBSD is unclear, due to dif-

ferent findings across studies of living LBSD, which define

groups using clinical or positron emission tomography

(PET) data.20–22 In light of these conflicting findings in

biomarker-defined LBSD, it becomes necessary to test

plasma biomarkers in autopsy cases with pathologically

confirmed diagnoses.

In this autopsy study, we compare plasma p-tau181 and

GFAP in αSyn with concomitant AD (αSyn+AD) versus

αSyn without AD; AD without concomitant αSyn is

included as a reference group. Multivariable models test

how each analyte correlates with brain accumulation of

pathological β-amyloid plaques and tau neurofibrillary

tangles, as well as αSyn deposition and gliosis. Receiver

operating characteristic (ROC) analyses test how accu-

rately analytes detect ADNC in this mixed pathology sam-

ple, and we also tested associations with global cognition

(mini mental state exam [MMSE]).

Methods

General selection criteria

Participants were enrolled at the University of Pennsylva-

nia (Penn) Parkinson’s Disease Research Center, Fronto-

temporal Degeneration Center, or Alzheimer’s Disease

Research Center, and were selected retrospectively from

the Penn Integrated Neurodegenerative Disease Database

(INDD)23 on September 15, 2022, based on eligibility cri-

teria outlined below. The Penn Institutional Review Board

approved these studies and written informed consent was

obtained from each participant.

Selection criteria were clinically diagnosed LBSD with

neuropathologic diagnoses of either αSyn (n = 30) or

αSyn+AD (n = 19), and available biomarkers of either

plasma GFAP or plasma p-tau181. As a neuropathologic

reference group, we also examined autopsy-confirmed AD

without αSyn (n = 21), with a clinical diagnosis of AD,

and available plasma GFAP and p-tau181. If individuals

had plasma collected at two or more timepoints, the last

timepoint was selected to more closely reflect pathology

at autopsy. There was a median interval of 2 years (inter-

quartile range [IQR] = 2; max = 11) between plasma col-

lection and death. Finally, we used propensity score

matching24 to select 70 clinically normal individuals as

controls, matched for age and sex, with an MMSE ≥ 27;

controls did not have autopsy data.

Neuropathologic diagnoses and assessments

Brains were sampled at autopsy and assessed for ADNC

and αSyn, as well as for other pathologies according to

standardized procedures.23,25 ADNC was scored according

to ABC criteria26 and high or intermediate ADNC was

considered AD positive; low or not ADNC was consid-

ered AD negative. Thal phase,27 Braak stage,28 and

CERAD score29 are reported using a 4-point scale (0–
3).26 DLB stage was assessed30 and brainstem predomi-

nant, limbic, and neocortical Lewy bodies were all consid-

ered αSyn positive; no or amygdala-predominant Lewy

bodies were considered αSyn negative. In addition to

ADNC and αSyn, the presence of concomitant vascular

disease31 and TDP-4332 was assessed; only three LBSD

patients total had moderate or high vascular disease (one

αSyn+AD; two αSyn)31 and it was therefore not assessed

in analyses.

Brain tissue samples were stained using immunohisto-

chemistry as previously described,23 and gross severity of

pathological accumulations of β-amyloid, tau, αSyn, and
TDP-43 were scored using a semiquantitative scale

(0 = none, 0.5 = rare, 1 = minimal, 2 = moderate, and

3 = severe); in addition, severity of gliosis and cerebral

amyloid angiopathy (CAA) were likewise quantified. Bur-

den scores were the average across regions standardly

sampled,26 which included the amygdala, cingulate, CA1/

subiculum, entorhinal cortex, middle frontal gyrus, angu-

lar gyrus, superior/middle temporal gyrus, pons, and

medulla. Hemisphere was randomized; if both hemi-

spheres were sampled, the average was taken. Missing

regional data were dropped to calculate the average.
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Plasma analysis

Plasma was collected and assayed for p-tau181 and GFAP

previously described.33,34 Plasma samples were analyzed

on the Quanterix HD-X automated immunoassay plat-

form. Samples were analyzed in duplicate using the Dis-

covery kit reagents for GFAP35 and using the V2

Advantage kit for p-tau181.
33

In our sample, one αSyn and one AD were missing

plasma GFAP.

Clinical and demographic features

Demographic features were available through INDD.

Where applicable, we examined age at onset (first

reported symptom; years), age at plasma collection

(years), disease duration at plasma (time from onset to

plasma collection; years), interval from plasma-to-CSF

(years), interval from plasma-to-MMSE (years), interval

from plasma-to-death (years), and age at death (years).

Sex and race were determined by self-report.

MMSE was used as a measure of global cognition in

LBSD that was available in historical autopsy cases. In the

LBSD autopsy sample, 24 αSyn and 16 αSyn+AD patients

had MMSE available. There was a median interval of

0.6 years (IQR = 2; max = 8.2) between plasma collection

and MMSE.

Statistical analyses

Not all demographic and analyte variables were normally

distributed, therefore, nonparametric Kruskal–Wallis and

Mann–Whitney–Wilcoxon tests performed unadjusted

group comparisons for continuous variables. Fisher’s exact

tests performed group comparisons for categorical vari-

ables; for larger contingency tables where Fisher’s exact test

was not able to be computed (e.g., DLB type and clinical

diagnosis), Chi-square tests were used. Spearman correla-

tions tested within-group associations between continuous

variables; given the complex and interrelated relationship

of pathological variables, both nominal and Bonferroni-

corrected P-values are reported. All statistical models used

a significance threshold of α = 0.05.

In addition to unadjusted comparisons and correla-

tions, multiple regression was performed to control for

possible confounds.36 For linear models, 95% confidence

intervals (CI) for β-estimates were reported. Plasma p-

tau181 and GFAP were not normally distributed and were

log-transformed in all models. Distributions of pathologi-

cal and clinical measures varied and were therefore rank-

transformed to perform nonparametric analyses. Effect

sizes with 95% CI were calculated using generalized η2

(η2G),
37 using standard interpretation cutoffs (≥0.01

small, ≥0.06 medium, and ≥0.14 large).38 Statistical ana-

lyses were performed and figures were generated using R

version 4.1.2 (2021-11-01).

First, linear models tested how plasma biomarkers dif-

fered across αSyn and αSyn+AD, covarying for age at

plasma collection, interval from plasma-to-death, and sex

(Equation 1).

log PlasmaAnalyteð Þ ¼ β0 þ β1 � Groupþ β2 � Ageþ β3
� Plasma-to-Deathþ β4 � Sexþ ε

Within LBSD, linear models tested how AD pathologi-

cal hallmarks β-amyloid plaques (Equation 2) and tau

neurofibrillary tangles (Equation 3), associated with

plasma GFAP and plasma p-tau181, covarying for age,

interval from plasma-to-death, and sex. Models were

repeated excluding individuals with a plasma-to-death

interval >5 years.

rank β� amyloidð Þ ¼ β0 þ β1 � log p�tau181ð Þ þ β2
� log GFAPð Þ þ β3 � Ageþ β4
� Plasma-to-Deathþ β5 � Sexþ ε:

rank Tauð Þ ¼ β0 þ β1 � log p�tau181ð Þ þ β2 � log GFAPð Þ
þ β3 � Ageþ β4 � Plasma-to-Deathþ β5
� Sexþ ε:

Given correlations between β-amyloid, tau, and gliosis

burden in LBSD, a post hoc model tested associations of

all with plasma GFAP (Equation 4), covarying for age,

interval from plasma-to-death, and sex.

log GFAPð Þ ¼ β0 þ β1 � rank β�amyloidð Þ þ β2
� rank Tauð Þ þ β3 � rank Gliosisð Þ þ β4
� Ageþ β5 � Plasma-to-Deathþ β6 � Sex
þ ε:

ROC analyses using bootstrapping (500 iterations)

compared discrimination of high/intermediate ADNC

from not/low ADNC; AUC with 90% CIs were reported.39

ROC analyses tested plasma analytes in the full autopsy

sample (αSyn, αSyn+AD, and AD) and within LBSD

(αSyn and αSyn+AD).
Finally, we tested associations of global cognition

(MMSE, rank-transformed) with both analytes, covarying

for age, MMSE-to-plasma interval (years), and sex. This

analysis was repeated excluding individuals with a

plasma-to-MMSE interval >1 year.

rank MMSEð Þ ¼ β0 þ β1 � log GFAPð Þ þ β2
� log p� tau181ð Þ þ β3 � Ageþ β4
�MMSE-to-plasmaþ β5 � Sexþ ε:
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Results

Table 1 summarizes group characteristics and Kruskal–
Wallis groupwise comparisons. Pairwise Wilcoxon tests

show that αSyn+AD had an older median age of onset

than αSyn (W = 137.5, P = 0.0025); there was no differ-

ence in age at plasma (P = 0.37), plasma-to-death interval

(P = 0.76), or age at death (P = 0.37). Fisher’s exact tests

showed no difference in sex distribution (P = 0.32); all

LBSD individuals self-identified as White. Compared to

AD, αSyn+AD had lower Thal Phase (OR = 8.76,

CI = 0.9–444.13, P = 0.04), Braak Stage (OR = 38.32,

CI = 4.31–1904.9, P = 3.0e-05), and CERAD score

(P = 0.012). The proportion of APOE ε4 alleles did not

differ between AD and αSyn+AD (P = 0.41).

Group comparisons

To test which plasma analytes associate with concomitant

AD pathology, Figure 1 compares analyte levels across

αSyn and αSyn+AD, with AD as a reference group. Linear

models covarying for age at plasma, plasma-to-death

interval, and sex confirmed that GFAP was significantly

higher in αSyn+AD than αSyn (β = 0.31, 95%

CI = 0.065–0.56, P = 0.015) with large effect size

(η2G = 0.14; 95% CI = 0.021–1.0); plasma p-tau181 was

Table 1. Demographic, pathological, and clinical characteristics of participants.

Control αSyn αSyn+AD AD p

n 70 30 19 21

Age at onset (years) – 60 (54–66) 69 (62–74) 62 (59–66) 0.009

Age at plasma (years) 72 (65–77) 75 (68–79) 74 (70–84) 71 (64–75) 0.083

Duration at plasma (years) – 13 (9–16) 7 (4–10) 5 (4–8) <0.001
Plasma-to-death (years) 4 (2–5) 2 (1–2) 2 (1–2) 3 (2–4) 0.095

Age at death (years) 73 (70–79) 77 (70–81) 76 (72–84) 73 (69–77) 0.233

Sex = male (%) 39 (56%) 21 (70%) 16 (84%) 11 (52%) 0.074

Self-reported race (%)

Asian 2 (3%) 0 (0%) 0 (0%) 0 (0%) 0.004

Black or African American 16 (23%) 0 (0%) 0 (0%) 2 (10%)

More than one race 1 (1%) 0 (0%) 0 (0%) 1 (5%)

White 50 (72%) 30 (100%) 19 (100%) 18 (86%)

Thal phase (0–3) – 1 (0–1) 3 (2–3) 3 (3–3) <0.001
Braak stage (0–3) – 1 (1–2) 2 (2–3) 3 (3–3) <0.001
CERAD score (0–3) – 0 (0–1) 2 (2–3) 3 (3–3) <0.001
ADNC (%)

Not – 11 (37%) 0 (0%) 0 (0%) <0.001
Low – 19 (63%) 0 (0%) 0 (0%)

Intermediate – 0 (0%) 14 (74%) 1 (5%)

High – 0 (0%) 5 (26%) 20 (95%)

DLB type (%)

None – 0 (0%) 0 (0%) 10 (48%) <0.001
Amygdala predominant – 0 (0%) 0 (0%) 11 (52%)

Brainstem predominant – 6 (20%) 1 (5%) 0 (0%)

Transitional or limbic – 15 (50%) 5 (26%) 0 (0%)

Diffuse or neocortical – 9 (30%) 13 (68%) 0 (0%)

Vascular disease+ (%) – 2 (7%) 1 (5%) 3 (14%) 0.646

APOE ε4 (%)

0 49 (72%) 19 (63%) 6 (33%) 6 (29%) <0.001
1 17 (25%) 11 (37%) 10 (56%) 9 (43%)

2 2 (3%) 0 (0%) 2 (11%) 6 (29%)

Clinical diagnosis (%)

Control 70 (100%) 0 (0%) 0 (0%) 0 (0%) <0.001
AD 0 (0%) 0 (0%) 0 (0%) 18 (95%)

PD/PDD 0 (0%) 27 (90%) 11 (58%) 0 (0%)

DLB 0 (0%) 3 (10%) 8 (42%) 1 (5%)

Note: For continuous variables, median and interquartile range (IQR) are reported; Kruskal–Wallis tests performed group comparisons. For categor-

ical variables, count (percentage [%]) are provided; Fisher’s exact tests performed frequency comparisons, except for larger contingency tables

(DLB Type and Clinical Diagnosis) where Chi-square tests were used. P-values are reported for group comparisons. Note that DLB type and ADNC

(including Thal, Braak, and CERAD) were used to define groups.
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not significantly higher in αSyn+AD than αSyn
(P = 0.37).

Examining covariates, age at plasma was positively

associated with GFAP (β = 0.017, 95% CI = 0.00094–
0.034, P = 0.039) but not p-tau181 (P = 0.27). Plasma-to-

death was inversely associated with GFAP (β = −0.056,
95% CI = −0.10 to −0.0078, P = 0.024) but not p-tau181
(P = 0.61). Sex was associated with neither GFAP

(P = 0.16) nor p-tau181 (P = 0.12).

Compared to neurologically healthy controls, Wilcoxon

tests showed that plasma GFAP was higher in αSyn+AD
(W = 229, P = 0.000013) and AD groups (W = 174,

P = 1.3e-07), but not αSyn (W = 761.5, P = 0.052).

Compared to controls, plasma p-tau181 was higher in all

three groups: αSyn+AD (W = 230.5, P = 0.000014), AD

(W = 125, P = 9.4e-09), and αSyn (W = 623,

P = 0.0013).

Five patients with high/intermediate ADNC (αSyn+AD,
AD) had plasma GFAP below the control median

(117.6 pg/mL; see Figure 1). We tested if AD pathology

individuals with low GFAP (<117.6) differed from AD

with high GFAP values (>117.6). Low GFAP was associ-

ated with a significantly longer plasma-to-death interval

(median = 9 [2]) than high GFAP (median = 2 [2])

(W = 30, P = 0.017). Low GFAP was also associated with

a clinical diagnosis of PD/PDD (three [75%] PD/PDD;

one [25%] DLB; zero AD) more than high GFAP (eight

[24%] PD/PDD, eight [24%] DLB, and 18 [53%] AD)

(Fisher’s test: P = 0.039). There were no significant

differences between high and low GFAP for age

(P = 0.15), sex (P = 0.15), or APOE ε4 (P = 0.39), but

we note the small sample size for low GFAP (n = 5).

In the full autopsy sample (αSyn, αSyn+AD, AD), Fig-
ure 2 tests plasma analytes across metrics of AD severity:

ADNC, Thal phase, and Braak stage.

Associations with pathological
accumulation within LBSD

Within LBSD, we explored the pathological correlates (β-
amyloid, tau, gliosis, and αSyn) of plasma GFAP and p-

tau181 (Figure 3); we also tested associations with TDP-43

and CAA to ensure other pathologies were not influenc-

ing plasma concentrations.

Across all LBSD, plasma GFAP was positively associ-

ated with β-amyloid (ρ = 0.5, P = 0.00026; Bonferroni-

P = 0.0058). Associations with tau (ρ = 0.4, P = 0.0053;

Bonferroni-P = 0.071) and gliosis (ρ = 0.35, P = 0.015;

Bonferroni-P = 0.062) did not survive multiple correc-

tions. Plasma GFAP was not associated with αSyn
(ρ = 0.24, P = 0.095), TDP-43 (P = 0.92), or CAA

(P = 0.78).

Plasma p-tau181 associations did not survive multiple

corrections for β-amyloid (ρ = 0.30, P = 0.039;

Bonferroni-P = 1.0) or gliosis (ρ = 0.32, P = 0.027;

Bonferroni-P = 1.0); plasma p-tau181 was not associated

with tau (P = 0.11), αSyn (ρ = 0.27, P = 0.063), TDP-43

(P = 0.24), or CAA (ρ = 0.25, P = 0.079).

Figure 1. Plasma concentrations across pathological diagnosis. Boxplots show median, interquartile range (IQR), and outliers for plasma p-tau181,

GFAP, and NfL. Color represents ADNC. Horizontal dashed lines plot medians for GFAP and p-tau181 from neurologically normal controls. Asterisks

represent P-values from Wilcoxon pairwise comparisons (*P < 0.05, **P < 0.01, ***P < 0.001, and not significant [ns]).
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Figure 2. Plasma concentrations across ADNC, Thal Phase, and Braak Stage across all autopsy cases (αSyn, αSyn+AD, AD). Plasma GFAP (left

panels) and p-tau181 (right panels) comparisons across (A) ADNC score, (B) Thal Phase, and (C) Braak stage. Boxplots show median, interquartile

range (IQR), and outliers. Color represents severity. Asterisks represent P-values from Wilcoxon pairwise comparisons (*P < 0.05, **P < 0.01,

***P < 0.001, ****P < 0.0001, and not significant [ns]).
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In addition, plasma GFAP and p-tau181 were correlated

with each other within LBSD (ρ = 0.31, P = 0.031).

Next, we tested how both analytes associated with AD

pathological hallmarks within LBSD. A linear model

tested β-amyloid plaque as a function of both plasma p-

tau181 and GFAP, covarying for age at plasma collection,

plasma-to-death interval, and sex. β-amyloid plaque bur-

den was significantly associated with plasma GFAP

(β = 15, 95% CI = 6.1–25, and P = 0.0018) with large

effect size (η2G = 0.23; 95% CI = 0.066–1.0), but not

plasma p-tau181 (P = 0.95). Results were robust after

excluding individuals who had plasma collection >5 years

before death (GFAP: β = 14, 95% CI = 3.7–24, and

P = 0.0089; p-tau181: P = 0.82).

Likewise, we tested pathological tau burden as a func-

tion of both plasma p-tau181 and GFAP, covarying for age

at plasma collection, plasma-to-death interval, and sex.

Pathological tau burden was significantly associated with

plasma GFAP (β = 12, 95% CI = 2.5–22, P = 0.015) with

large effect size (η2G = 0.23; 95% CI = 0.066–1.0), but

not plasma p-tau181 (P = 0.34). Results were robust after

excluding individuals who had plasma collection >5 years

before death (GFAP: β = 12, 95% CI = 2.1–23, and

P = 0.020; p-tau181: P = 0.30).

β-amyloid plaque burden was not significantly associ-

ated with any of the covariates: age (P = 0.99), plasma-

to-death (P = 0.62), or sex (P = 0.10). Tau burden was

not associated with age (P = 0.30), plasma-to-death

(β = 1.5, 95% CI = −0.075 to 3.1, and P = 0.061), or sex

(P = 0.81).

Pathological accumulations of β-amyloid, tau, and glio-

sis were all positively correlated in LBSD (β-amyloid and

tau: ρ = 0.51, P = 0.00017; β-amyloid and gliosis:

ρ = 0.32, P = 0.025; tau and gliosis: ρ = 0.46, P = 0.001).

Given that plasma GFAP was positively associated with β-
amyloid, tau, and gliosis burden (Figure 3) and thus the

potential for collinearity, a post hoc linear model tested

for plasma GFAP as a function of all three pathologies

(β-amyloid, tau, and gliosis burden) to determine which

might independently associate with plasma GFAP levels.

In addition, age at plasma, plasma-to-death interval, and

sex were included as covariates. Plasma GFAP was signifi-

cantly associated with β-amyloid burden (β = 0.011, 95%

CI = 0.0011–0.02, and P = 0.030) with large effect size

Figure 3. Correlations of plasma analytes and measures of pathological burden. Scatterplots for plasma GFAP (top panel) and p-tau181 (bottom

panel) and pathological variables are plotted. Color represents αSyn (blue) and αSyn+AD (red). Least squares regression lines are plotted in black.

Spearman’s rho (ρ) and nominal P-values are reported. Only the association between plasma GFAP and β-amyloid survived Bonferroni correction

(Bonferroni-P = 0.0058).
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(η2G = 0.3; 95% CI = 0.12–1.0); however, GFAP was not

associated with gliosis (P = 0.35) or tau (P = 0.41) after

covarying for β-amyloid. In this model, covariates age

(β = 0.014, 95% CI = −0.0021 to 0.030, and P = 0.086),

plasma-to-death (β = −0.043, 95% CI = −0.090 to

0.0041, and P = 0.073), and sex (P = 0.15) were not

significant.

ROC analyses

ROC analyses (Figure 4) tested the diagnostic accuracy of

both analytes to detect ADNC (high/intermediate) in the

full sample (αSyn, αSyn+AD, and AD) and again in

LBSD αSyn-positive cases (αSyn, αSyn+AD). Neither ana-
lyte demonstrated high diagnostic performance in LBSD:

for the full sample, plasma GFAP had an AUC of 0.77

(90% CI = 0.67–0.86) and plasma p-tau181 had an AUC

of 0.72 (90% CI = 0.61–0.82). In the LBSD sample,

plasma GFAP had an AUC of 0.71 (90% CI = 0.58–0.83)
and plasma p-tau181 had an AUC of 0.64 (90%

CI = 0.50–0.77).

Clinical correlation with MMSE

In LBSD, we tested how plasma analytes associated with

cognition; Spearman’s correlations show that both plasma

GFAP and p-tau181 were correlated with MMSE (Figure 5).

In a model covarying for age, plasma-to-MMSE interval

and sex, lower MMSE was associated with higher GFAP

(β = −8.2, 95% CI = −1.5 to −1.2, and P = 0.024), but

not p-tau181 (P = 0.55). We repeated the model, exclud-

ing cases with plasma-to-MMSE interval >1 year: results

were consistent with lower MMSE significantly associated

with higher GFAP (β = −12, 95% CI = −2.1 to −1.8,
P = 0.023), but not p-tau181 (P = 0.44).

Examining covariates, MMSE was associated with

plasma to MMSE interval (β = −2.1, 95% CI = −3.2 to

−0.89, and P = 0.001) and sex (β = −7.8, 95% CI = −1.5
to −0.14, and P = 0.046), but was not associated with age

(P = 0.70).

Discussion

Accumulating evidence shows that plasma biomarkers,

such as p-tau181 and GFAP, are highly sensitive to

AD.12,13,40 Yet, plasma biomarkers have not been well

examined in the context of LBSD with concomitant

ADNC. In this autopsy study, we show consistent results

that plasma GFAP is sensitive to concomitant ADNC in

LBSD with autopsy-confirmed αSyn: antemortem plasma

GFAP was significantly higher in αSyn+AD than αSyn, it
was associated with higher burden of postmortem β-
amyloid (even after covarying for gliosis), and was associ-

ated with worse antemortem MMSE performance. Sur-

prisingly, we do not find as robust results for plasma p-

tau181. Plasma p-tau181 was not higher in αSyn+AD than

αSyn. Postmortem pathological associations with β-
amyloid plaques and neurofibrillary tau showed a stron-

ger association with plasma GFAP than p-tau181. Our

findings emphasize conclusions from previous studies that

LBSD-specific strategies may be necessary to detect con-

comitant AD,8,10,41 and that plasma biomarkers show

unique profiles that may diverge from those seen in

CSF.42,43 Our results here suggest that plasma GFAP is a

promising biomarker that is sensitive to concomitant AD

pathology in LBSD, and may reflect accumulation of β-
amyloid pathology.

We note that ADNC is typically less severe in LBSD

cases than clinical AD.1,2 In this study, 74% of αSyn+AD
in this sample were intermediate ADNC (26% were high

ADNC). In AD, a higher percentage were high ADNC

(95%), and likewise AD cases showed significantly higher

plasma p-tau181 than αSyn+AD. When examining ADNC,

Thal phase, and Braak stage, plasma p-tau181 appeared

elevated only at the highest levels (i.e., high ADNC, Thal/

Braak = 3); our findings echo other research showing

plasma p-tau181 is elevated only at more severe AD

stages,44 and is significantly lower in intermediate ADNC

than high ADNC cases.45 Likewise, studies that demon-

strate good diagnostic accuracy of plasma p-tau181 in

autopsy samples have typically tested discrimination of

high ADNC from intermediate/low/not ADNC, showing

ROC AUCs of 0.77–0.91.12,13,46 Longitudinal studies show

Figure 4. Receiver operating characteristic (ROC) curves. Color

indicates plasma GFAP (blue) and p-tau181 (yellow). Solid lines repre-

sent the full autopsy dataset (αSyn, αSyn+AD, and AD), and dotted

lines represent LBSD αSyn-positive cases (αSyn, αSyn+AD). The dashed

gray line represents chance performance. AUCs were 0.77 for full

sample GFAP, 0.71 for LBSD sample GFAP, 0.72 for full sample p-

tau181, and 0.64 for LBSD sample p-tau181.
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that this relationship may depend on time between

plasma collection and death.40 An open question is

whether other epitopes of p-tau (such as 217 or 231) are

more sensitive to intermediate ADNC than p-tau181, espe-

cially at earlier AD stages,13,44,45,47 including preclinical

AD.48 If so, p-tau 217 or 231 may be more useful for

detecting concomitant AD in LBSD. Poor sensitivity of

plasma p-tau181 to intermediate ADNC may help explain

the divergences between previous findings: one study

showed no difference in plasma p-tau181 in LBSD who

were PET-Aβ positive versus PET-Aβ negative,20 although

others have found that plasma p-tau181 does associate

with PET-tau status in LBSD21 and that it associates with

cognitive decline in DLB.22 Another possible factor is that

biomarkers, like CSF and PET, can show altered profiles

in LBSD compared to AD.10,41 There is some rare autopsy

work examining the effects of concomitant pathology on

plasma biomarkers in primary AD40,45; findings demon-

strate significantly higher plasma p-tau181 in primary AD

patients with mixed pathology, including concomitant

Lewy bodies, than non-AD. Future studies will be needed

to disentangle these contributing factors, to test if p-tau

217 and 231 epitopes are more sensitive to intermediate

ADNC than p-tau181, and test utility of different p-tau

epitopes in LBSD to detect αSyn+AD.
Despite the high proportion of intermediate ADNC in

αSyn+AD, our findings provide strong evidence that

plasma GFAP is sensitive to AD-copathology in LBSD. A

robust astrocytic response to β-amyloid plaques49,50 may

in part explain the strong links found between plasma

GFAP and β-amyloid.16,18,51 In support, we find that

plasma GFAP is sensitive to pathological alterations due

to concomitant AD, and is most strongly associated with

postmortem β-amyloid accumulation. Associations

between GFAP and β-amyloid remained robust even after

covarying for colinear tau and gliosis burden. These

findings are in accordance with previous work showing

plasma GFAP is associated with PET-Aβ and CSF Aβ42/
Aβ40.16,17 In LBSD, β-amyloid burden is often high and

may have a synergic relationship with αSyn pathology,52

which might in part explain the superior performance of

plasma GFAP in this study compared with plasma p-

tau181. Our analyses also point to the clinical relevance of

elevated plasma GFAP, which was associated with

impaired cognition (MMSE). While this study focuses on

end-stage disease in LBSD, it will be critical for future

studies to explore whether our findings generalize to

other neurodegenerative disease and other stages of dis-

ease: whether plasma GFAP is more sensitive to interme-

diate ADNC than p-tau181 in primary AD cases, and

whether plasma GFAP is elevated in early/prodromal

stages of disease in AD and LBSD. Likewise, it will be

important for future studies to test how GFAP changes

over disease course and if it predicts future cognitive

decline in LBSD.

There are several caveats to consider when interpreting

our findings. First, while our focus on LBSD and AD

copathology is a strength of this study, it must be noted

that pathological associations with plasma biomarkers

observed here may not generalize to other conditions,

such as primary AD. We also acknowledge that, despite

strong associations of plasma GFAP with β-amyloid, we

do not find a plasma biomarker strategy that robustly

identifies concomitant ADNC in LBSD: the best ROC

AUC was 0.71 using plasma GFAP. Future studies should

test if plasma GFAP has added value when combined

with other biomarker modalities, like CSF or PET. Sec-

ond, this study focused on end-stage disease, and tested

how plasma levels closest to death associated with post-

mortem pathological accumulations. Because of this,

some subjects had a substantial interval between plasma

collection and death. To help account for this, models

Figure 5. Associations between analytes and MMSE. Color indicates LBSD group αSyn (blue) and αSyn+AD (red). Least squares regression line is

plotted. Spearman’s rho (ρ) and P-value are reported.
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included plasma-to-death interval as a covariate and sub-

analyses confirmed results after excluding individuals with

an interval >5 years. Still, it will be important for future

studies to track longitudinal changes in plasma bio-

markers within LBSD and to test plasma GFAP and p-

tau181 in the context of early stage LBSD. Third, plasma

concentrations in LBSD may be confounded by other fac-

tors not available in this study, including body mass

index (i.e., blood volume) and creatinine (i.e., kidney

functioning).53 Fourth, we measured plasma p-tau181
concentrations using an established platform that shows

excellent performance in AD,33,54 but did not test other

isoforms of p-tau. Future studies should test if other iso-

forms of plasma p-tau (217 or 231) or measures from

different platforms might perform differently in LBSD.

Fifth, effects of race were not able to be assessed in this

autopsy sample, which was majority white, and thus the

generalizability of our findings are limited. It has been

shown that CSF p-tau181 levels are lower in Americans

who are Black compared to White55,56 and is an impor-

tant factor for plasma as well.12 Thus, race can be an

important factor in plasma levels, and future studies

should test how race affects plasma p-tau181 and GFAP

performance in LBSD. Finally, in addition to β-amyloid,

plasma GFAP has been previously associated with white

matter disease in AD.18,19 We examined the possible

influence of other pathologies but found no evidence that

plasma GFAP was associated with CAA; this null associa-

tion was also observed in a mixed pathology sample.57

Only three LBSD autopsy patients had significant cere-

brovascular disease, and we were not able to assess how

GFAP and p-tau181 levels would be altered by moderate

or high vascular disease in this study.

While many studies have tested AD plasma biomarkers

p-tau181 and GFAP in the context of clinical AD, findings

have not been validated in LBSD with autopsy-confirmed

αSyn and AD neuropathologic diagnoses. This autopsy

study focuses on LBSD to evaluate AD plasma biomarkers

for detecting concomitant ADNC in αSyn cases. Analyses

demonstrated that plasma GFAP was sensitive to concom-

itant ADNC in LBSD: plasma GFAP was higher in

αSyn+AD than αSyn, was sensitive to brain β-amyloid in

LBSD, and was associated with global cognition in LBSD.

Together, our findings demonstrate that plasma GFAP is

associated with β-amyloid and concomitant AD in LBSD.
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