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Summary

The scientific rigor and computational methods of causal inference have had great impacts 

on many disciplines but have only recently begun to take hold in spatial applications. Spatial 

causal inference poses analytic challenges due to complex correlation structures and interference 

between the treatment at one location and the outcomes at others. In this paper, we review the 

current literature on spatial causal inference and identify areas of future work. We first discuss 

methods that exploit spatial structure to account for unmeasured confounding variables. We 

then discuss causal analysis in the presence of spatial interference including several common 

assumptions used to reduce the complexity of the interference patterns under consideration. 

These methods are extended to the spatiotemporal case where we compare and contrast the 

potential outcomes framework with Granger causality and to geostatistical analyses involving 

spatial random fields of treatments and responses. The methods are introduced in the context 

of observational environmental and epidemiological studies and are compared using both a 

simulation study and analysis of the effect of ambient air pollution on COVID-19 mortality 

rate. Code to implement many of the methods using the popular Bayesian software OpenBUGS is 

provided.
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1 Introduction

Large-scale environmental and epidemiological studies often use spatially referenced data 

to examine the effect of treatments or exposures on a health endpoint. Examples include 

studying the effect of interventions on the spread of an infectious disease, pesticide 

application on cancer rates and lead exposure on childhood development. While standard 

analyses of spatial data simply estimate correlations, the ultimate goal of this research is 
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to establish causal relationships (e.g. Bind, 2019) to inform decision making. Therefore, 

developing statistical methods to establish causal relationships when data show spatial and 

temporal variation is invaluable to environmental science and epidemiology.

A rich literature on the theory and methods for causal inference for independent data has 

emerged (Bind, 2019; Hernán & Robins, 2020), but progress for spatial applications has 

been slow due to several analytic challenges. First, randomisation is often infeasible due to 

logistical or ethical concerns, and so studies rely on observational data. Second, exposure 

and response variables exhibit spatial correlation complicating statistical modelling and 

computation. Third, the treatment at one location may influence the outcomes at nearby 

locations, a phenomenon known as spillover or interference. These features of spatial 

applications violate the assumptions of standard causal inference methods and require new 

theory and computational tools.

Despite these challenges, major advances in spatial causal inference have been made in 

recent years. In this paper, we review the recent progress on spatial causal inference, 

evaluate and compare current methods, and suggest areas of future work. We first review 

methods to adjust for missing spatial confounding variables (Hodges & Reich, 2010). Most 

causal inference methods for observational data rely on an assumption of no missing 

confounding variables (i.e. unmeasured variables correlated with both the treatment and 

response). However, if the missing confounding variables have prominent spatial patterns, 

methods have been developed to mitigate the bias caused by their omission. These methods 

include case-control matching (e.g. Jarner et al., 2002), neighbourhood adjustments by 

spatial smoothing (e.g. Schnell & Papadogeorgou, 2020) and propensity-score methods (e.g. 

Davis et al., 2019). We review these methods and conduct a simulation study to compare 

their precision for estimating a causal treatment effect in the presence of a missing spatial 

confounding variable. A subset of the methods are applied to a study of the effect of ambient 

air pollution on the COVID-19 mortality rate.

A second major challenge in spatial causal inference is interference, where the treatment 

applied at one location affects the outcomes at other locations. For example, an intervention 

to reduce the emissions from a power plant would affect the air quality at the power plant, 

but also locations downwind. Capturing these spillover effects requires new definitions of 

the estimands of interest and new spatial models for the causal effects. In full generality, 

allowing the treatment at a site to affect the outcomes at all other sites results in an 

intractable estimation problem. Therefore, assumptions are required to limit the form and 

spatial extent of interference. We review several models for spatial interference including 

partial (e.g. Zigler et al., 2012) and network (e.g. Tchetgen Tchetgen et al., 2017) 

interference. We also discuss recent methods that combine mechanistic and spatial statistical 

models to anchor the causal analysis to scientific theory.

We begin reviewing these methods using cross-sectional data at a single time point and 

then extend these methods to the spatiotemporal data. We discuss adapting spatial methods 

to the spatiotemporal setting and methods specific to the temporal case such as difference-

in-difference (DID) methods (e.g. Delgado & Florax, 2015) that exploit changes over time 

to estimate causal effects. We also compare and contrast causal methods based on the 
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potential outcomes framework (Rubin, 1974) with Granger causality (Granger, 1969), which 

is defined specifically for processes that evolve over time. We also discuss extensions of 

spatial methods for areal data defined at a finite number of regions (e.g. geopolitical units) to 

point-referenced (geostatistical) data in which case the treatment and response variables can 

be modelled as continuous random fields over an uncountable number of spatial locations. 

This requires new definitions of causal effects, new methods for matching observations for 

case-control studies and new models for missing spatial confounding variables and spillover 

effects. The paper concludes with a summary of the current literature and discussion of open 

problems in this rapidly advancing field.

2 Adjusting for Spatial Confounders

To ensure privacy, public health data are often made available only after aggregation to 

administrative or geopolitical regions. For areal data of this nature, we adapt the notation 

that Y⊂ij, A⊂ij and Xij = (Xij1, …, Xijp) are the response, treatment and potential 

confounding variables (with Xij1 = 1 for the intercept) for observation j ∈ {1, …, n⊂i} 

in region i ∈ {1, …, N} for a total of n = i = 1
N ni observations. The confounding variables 

in X⊂ij can include both covariates specific to observation j within region i or summaries 

of the region i common to all n⊂i observations in the region. In addition to these observed 

variables, we allow for an unobserved confounding variable U⊂i in region i, which is 

assumed to be a purely spatial term and thus the same for all observations in a region.

Example 1. As a concrete example, consider an environmental epidemiology study where 
Y⊂ij is the birth weight of the j-th baby born in zip code i and Aij = 1 if the average 
ambient air pollution concentration in the mother’s zip code exceeds a high threshold 
and Aij = 0 otherwise. We may adjust for known confounding variables by including 
the mother’s age and family income in X⊂ij, and describe the mother’s environment 
by including the median income and measurable environmental factors such the average 
concentration of other known pollutants in region i in X⊂ij. In this scenario, the missing 
spatial confounder variable U⊂i might be a second pollutant unknown to the researchers. 
The second pollutant qualifies as a missing spatial confounder if it has a strong spatial 
pattern, is associated with low birth weight while holding the treatment fixed, and is 
correlated with the pollutant of interest, perhaps via a common source. Failing to account 
for this missing spatial confounder, either because its importance is unknown or data are 
unavailable, may inadvertently attribute the effects of the unknown pollutant to the pollutant 
of interest, biasing the estimator.

In this section, we review spatial models for unknown processes such as U = (U1, …, 

UN)T (Section 2.1). However, we argue that these standard spatial models are insufficient 

to remove the effects of spatial confounding, and the remainder of the section focuses on 

methods that explicitly consider missing spatial confounder variables. We begin with causal 

inference methods that would apply if U were observed (Section 2.2). The remainder of the 

section is dedicated to methods that attempt to control for the missing confounder variable 

by exploiting its spatial structure.
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2.1 Review of Spatial Confounding

Consider the spatial regression model

Y ij = Aijβ + Xijγ + Ui + εij, (1)

where β is the treatment effect of interest, γ determines the effects of the confounding 

variables, U⊂i is the spatial random effect for region i and εij ∼iid Normal 0, τ2 . A common 

approach (Banerjee et al., 2014) for areal data is to model the unobserved spatial effects 

using a conditionally autoregressive (CAR) model (also known as a Gaussian Markov 

random field model). The CAR model specifies spatial dependence in terms of the 

adjacencies between the regions. The full conditional distribution of the random effect for 

one region given all other random effects is Ui|Uk, k ≠ i ∼ Normal ρU i, σ2/mi , where U i is the 

mean of U at the m⊂i regions adjacent to region i, and ρ ∈ (0, 1) and σ > 0 are spatial 

covariance parameters. These full conditional distributions define a multivariate normal 

distribution (Appendix S1) for U, which we denote as U ∼ CAR(ρ, σ).

The spatial regression model in Equation (1), where U is modelled as a spatial process 

often gives very different estimates of covariate effects than the non-spatial (NS) model that 

excludes U, especially when the treatment variable exhibits a strong spatial pattern (Reich et 

al., 2006; Paciorek, 2010; Hodges & Reich, 2010). However, simply accounting for spatial 

correlation does not resolve spatial confounding. For example, Appendix S2 describes a 

scenario where the bias of the posterior-mean estimator for β depends on the strength of 

dependence between the treatment variable and the unmeasured confounding variable but 

is the same whether the residuals are assumed to be independent or spatially correlated. 

The bias of this approach is confirmed in our simulation study (Section 2.8) when data 

are generated with correlation between U and the treatment and response variables. This 

calls for methods that explicitly adjust for missing spatial confounders by blocking the 

dependence of U on either the treatment or response variable.

2.2 Potential Outcomes Framework

In this section, we temporarily assume that U⊂i is observed (and thus treated the same way 

as X⊂ij) to facilitate a review of standard NS causal inference methods. We begin with 

the potential outcomes framework (Rubin, 1974). Assume that the treatment A⊂ij is binary 

and that each unit has two potential outcomes, Y⊂ij(0) and Y⊂ij(1), which represent the 

outcomes if the unit j in region i is given treatment Aij = 0 or Aij = 1, respectively. Our goal 

is to estimate the average treatment effect (ATE),

δ = E 1
n i = 1

N

j = 1

ni

Y ij(1) − Y ij(0) , (2)

where the expectation is taken with respect to both X⊂ij and {Y⊂ij(0), Y⊂ij(1)}. The 

fundamental problem is that only one of the two potential outcomes can be observed 

(Holland, 1986) rendering the other as counterfactual. Therefore, assumptions are required 

to ensure the ATE can be identified.
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This notion of potential outcomes implicitly encodes the Stable Unit Treatment Value 

Assumption (SUTVA Rubin, 1978).

Assumption 1 (SUTVA). There is no interference and a single version of treatment.

Stable Unit Treatment Value Assumption is violated under interference, where Y⊂ij depends 

not only on A⊂ij but also on the treatment of other units. For instance, the birth weight 

of a baby in Example 1 could be influenced by the air pollution concentration both in the 

mother’s zip code (A⊂ij) but also in other zip codes that the mother frequents. In this case, 

the potential outcomes are not determined by A⊂ij alone, and we would need to introduce a 

different potential outcome for each combination of the treatment variables in the mother’s 

vicinity (Section 3).

An example of multiple versions of treatment might be if birth weight actually depends not 

only on whether the air pollution exceeds a high threshold but also a second extremely high 

threshold. In this case, A⊂ij actually has three levels (low, high and extremely high), and 

there should be three potential outcomes. An analysis that collapses the two high categories 

into a single group with Aij = 1 would violate SUTVA by having multiple versions of 

the treatment. Violation of this assumption could be rectified by assuming A⊂ij has three 

categories, and thus, each unit has three potential outcomes.

While SUTVA links treatments to potential outcomes, the consistency assumption is needed 

to further link the potential outcomes to the observations.

Assumption 2 (Consistency). The observed response is the potential outcome determined by 
the observed treatment variable, Yij = Yij(Aij).

In addition to these assumptions about the treatment and response variables, a standard 

assumption that permits unbiased estimation of the ATE is that there are no missing 

confounder variables other than the observed covariates X⊂ij and the latent spatial 

confounder U⊂i. Following Frangakis & Rubin (1999), we term this assumption as the 

latent ignorability assumption:

Assumption 3 (Latent ignorability). The potential outcomes {Y⊂ij(0), Y⊂ij(1)} and 
treatments A⊂ij are independent given X⊂ij and U⊂i.

The notion of latent ignorability was proposed by Frangakis & Rubin (1999) for identifying 

the complier treatment effect from randomised experiments. They assume that the missing 

outcomes are ignorable given the latent complier status (a complier would have been 

determined had the subject received the opposite treatment). Yang et al. (2019) formulate 

a latent ignorability assumption to deal with partially observed confounders. Although this 

assumption alone does not guarantee identifying the causal estimand of interest, it can help 

to incorporate subject matter knowledge and formulate plausible assumptions to scrutinise.

Because U is generally a latent (i.e. unknown) variable in the spatial setting, this assumption 

presumes that there exists some variable U that blocks dependence between the treatment 

variable and potential outcomes; if U is observed then this is the usual assumption 
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that there are no unmeasured confounding variables. This assumption implies that the 

confounding variables {X⊂ij, U⊂i} are sufficient to adjust for correlation between the 

observed treatment and response that is due to non-randomised treatment allocation and not 

an actual causal effect. This requirement highlights the importance of careful evaluation of 

the system under study to ensure that all relevant variables are considered in X⊂ij.

The final assumption deals with the distribution of observed treatment variables, that is, 

the propensity score. The propensity score is the probability of the treatment assignments, 

Prob{Aij = 1|Xij, Ui, Yij(0), Yij(1)}. Under Assumption 3, the propensity score becomes

e Xij, Ui = Prob Aij = 1 Xij, Ui . (3)

Assumption 4 is the standard positivity assumption on the propensity score:

Assumption 4 (Positivity). Both e(X⊂ij, U⊂i) and 1 − e(X⊂ij, U⊂i) are positive for all 
X⊂ij and U⊂i.

This assumption implies that both Aij = 0 and Aij = 1 are possible under the treatment 

allocation mechanism, which is necessary to estimate the ATE in Equation (2), which 

averages over the expected potential outcome under both treatments. When this assumption 

is violated, Yang & Ding (2018) suggest trimming the sample.

Under Assumption 3, the propensity score is a function of known variables X⊂ij and U⊂i 
and can thus be estimated without knowledge of unobservable counterfactual responses. 

However, Assumptions 1–3 are difficult or impossible to verify empirically, and thus a 

causal inference requires scrutinising the study design and the processes of interest to justify 

that these assumptions hold. One of the main contributions of causal inference is to state 

explicitly the assumptions needed for an estimator to have a causal interpretation and thus 

guide a discussion of a study’s results.

Assumptions 1–4 underlie many NS causal estimation procedures such as (augmented) 

inverse probability weighting (e.g. Rosenbaum & Rubin, 1983a; Robins & Greenland, 

1994; Bang & Robins, 2005; Cao et al., 2009) and matching (e.g. Stuart, 2010; Abadie 

& Imbens, 2016). To fix ideas, we focus on the simplest approach of the linear model in 

Equation (1), where U⊂i is observed and thus not given a spatial model. Spatial analyses 

often rely on parametric models because the lack of independent replications in a region 

complicates non-parametric methods. The parametric model in Equation (1) makes the 

additional assumptions of linearity and normality, but gives valid causal inference under the 

assumed model and Assumptions 1–4. In other words, the regression coefficient β can be 

interpreted as the ATE, δ. Therefore, if U⊂i is observed and these assumptions hold, then 

the estimate of β from a standard least squares analysis has a causal interpretation. In the 

remainder of this section, we discuss methods to deal with unknown U.

2.3 Case-Control Matching Methods

While most of the methods we discuss control for confounding at the analysis stage, a 

case-control study controls for confounding at the design stage. In a case-control analysis of 
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a binary response variable (i.e. Y⊂ij ∈ {0, 1}), each case (Yij = 1) is matched with one or 

more controls (Yij = 0) that are drawn from the same underlying population at risk. When 

applying this study design, investigators sample controls to resemble cases with respect 

to all factors that may determine the disease status except for the exposure of interest. 

As discussed below, this design removes the need to adjust for the matching factors at 

the analysis stage. Matching variables can be specific to the individual, such as age or 

education level. Partial control for spatial variation of risk can be achieved by matching 

on confounding factors that vary spatially such as the region’s median income. To adjust 

for unmeasured spatial confounders, controls can be matched based on their proximity to 

the cases (Jarner et al., 2002). Assuming there is replication within region (n⊂i > 1) and 

treatment varies within region (A⊂ij ≠ A⊂il for some j and l) then matching individuals in 

the same region is an effective means of adjusting for spatial confounding.

Matched case-control data are most often analysed using conditional logistic regression. 

Assume each case Yij = 1 is paired with a single control Ykl = 0. Under the spatial logistic 

regression model logit{Prob(Yij = 1)} = Aijβ + Xijγ + Ui, the log odds that Yij = 1 given 

either Yij = 1 or Ykl = 1 (but not both) is

ηij = Aij − Akl β + Xij − Xkl γ + Ui − Uk .

To account for variability within each pair (strata), a random intercept z⊂ij is added so the 

likelihood contribution of the pair is

Prob Y ij = 1 Y ij + Y kl = 1 = exp ηij + zij / 1 + exp ηij + zij .

Because the covariates appear in the likelihood only through the difference X⊂ij − X⊂kl, 
the effect of covariates used for matching cannot be estimated and these covariates can be 

removed from the model. Similarly, if cases are paired with observations from the same 

region (i.e. i = k), then the spatial random effects U do not appear in the likelihood and 

an NS analysis is sufficient. Thus, while the matched case-control analysis is an excellent 

means of controlling for confounders, its drawbacks include discarding data and not being 

able to estimate all covariate effects and spatial variation in risk.

Pairing observations in the same region can also be applied for continuous responses. For 

a continuous response, there is no natural definition of a case or control, but regressing 

the difference between the responses in the same region removes spatial confounding. For 

example, under the linear model in Equation (1), the model for the difference between 

responses in the same region is

Y ij − Y il = Aij − Ail β + Xij − Xil γ + ϵi, (4)

where ϵi is independent error. Again, differencing eliminates the latent variable U⊂i, and 

thus the differences can be analysed with NS methods. This approach relies on a parametric 

linear outcome model and matching observations in the same location. He (2018) and Yang 

(2018) propose alternative approaches that rely on a parametric propensity score model. He 
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(2018) uses weighting based on a sufficient statistic of the treatments to control cluster-level 

confounding, while Yang (2018) suggests calibration of treatments within clusters.

2.4 Neighbourhood Adjustments

In Equation (4), modelling the difference between observations in the same region 

eliminated the unmeasured confounders. In cases without replication and a missing 

confounder that varies smoothly across space, its effect can be reduced by removing 

large-scale spatial trends from the response, the treatment or both. Removing large-scale 

trends isolates local variation in the response, which is arguably less prone to spatial 

confounding than large-scale variation. In this section, we review several methods that have 

been proposed for removing large-trends in spatial regression.

2.4.1 Simultaneous autoregressive models—For simplicity, assume there are no 

replications within each region and temporarily drop the replication subscript by defining 

Yi1 = Yi, Xi1 = Xi and Ai1 = Ai. Rather than specifying the regression on the response, the 

simultaneous autoregressive (SAR) model first subtracts regional means

Y i − ϕY i = Ai − ϕAi β + Xi − ϕXi γ + εi, (5)

where Y i, Ai and Xi are the means of the response, treatment and covariates at the m⊂i 

regions adjacent to region i, φ is an unknown parameter and εi ∼iid Normal 0, σ2 . Taking 

differences reduces the effect of missing confounding variables that are constant across 

neighbouring regions. In vector form, Equation (5) can be expressed as Y = Aβ + Xγ + ε 
where the spatial covariance of ε is given in Appendix S1. Wall (2004) compares differences 

in covariance implied by the SAR and CAR models and finds the models produce similar 

regression coefficient estimates despite sometimes large differences in covariances between 

regions.

2.4.2 Neighbourhood adjustment via spatial smoothing—Rather than simply 

subtracting the mean of neighbouring sites, spatial trends can be removed by joint spatial 

modelling of the treatment and the missing spatial confounder. Consider the spatial 

regression model in Equation (1) without replicates. The bias is a result of attributing 

the effect of the confounder on Y to the treatment variable when A and U are correlated 

(Appendix S3). Schnell & Papadogeorgou (2020) provide a set of assumptions (given in the 

supporting information) to identify the unmeasured confounding bias E(Ui|A) = Bi(A). They 

model B⊂i(A) by specifying a joint distribution for U and A that allows each process to 

have a different range of spatial correlation and permits correlation between U and A. The 

confounding bias is mitigated by fitting a joint model

Y i = Aiβ − Bi(A) + Xiγ + ei1Ai = Xiα + ei2, (6)

where the form of B⊂i(A) and the spatial covariance of e⊂i1 and e⊂i2 are given in 

Appendix S3. As noted by Schnell & Papadogeorgou (2020) and was also suggested 

by Paciorek (2010), if the spatial scale of treatment is larger or about the same as the 

unmeasured confounder, the confounding bias cannot be mitigated.

Reich et al. Page 8

Int Stat Rev. Author manuscript; available in PMC 2023 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5 Propensity Score Methods

Propensity scores are used in a wide range of causal inference methods. Assuming a binary 

treatment variable, the propensity score for observation j in region i is Prob(Aij = 1) = 

eij. In a standard analysis, the propensity scores are modelled as a function of the known 

covariates X⊂ij, and the estimated propensity scores are used to alleviate the imbalance of 

the covariates between treatment groups. Here, we face the additional challenge that the 

propensity scores may depend on the unobserved spatial process, U⊂i.

For example, consider the simple hierarchical model that includes the unobserved spatial 

process in the propensity score,

Y ij = Aijβ + Xijγ + Ui + εij (7)

Aij ∼ Bernoulli eij with logit eij = Xijα + ϕUi + V i, (8)

where V⊂i accounts for spatial patterns in treatment allocation not accounted for by the 

covariates or the missing confounder U⊂i. To emphasise the effect of the propensity score 

on the response model, Equations (7)–(8) can be reparameterised (U⊂i = u⊂i + ψv⊂i and 

V⊂i = v⊂i − ϕu⊂i − ϕψv⊂i) as

Y ij = Aijβ + Xijγ + ui + ψvi + εij (9)

Aij ∼ Bernoulli eij with logit eij = Xijα + vi . (10)

The shared spatial random effect v⊂i adjusts for the missing confounder by absorbing 

signal in the response that can be explained by spatial trends in the treatment allocation. 

If the spatial trend in the treatment variable is strong and thus A⊂ij ≈ e⊂ij, this method 

will be unstable, and it will be difficult to estimate the causal effect. The spatial random 

effects can be assigned priors u = (u1, …, uN)T ∼ CAR(ρu, σu) independent of v = (v1, …, 

vN)T ∼ CAR(ρv, σv). Fitting this joint model for the treatment and response processes is 

straightforward using hierarchical Bayesian methods.

A concern with this model is that some of its many parametric assumptions could be 

violated, invalidating inference. Another issue is that of so-called ‘feedback’, which in this 

context refers to information in the response influencing the posterior of the propensity 

scores (e.g. Zigler et al., 2013; Zigler, 2016; Saarela et al., 2016). Eliminating this feedback 

can be done by fitting the model in two stages, that is, first fitting the model for the 

treatment indicators in Equation (10) to obtain an estimate of v AND then fitting Equation 

(9) with v fixed at its first-stage estimate. Other possible remedies include ‘cutting feedback’ 

in the steps of the MCMC algorithm (Lunn et al., 2009; McCandless et al., 2010) or 

post-hoc reweighting of the posterior distribution (Saarela et al., 2015; Davis et al., 2019). 

These methods are discussed below.

Referring to the joint model in Equations (9)–(10), if the propensity score e⊂ij were known 

and logit(eij) were included as a known confounder in X⊂ij, then treatment ignorability 
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would hold given X⊂ij, and the resulting estimate of β would have a causal interpretation. 

Of course, the exact propensity is unknown and must be estimated. Let e ij be a first-stage 

propensity score estimator, for example, as estimated by fitting the spatial logistic regression 

model in Equation (10). The estimated propensity scores can be included in the mean of the 

response model to account for spatial confounding. The propensity score can be added to the 

response model as

Y ij = Aijβ + Xijγ + Ui + f e ij + εij, (11)

where f is the logit function or more generally a non-linear function estimated by, say, 

smoothing splines. Given the inclusion of the propensity score, it can now be assumed that 

U⊂i and A⊂ij are conditionally independent. Assuming the model assumptions hold and the 

propensity score estimate is accurate, then β has a causal interpretation.

Alternatively, the propensity score estimates can be used to define strata, that is,

Y ij e ij ∈ T l, T l + 1 = Sl + Aijβ + Xijγ + Ui + εij, (12)

where 0 = T1 < T2 < … < TL+1 = 1 define the propensity score strata, S⊂l encodes 

the unmeasured confounder effect for stratum l and U⊂i and A⊂ij are conditionally 

independent. Although the strata are defined irrespective of spatial information, the spatial 

random effect U⊂i accounts for spatial dependence.

This joint modelling framework can be extended to continuous treatment variables by 

replacing the the Bernoulli/logistic model for A⊂ij in Equation (10) with a normal model 

with E(Aij|Xij, vi) = eij = Xijα + vi, and Var Aij Xij, vi = σA
2. This method could be fit as a joint 

model or in two stages where first a Gaussian spatial model for A⊂ij is fit and estimates 

of e⊂ij are used as generalised propensity scores (Hirano & Imbens, 2004) in the response 

model as in Equation (11) or (12). Generally, this model-based framework can be adapted 

to more complex settings as long as a model with reasonable fidelity to the data generating 

process can be determined and justified.

As an alternative to model-based causal adjustment, Davis et al. (2019) use imputation of 

potential outcomes and propensity score weighting. They first estimate propensity scores 

e ij using a spatial regression such as Equation (10). Then, in a second stage, they fit the 

response model in Equation (1), which excludes the propensity score. Rather than use the 

estimate of β from this analysis, they post-process the model output to remove confounding 

bias. They estimate the causal effect using concepts from augmented inverse probability 

weighting (Rosenbaum & Rubin, 1983; Robins et al., 1994; Bang & Robins, 2005; Cao et 

al., 2009)

δ = 1
N i = 1

N

j = 1

ni

δijδij = 1
e ij

AijY ij − Aij − e ij Y ij1

− 1
1 − e ij

1 − Aij Y ij − e ij − Aij Y ij0 ,
(13)
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where Y ija = aβ + Xijγ + U i is the estimated mean response setting A⊂ij = a for a ∈ {0, 1}. 

Davis et al. (2019) suggest using bootstrap sampling (which accounts for uncertainty at 

all stages) or a closed form large-sample variance estimator to quantify uncertainty in δ. 

Alternatively, in a Bayesian analysis, samples from the posterior distribution of δ can be 

made by computing δ for each posterior sample of {β, γ, U}.

2.6 Instrumental Variables

An instrumental variable (IV) Z⊂i is widely used to deal with unmeasured confounding. A 

valid IV must (i) be associated with the treatment A⊂i, (ii) not be related to the unmeasured 

confounder U⊂i and (iii) only affect the outcome through A⊂i. Figure 1 illustrates the 

dependence structure of the random variables. As an example, suppose A⊂i and U⊂i are 

the region’s concentrations of air pollutants 1 and 2, respectively, and Y⊂i is the region’s 

asthma rate. Further, assume that Pollutant 1 is the treatment of interest and is produced 

by both traffic and power plants, while Pollutant 2 is unmeasured and produced only by 

power plants. Assuming Pollutant 2 has a health impact, it is a confounding variable because 

it is correlated with Pollutant 1 via their shared source. A potential IV to resolve this 

confounding is the region’s traffic density, Z⊂i. It could be argued that this is a valid IV 

because (i) it is a source of pollutant 1 and thus Z⊂i and A⊂i are strongly correlated, (ii) it 

is not a source of Pollutant 2 and thus Z⊂i and U⊂i are uncorrelated, and (iii) traffic density 

is unrelated to asthma rate other than via air quality.

The classic causal analysis with IVs is a two-stage least squares regression. The treatment 

is first regressed onto the IV and then the fitted values from this first-stage regression as 

used as the treatment variable in the response model. That is, if the first-stage regression 

gives Ai = α0 + Ziα1 + Xiα2, then the second stage model replaces A⊂i with Ziα1, i.e., 

Y i = α1Ziβ + Xiγ + εi. This confines the treatment variable to the span of the IV, and thus to 

a space orthogonal to the missing confounding variable. If a valid IV can be identified then 

this provides a simpler means of estimating average treatment effect instead of adjusting for 

missing confounders than propensity scores.

Some caution has to be exercised when interpreting causal estimates based on IVs. In the 

observational setting, as in traffic instrument example, the investigators do not have the 

ability to enforce treatment (PM) based on treatment assignment (traffic). Although traffic is 

a major source of variation in PM, other sources can play a role, which leads to differences 

between intended and observed treatments among units and potentially to the heterogeneity 

of responses (power plants, wildfires, etc). In randomised treatment-control examples, this 

equates to the lack of full compliance between treatment assignment and the intake of drug. 

The implication is that the ATE is estimated only among those whose PM variation is 

explained by variation in the IV, referred to as the local average treatment effect or complier 

average treatment effect. Imbens & Angrist (1994) provide the criteria under which the local 

average treatment effect/complier average treatment effect represents the ATE.

Spatial consideration can be made in both stages of the model. Consider a continuous 

treatment variable and the joint model
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Y ij = α1Zijβ + Xijγ + Ui + ϵ1ij (14)

Aij = α0 + Zijα1 + Xijα + ϕUi + V i + ϵ2ij, (15)

where U ∼ CAR(ρU, σU), V ∼ CAR(ρV, σV), ϵ1ij ∼iid Normal 0, τ1
2  and ϵ2ij ∼iid Normal 0, τ2

2 . In 

Equation (14), A⊂ij in the response model in Equation (1) is replaced by Z⊂ijα⊂1 in the IV 

regression. Spatial random effects are included in both stages of the model to provide more 

efficient estimators of the regression coefficients and valid uncertainty quantification. This 

model closely resembles the joint propensity score model in Equations (7)–(8) except that 

only the signal in A⊂ij that can be explained by the IV enters the response model.

The two models in Equations (14)–(15) can be fit simultaneously, although feedback effects 

must be considered as in the propensity score methods of Section 2.5. Alternatively, the 

method can be fit in two stages. The first stage is a spatial regression of A⊂i onto Z⊂i in 

Equation (15) and X⊂i gives an estimate of α⊂1. In the second stage spatial regression of 

the response, Ziα1 is used as the treatment variable. An important difference between the 

classical and this spatial IV approach is that in the spatial version the fitted values will not 

be strictly orthogonal to the errors U⊂i. A potential remedy is the use of restricted spatial 

regression (Reich et al., 2006; Hodges & Reich, 2010; Hughes & Haran, 2013; Hanks et al., 

2015), although these methods should be used with caution in light of the recent work of 

Khan & Calder (2020).

2.7 Structural Equation Modelling

Thaden & Kneib (2018) propose to adjust for spatial confounding using structural equation 

modelling (SEM). They introduce binary indicator variables for each spatial location in 

both the models for the treatment and response variables. Therefore, although motivated 

using structural equation modelling, they arrive at a similar model to the joint model in 

Equations (9)–(10). They argue that independent priors for the random effects (u⊂i and v⊂i 
in Equations 9–10) more effectively resolve spatial confounding than spatial priors. Treating 

the random effects as independent requires replication within region, which is not always 

available. However, when there is sufficient replication within regions, independent priors 

are preferable to spatial models because they are less constrained and thus more completely 

block spatial confounding.

2.8 Simulation Study

In this section, we conduct a simulation study to compare methods for adjusting for an 

unmeasured confounding variable. We examine how the methods compare with different 

levels of spatial correlation in the treatment and confounding variable, and robustness to 

model misspecification.

2.8.1 Data generation—We simulate data with a missing spatial confounder variable 

from a general form that permits performance evaluation under both correctly and 

incorrectly specified spatial models. The general data-generating model is
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Y i Ai ∼indep Normal Aiβ + Ui, 1 and Ai ∼indep Bernoulli expit g V i, ϕUi , (16)

where the spatial terms are drawn from the model U ∼ CAR(ρU, 2), V ∼ CAR(ρV, 2) and 

the transformation function g is given below. The correlation structure is determined by 

three parameters: ρ⊂U and ρ⊂V control the range of spatial dependence and ϕ controls 

the strength of spatial confounding. For simplicity, we exclude known confounders X⊂i to 

isolate the effects of spatial confounding. The first four scenarios have g(Vi, ϕUi) = Vi + 

ϕUi and vary ρ⊂U, ρ⊂V ∈ {0.90, 0.99} to study the performance of the joint model when 

it is correctly specified. Setting the CAR dependence parameter to 0.99 gives strong spatial 

dependence with correlation 0.54 between adjacent regions in the center of the grid, while 

the value 0.90 gives moderate correlation of 0.35 between adjacent regions in the center of 

the grid. The final two scenarios have ρU = ρV = 0.99 and either nonlinear or nonstationary 

g. The non-linear case has g(Vi, ϕUi) = Vi + ϕ{UiI(Ui > 0) − 0.63} (‘non-linear’). The 

nonstationary case has g(Vi, ϕUi) = Vi + ϕUici, where c⊂i increases linearly from zero 

to one across the columns of the grid (‘non-stationary’). These scenarios are included to 

investigate the performance of the joint model when it is misspecified. A stimulation study 

with more complex data-generating mechanism using the observed covariates from the data 

analysis in Section 2.9 is presented in Appendix S4.

We generated 100 data sets on a 30 × 30 square grid of regions with rook neighbours and β 
= φ = 0.5. For each data set, we fit the following models.

• NS: NS least squares, Y i ∼indep Normal γ + Aiβ, τ2

• NS + P: NS least squares with a spline function of the propensity score, 

Y i ∼indep Normal γ + Aiβ + f e i , τ2

• S: Spatial CAR regression without confounder adjustment, 

Y i ∼indep Normal γ + Aiβ + Ui, τ2

• S + P: Spatial CAR regression with a spline function of the spatial propensity 

score, Y i ∼indep Normal γ + Aiβ + Ui + f e i , τ2

• S + AIPW: Spatial CAR regression with post-hoc IDW debiasing step, that is, 

model S with post-processing as in Equation (13)

• Joint: Joint model in Equations (9)–(10)

• Cut: Joint model with feedback cut as in McCandless et al. (2010)

In these models, e i is computed using the spatial logistic regression in Equation (10) and 

f is a B-spline basis expansion with 5 degrees of freedom. In the model-fitting stage, the 

spatial processes U and V are assumed to be unknown and given priors U ∼ CAR(ρU, σU) 

and V ∼ CAR(ρv, σv). For all models, the hyperpriors are ρU, ρV ∼ Uniform(0,1), all mean 

parameters have Normal(0, 10) priors and all variances have InvGamma(0.5, 0.005) priors. 

All of these methods are fit in OpenBUGS, and the code is available at https://github.com/

reich-group/SpatialCausalReview/.
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Figure 2 plots the causal effect estimates across data sets for each scenario and statistical 

method. As expected, the NS method without causal adjustment is biased and has low 

coverage in all cases. The spatial model without causal adjustment (S) provides only a small 

improvement. The NS model with spatial propensity score (NS + P) substantially reduces 

bias although its coverage remains below the nominal level. The spatial model with causal 

post-processing (AIPW) and the joint model that cuts feedback (Cut) have large bias and low 

coverage in the cases we considered.

In this simulation, the most effective methods are the spatial model with propensity score 

adjustment (S + P) and the full joint model (Joint). This is not surprising in the first four 

scenarios because the joint model was used to generate the data. In these cases, the joint 

model appears to have less bias than the two-stage spatial propensity score model, but 

both methods are similar. These models are misspecified in the final two scenarios but still 

outperform the other methods. Surely more extreme scenarios where these methods fail to 

deliver reliable inference can be devised, but these results suggest some robustness to model 

assumptions.

The strength of the spatial correlation in the treatment allocation process appears to be more 

predictive of reliable performance than model misspecification. In scenarios (b) and (d) with 

ρU = 0.9, all of the methods are biased and have low coverage. In these cases, the spatial 

model of the treatment allocation process has low predictive power, and thus, all subsequent 

causal adjustments are ineffective. In these cases, the unmeasured confounder cannot be 

explained by known covariates or spatial patterns, and there is simply no structure that can 

be exploited to remove its effect.

2.9. Effect of PM⊂2.5 Exposure on COVID-19 Mortality

To illustrate the spatial confounder adjustment methods, we reanalyse the data provided by 

Wu et al. (2020). The response Y⊂i for county i is the number of COVID-19 related deaths 

through 12 May 2020. The treatment variable A⊂i is the long-term (2000–2016) average 

fine particulate matter (PM⊂2.5) concentration. These variables are plotted in Figure 3, 

and both show strong spatial trends. The known confounder variables in X⊂i include p = 

15 measures of the county’s demographic, socio-economic and climate conditions (refer to 

table 2 of Wu et al. (2020) for a complete list). Some covariates (number of hospital beds, 

body mass index and smoking rate) have a high proportion of missing values. Rather than 

removing the counties with missing value, which would complicate the spatial adjacency 

structure, we remove the covariates with missing value. Removing these covariates does not 

greatly affect the effect estimates (as discussed further).

Because the data set is large and the treatment is continuous, we consider only the non-

spatial (‘NS’) and spatial (‘S’) models and these models with a two-stage propensity score 

adjustment (‘NS + P’ and ‘S + P’). The response model is Yi ∼ Poisson(Niλi), where N⊂i is 

the county’s population and λ⊂i is the mortality rate. Wu et al. (2020) use a quasi-Poisson 

model with state-level random effects; we use county-level random effects and allow these 

random effects to account for overdispersion. Specifically, the mortality rate is modelled as
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logλi = Aiβ + Xiγ + Ui + f ei (17)

where U ∼ CAR(ρu, σu), e i is the estimated generalised propensity score (Hirano & Imbens, 

2004), and f is a B-spline basis with 5 degrees of freedom. The generalised propensity score 

is the fitted negative log-likelihood (ignoring constants) e i = Ai − Xiα − V i
2, where α and 

V i are the posterior means from the model Ai = Xiα + Vi + εi and V ∼ CAR(ρv, σv) and 

εi ∼iid Normal 0, σe
2 . The priors are the same as in Section 2.8. The NS models set ρu = 0 

(the county-level random effect remain in the model to account for overdispersion) and the 

methods without a propensity score set f e i = 0.

The posterior distributions of β under these four models are plotted in Figure 4. The spatial 

models give smaller posterior mean and larger posterior variance than the NS models. 

Including the generalised propensity score leads to a slightly higher effect estimate for both 

the spatial and NS analyses. The results are generally similar to those in Wu et al. (2020) 

who found an 8% increase in COVID-19 related mortality for a unit increase in long-term 

average PM⊂2.5. Therefore, this analysis does not detect a missing spatial confounder that 

dramatically affects the causal effect estimate.

3 Methods for Spatial Interference/Spillover

Interference (also called spillover) occurs when the treatment received by one unit can affect 

the outcomes of other units. The ubiquitous no interference assumption in Section 2.2 was 

first discussed in Cox (1958), where it was referred to as ‘no interaction between units’ 

(Hernán & Robins, 2020). In the subsequent literature, it is often simply referenced as part 

of SUTVA. Despite a variety of data and treatments exhibiting interference, methods that 

account for interference have only recently begun to proliferate in the statistics literature, 

in part because interference significantly complicates the potential outcomes approach and 

requires additional assumptions about the form of the interference.

In this section, we review the challenges associated with accounting for interference and the 

current literature on this topic. In Section 3.1, we give a general formulation of potential 

outcomes in the presence of interference and define several quantities of interest under this 

framework. The remainder of the section discusses different assumptions about the nature of 

interference and subsequent estimation methods.

3.1 Potential Outcomes Framework

In the potential outcomes framework in Section 2.2 with binary treatment and no 

interference, there are two potential outcomes defined for each unit: Y⊂ij(0) and Y⊂ij(1). 

Allowing for general treatment interference entails considering 2n potential outcomes, each 

corresponding to a different combination of treatments received by all units. As a result, 

the estimands under interference are more complicated because they require considering 

treatment that could be applied to multiple units. Therefore, defining the potential outcomes 

and estimands requires additional notation. We distinguish between the treatment applied to 

unit (i, j) in the observed data set, A⊂ij, and a hypothetical treatment that could be applied 
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to unit (i, j), denoted a⊂ij. To describe potential outcomes under interference, we denote the 

treatments that could be applied to all n units as a = {aij; i = 1, …, N; j = 1, …, ni}, and the 

collection of the n − 1 treatments excluding a⊂ij as a⊂−ij. The potential outcome for each 

unit is then written as Y⊂ij(a⊂ij, a⊂−ij), where the first term is the treatment received by 

unit (i, j) and the second term are the treatments received by other units.

The average treatment effect in Equation (2) is insufficient in the presence of interference 

as it depends only on the treatment assigned to unit (i, j). Rather, several treatment effects 

are needed to provide a comprehensive summary. Halloran and Struchiner (1991,1995) and 

Hudgens & Halloran (2008) describe four key estimands assuming binary treatments. The 

direct effect (DE) is

DEij a−ij = E Y ij 1, a−ij − Y ij 0, a−ij . (18)

The DE compares the difference potential between outcomes for unit (i, j) with treatments 

Aij = 1 versus Aij = 0 and holding all other treatments fixed at a⊂−ij. Unlike Equation (2), 

there is not a single DE, as Equation (18) may be different for each unit and for all 2n−1 

combinations of a⊂−ij. While the direct effect isolates the local treatment effect, the indirect 

effect (IE) measures the contribution of other treatments,

IEij a−ij, a−ij
′ = E Y ij 0, a−ij − Y ij 0, a−ij

′ . (19)

The IE is also called the spillover effect because it compares the difference between 

potential outcomes for two combinations of treatments for the other units, a⊂−ij and a−ij
′ , to 

an untreated unit with aij = 0 to quantify how much of the other treatment effects spill over 

to observation (i, j). The DE and IE can be combined using either the total (TE) or overall 

effects (OE):

TEij a−ij, a−ij
′ = DEij a−ij + IEij a−ij, a−ij

′ = E Y ij 1, a−ij − Y ij 0, a−ij
′

OEij a, a′ = E Y ij aij, a−ij − Y ij aij
′ , a−ij

′ .

These effects are similar, except that the total effect always compares aij = 1 versus aij = 0, 

whereas the overall effect allows the local treatment to be the same for a and a′.

If these effects can be estimated, then the user can interrogate the fitted model by selecting 

any scenarios defined by a and a ′. For example, in the context of Example 1, the DE 

might be computed by fixing the air pollution status of all other units a⊂−ij at their current 

value to determine the effect of a local action that changes the air pollution concentration 

in the mother’s zip code but does not affect other zip codes. For the IE, we might fix all 

the treatment variables at their observed values except set the air pollution variable for the 

zip codes neighbouring a mother’s zip code to one in a⊂−ij versus zero in a−ij
′  to determine 

the impact of changing the air pollution in zip codes where the mother spends some time 

outdoors. The sum of these two effects is the total effect of changing the air pollution status 

of all zip codes in the mother’s home range (her zip code and those the mother frequents). 

This total effect equals the overall effect of setting a = 1 for the mother’s home range, a′ = 
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0 for the mother’s home range and both a and a′ equal to the current value for all other zip 

codes.

While measures such as DE⊂ij(a⊂−ij) are useful for understanding the implications of 

individual actions on local outcomes, assessing the overall impact of the treatment requires 

averaging over units and potential actions. Rather than weight all potential actions equally, 

they can be assigned probabilities, Prob(a = a) = ψ(a). The probability mass function ψ 
is called the treatment policy. For example, the policy-averaged expected counterfactual 

outcome under treatment a⊂ij = a for unit (i, j) is

Y ij(a, ψ) =
a−ij

E Y ij a, a−ij Prob a−ij = a−ij aij = a (20)

where the sum is over all 2n−1 possible values of a⊂−ij and Prob(a−ij|aij = a) is determined 

by the policy, ψ. The policy-averaged direct effect for unit (i, j) is then Y ij(1, ψ) − Y ij(0, ψ), 
and the spatial average DE is

DE(ψ) = 1
n i = 1

N

j = 1

ni

Y ij(1, ψ) − Y ij(0, ψ) . (21)

Policy-averaged IE, TE and OE have similar forms.

In the context of the environmental epidemiology study described in Example 1, a simple 

policy is to assume that the a⊂ij are independent over units with Prob(aij = 1) = p and 

compute Equation (21) for several values of p to understand the DE. A policy more tailored 

to anticipating short-term effects of interventions in a given region is to assume that the a⊂ij 
are independent over units with Prob(aij = 1) = pa if the current value of the treatment in unit 

(i, j) is A⊂ij = a. Under this policy, a zip code currently below the threshold is converted to 

exceed the threshold with probability p⊂0, and a zip code currently above the threshold is 

converted to below the threshold with probability 1 − p⊂1. The policy-averaged DE, IE and 

TE can be approximated via Monte Carlo simulation for a range of p⊂0 and p⊂1 to evaluate 

the overall effects of a campaign to reduce air pollution.

While these summaries are well defined for any potential outcome model, estimation is 

virtually impossible without simplifying assumptions. In the remainder of this section, 

we discuss several methods that exploit the spatial structure of the units to simplify the 

interference pattern. These methods are summarised in Figure 5.

3.2 Partial Interference

Partial interference, a term coined in Sobel (2006), or clustered interference, assumes 

that the units can be partitioned into groups so that interference can occur only between 

observations in the same group. In Example 1, partial interference might be evoked if it 

is reasonable to partition the zip codes into cities, and that birth weight is dependent only 

on the air pollution concentration in the mother’s city, and not air pollution in other cities. 

A further parametric assumption might be that the potential outcome is a function only of 

Reich et al. Page 17

Int Stat Rev. Author manuscript; available in PMC 2023 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the air pollution concentration in the mother’s zip code and the proportion of her city’s zip 

codes that exceed the threshold excluding zipcode i, denoted by ai. A linear model with these 

assumptions is

Y ij aij, a−ij = aijβ1 + aijβ2 + Xijγ + εij, (22)

where β⊂1 and β⊂2 entail the DE and IE, respectively. This parametric model and 

assumptions analogous to Assumptions, 1, 3 and 4 that A is independent of all potential 

outcomes given the n vectors X⊂ij and that ϕ(a) > 0 for all a endows the parametric model

Y ij = Aijβ1 + Aijβ2 + Xijγ + εij (23)

with a causal interpretation. Of course, this model relies on strong assumptions that are 

difficult to verify, and thus a more flexible approach may be desirable.

There is an extensive literature that explores and expands on NS partial interference 

(Halloran & Struchiner, 1991; 1995; Halloran, 2012; Tchetgen Tchetgen & VanderWeele, 

2012; VanderWeele et al., 2014; Liu et al., 2016; Barkley et al., 2017; Baird et al., 2018; 

Papadogeorgou et al., 2019). Zigler et al. (2012) assume partial interference in a spatial 

analysis of the health effects of environmental regulations, with clusters of sites defined by 

their attainment status. Perez-Heydrich et al. (2014) and Zigler & Papadogeorgou (2021) 

assume partial interference for groups defined by spatial proximity. Zigler & Papadogeorgou 

(2021) deal with additional complications that arise when the spatial resolutions of the 

treatment and response differ.

3.3 Spatial Network Interference

With the rise of social network data, there is a fast-growing literature on network-based 

interference, where observations can interfere with each other along connected edges. These 

methods can be applied to areal spatial data by viewing the regions as the network’s nodes 

and defining spatial adjacency by the network’s edges (e.g. Verbitsky-Savitz & Raudenbush, 

2012). For example, as in the CAR model defined in Section 2.1, regions i and k can be 

defined as sharing an edge if they share a common border. A simple example of a model to 

study spatial network interference for Example 1 is Equation (23) with Aij redefined as the 

mean treatment variable across the m⊂i neighbours of region i.

More generally, Forastiere et al. (2016) propose a model that allows for interference between 

an observation and its immediate neighbours, creating a local interference neighbourhood 

around each observation. Treatment effects are estimated by conditioning on propensity 

scores for the direct and indirect treatment effects. Aronow et al. (2017) consider network 

data in a similar vein but loosen the restrictions on interference by defining an exposure 

mapping function. Tchetgen Tchetgen et al. (2017) examine arbitrary network interference 

subject only to a local Markov property that observations are conditionally independent after 

taking into account the nodes between them. This gives both a reasonable constraint for 

estimation and also allows for treatment effects to propagate through the network. Under a 

non-parametric structural equation model, Ogburn et al. (2020) clarify assumptions required 

to estimate spillover effects based on a single realisation of the network and propose 

Reich et al. Page 18

Int Stat Rev. Author manuscript; available in PMC 2023 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a targeted maximum likelihood estimator allowing dual dependence due to contagion 

and homophily (i.e. latent similarities). In a further generalisation of the spatial network 

interference assumption, Giffin et al. (2020) use the distance between units themselves, 

rather than a network approximation, to develop a generalised propensity score method to 

balance the spillover effect, Ai.

3.4 Process-Based Spillover Models

Partial and network interference make assumptions that are conducive to a statistical 

analysis, such as the simple spillover effect in Equation (23), but are likely crude 

representations of reality. Mechanistic methods that encode scientific understanding of the 

physical processes of interest offer increased fidelity to the true interference structure. 

Mechanistic models are indispensable in environmental attribution studies. For example, 

climate models play a central role in the Intergovernmental Panel on Climate Change’s 

conclusion that human activities likely caused the majority of the observed increase in global 

mean surface temperature from 1951 to 2010 (Bindoff et al., 2013). As reviewed by Hegerl 

& Zwiers (2011), unlike purely statistical models that are limited to scenarios observed in 

the data, mechanistic models can be run under counterfactual scenarios that have not, or 

could not, be observed. This provides a key link to the potential outcomes framework in 

Section 3.1.

While mechanistic models can be used to estimate direct effects, they are more critical 

in the presence of interference because they can rule out many of the massive number of 

potential spillover paths, greatly reducing the complexity of the problem. Despite these 

strengths, mechanistic models are only approximations and thus need to be calibrated 

and validated using observed data. Most relevant for our purposes is the recent work 

that combines mechanistic modelling with spatial statistical methods to estimate causal 

effects. For example, Larsen et al. (2020) fit a Bayesian geostatistical model to observed 

air pollution concentrations and mechanistic model output under scenarios with and without 

wildland fires to map the total causal effect of wildland fires on fine particulate matter 

concentration and the resulting health burden. Rather than post-processing model runs, 

Forastiere et al. (2020) build a statistical model based on a dispersion model to track air 

pollution from power plants in a causal analysis of health effects, and Cross et al. (2019) 

embed an epidemiological model for disease spread in a hierarchical Bayesian model to 

estimate spillover effects. These examples that highlight the important roles of mechanistic 

models not only likely provide more accurate estimates of causal effects but also ensure the 

results are tethered to scientific theory.

4 Spatiotemporal Methods

Data collected over space and time are more informative about causal relationships than 

cross-sectional data, because they afford the opportunity to observe variables coevolve. This 

reduces the potential for spurious associations. For example, if a treatment is applied in the 

course of the study, comparing a site’s responses before and after the treatment can control 

for missing spatial confounding variables assuming they and their effects are time-invariant. 
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This narrows the search for potential confounding variables to those with a similar pattern as 

the treatments over both space and time.

To describe spatiotemporal methods, we adopt new notation to accommodate the temporal 

dimension. For simplicity, we assume areal spatial units, discrete time steps, and that each 

region i ∈ {1, …, N} has a single observation at each time step t ∈ {1, …, T}. We denote 

the response, treatment, known and unknown confounding variables as Y⊂it, A⊂it, X⊂it 
and U⊂it, respectively. The potential outcomes framework and assumptions in Section 2.2 

apply with the time step t replacing the replication number j. Similarly, many of the spatial 

methods in Section 2 such as matching (Section 2.3), neighbourhood adjustments (Section 

2.4), propensity score methods (Section 2.5) and the IV approach (Section 2.6) apply for 

spatiotemporal data by viewing time as a third spatial dimension, with a different degree of 

correlation in this third dimension.

4.1 Testing for Missing Spatial Confounders

Janes et al. (2007) propose a method to test for unmeasured spatial confounders using 

spatiotemporal data. Letting At denote the average of A⊂it at time t, their approach can be 

adapted to our setting via the model

Y it = η1At + η2 Ait − At + Xitγ + εit (24)

where X⊂it includes smooth functions of t to account for missing temporally varying 

confounders. In this model, η⊂1 and η⊂2 measure global and local effects of treatment, 

respectively, and they argue that if the estimated values of η⊂1 and η⊂2 are equal and 

non-zero then this represents an average causal effect of A⊂it on Y⊂it, and that a large 

difference between the estimated η⊂1 and η⊂2 suggests there may be a missing spatial 

confounder.

4.2 Difference in Difference Methods

Difference-in-difference estimators (Ashenfelter & Card, 1985) aim to quantify the 

treatment effect on the increase in the mean response over time. For simplicity, we assume a 

binary treatment variable and two time steps (T = 2). If the treatment at the both time steps is 

a⊂i1 = a⊂i2 = a, the increase in counterfactuals at site i is δi(a) = Yi2(a) − Yi1(a). Therefore, 

δ⊂i(0) is the increase over time in the absence of treatment, and δ⊂i(1) − δ⊂i(0) is the 

increase that can be attributed to treatment. The DID average treatment effect is then

δDID = E 1
N i = 1

N
δi(1) − δi(0) , (25)

which is analogous to Equation (2) except that the outcomes are changes over time. Assume 

the potential outcomes follow the model Yit(a) = β1a + β2t + β3ta + Xitγ + Uit + εit. Under 

Assumptions 1–4, the observed outcome model follows the induced linear model

Y it = β1Ait + β2t + β3tAit + Xitγ + Uit + εit . (26)
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Moreover, β3 = δDID has a causal interpretation.

To render Assumptions 1–3 plausible, it is important to include information on a rich 

enough set of time-varying confounders in X⊂it that affect both A⊂it and Y⊂it. In 

the spatiotemporal settings, the time-varying confounders X⊂it include the observed 

information on the past treatments and outcomes.

Delgado & Florax (2015) extend the spatial DIDs by assuming Markov interference, where 

treatment effects only impact neighbours. This gives the model

Y it = β1Ait + β2t + β3tAit + β4Ait + β5tAit + Xitγ + Uit + εit (27)

where Ait is the mean of A⊂it over the m⊂i neighbours of region i at time step t. The 

neighbourhood coefficients, β⊂4 and β⊂5, can be viewed either as indirect spillover effects 

or added terms to adjust for local confounders to give more precise estimates of the direct 

causal effect, β⊂3.

Matched wake analysis combines the DID approach with a spatiotemporal analogue to 

coarsened exact matching (Schutte & Donnay, 2014). It was developed in the political 

science literature for studying responses to whether insurgent violence in Iraq causes 

civilians to help the US military. In this scenario, insurgent violence leading to civilian 

casualties is the ‘treatment’ and violence not resulting in casualties is the ‘control’. The 

response is the act of turning in salvaged unexploded ordinance to the US military, so that 

it will not be used in an improvised explosive device. The data are divided into sliding 

spatiotemporal windows called ‘wakes’ and matched. Then, a DIDs approach is applied to 

the matched sample by counting the number of explosives turned in before and after events. 

A drawback to this method is that in some cases, the sliding windows may overlap, which 

will violate SUTVA.

4.3 Granger Causality

Granger causality is a fundamentally different concept from the potential outcomes 

framework. It is defined by temporal relationships and not potential outcomes. In a time 

series analysis with response Y⊂t, treatment A⊂t, and all other relevant variables at time 

t, X⊂t, the treatment is said to Granger cause the response if Var(Yt|Ht) > Var(Yt|Ht, A1, 

…, At − 1), where the history up to time t is Ht = {Y1, …, Yt−1, X1, …, Xt − 1}. In other 

words, Granger causality implies that given the history of all other variables, knowledge of 

past treatments reduces predictive uncertainty. If a linear lag L time series model is assumed, 

Y t = l = l
L At − lβl + Xt − lγl + Y t − lρl + εt, then the treatment is said to Granger cause the response 

if β⊂l ≠ 0 for any l ∈ {1, …, L}.

Because this notion of causality is inherently defined for temporal data, extending these 

methods to the spatiotemporal case is straightforward. The simplest model is the linear 

no-interference model
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Y it =
l = l

L
Ait − lβl + Xit − lγl + Y it − lρl + Uit + εit, (28)

where U⊂it is correlated over space (e.g. following a CAR or SAR distribution) but 

independent over time. It is also straightforward to include spillover effects by including 

spatial averages as covariates, that is, under a Markov interference assumption the mean of 

A⊂it − 1 over region is m⊂i neighbours could be added as a covariate.

Granger causality and Rubin causality based on potential outcomes are fundamentally 

different. Granger causality is defined in terms of predictive uncertainty, as might be useful 

to a passive observer of the system trying to maximise predictive power. In contrast, Rubin 

causality is defined in terms of the effects of an active intervention, as might be performed 

by a scientist conducting a controlled experiment. Despite their different definitions and 

objectives, these two approaches share similarities. White & Lu (2010) show that Granger 

causality is equivalent to Rubin causality for times series data with no missing confounders 

and valid parametric assumptions. For example, the model in Equation (28) could be 

motivated by Granger causality or Rubin causality with Assumptions 1–4 and further 

assumptions (normality, linearity, etc) on the form of the potential outcomes model. For 

further discussion of the similarities and differences between types of causality, refer to 

Holland (1986) or Eichler (2012).

5 Methods for Point-Referenced Data

Point-referenced, or geostatistical, data are not measurements of a region, but rather taken 

at a specific point (latitude/longitude). Let si ∈ ℛ2 be the spatial location corresponding to 

observation i ∈ {1, …, n}. The spatial regression model becomes

Y i = Aiβ + Xiγ + U si + εi (29)

where the unknown confounder U(s) is a continuous spatial processes and εi ∼iid Normal 0, τ2 . 

This notation allows for replications at sites if, say si = sj, in which case observations i and j 
share the spatial term U(si) = U(sj). The covariate vector X⊂i can include spatial covariates 

such as the elevation at s⊂i and NS covariates such as the time of day the measurement was 

taken.

Unlike an areal data analysis as in Section 2 where the number of potential sampling 

locations is finite, a geostatistial analysis must consider an uncountable number of potential 

sampling locations s ∈  ⊂ ℛ2. We use the bold to denote a process over the entire spatial 

domain, for example, U = {U(s):s ∈ }. An unknown spatial process such as U is typically 

assumed to be a continuous function of s over  and modelled as a Gaussian process with 

mean zero and isotropic covariance function (i.e. a covariance that depends only on the 

distance between locations). Although other covariance functions are available (Banerjee et 

al., 2014), the simplest choice is the exponential covariance function Cov{U(si), U(sj)} = 

σ2exp(−dij/ρ), where d⊂ij is the distance between s⊂i and s⊂j. We denote this Gaussian 

process model as U ∼ GP(ρ, σ).
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5.1 Potential Outcomes Framework

In the most general form, the potential outcomes for observation i depend on the entire 

spatial field of potential treatments, a = {a(s):s ∈ }. Therefore, we define the potential 

outcome for observation i as Y⊂i(a). In the context of Example 1, a(s) might be the air 

pollution concentration at spatial location s, as opposed to the average concentration in a 

zip code. In this geostatistical setting, a mother’s exposure to air pollution would integrate 

the concentration a(s) along the path the mother travels. This could be estimated by a 

backpack the mother wears that continuously measures her local air pollution concentration. 

Therefore, changing a(s) for any s in the spatial domain could affect her potential outcome.

The potential outcomes framework simplifies dramatically under the no interference 

assumption. With a binary treatment, the two potential outcomes for unit i are Y⊂i(0) if a(si) 

= 0 and Y⊂i(1) if a(si) = 1. In this simple case, the potential outcomes concepts, definitions 

and assumptions introduced in Section 2.2 directly apply to the geostatistical setting. Many 

of the methods developed to adjust for missing spatial confounders described for areal data 

can also be applied. For example, all of the propensity score methods in Section 2.5 and 

IVs methods in Section 2.6 can be adapted for geostatistical data by replacing the CAR 

model for the missing spatial confounder with a Gaussian process model. Similarly, the 

adjustments based on spatial smoothing described in Section 2.4.2 can be extended to the 

geostatistical case as in Keller & Szpiro (2020) and Dupont et al. (2020) using splines and 

Guan et al. (2020) using spectral methods. Many of the other methods introduced for areal 

data can also be modified for geostatistical applications, as described in the remainder of this 

section.

5.2 Matching Methods

The matching methods described in Section 2.3 that pair observations from the same 

region can be applied for geostatistical data with replications at spatial locations. Distance 

adjusted propensity score matching (Papadogeorgou et al., 2018) can be used when there 

are not replications. This method alters propensity score matching (Rosenbaum & Rubin, 

1983a) by using a standardised distance that combines the propensity score difference 

and geographic distance. The logic is that if unmeasured spatial confounders exist, then 

observations that are close together will have confounders that are the most alike. Similar 

to the neighbourhood adjustment methods, this method balances treatment and control by 

including geographic distances as a proxy for the unmeasured confounders in the matching 

process. The difference for a pair with Ai = 1 and Aj = 0 is defined as

Dij = w e i − e j + (1 − w)dij/m (30)

where e i and e j are estimated propensity scores, m is the maximum distance between pairs of 

locations in the study domain and w ∈ [0, 1] is a weight. The authors propose an algorithm 

to select pairs with small D⊂ij.

5.3 Regression Discontinuity

Regression discontinuity designs are generally used when treatment assignment is 

determined by whether the covariate value for a unit exceeds a threshold (Imbens & 
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Lemieux, 2008; Bor et al., 2014; Keele & Titiunik, 2015), for example, students are admitted 

to a college if and only if their SAT score exceeds a threshold. These cases provide a natural 

experiment if it can be assumed that units slightly above and slightly below the threshold 

are similar in every way except the treatment assignment, and thus, the difference between 

these groups can be attributed to the causal effect of the treatment. Natural experiments of 

this form often arise in environmental and epidemiological studies, where the variable being 

thresholded to determine treatment is the spatial location. In the context of Example 1, the 

treatment might be whether a state is subject to an air pollution regulation, and the objective 

is to determine if this affects health outcomes. Figure 6 shows a hypothetical example where 

treatment is applied to locations in the region s ∈  ⊂ . If it can be assumed that all other 

factors are balanced across the border of , then comparing observations on either side of 

the border provides information about the causal effect of treatment. Under this assumption, 

the causal effect can be estimated by simply fitting the geostatistical model in Equation (29) 

with Ai = 1 if si ∈  and Ai = 0 otherwise.

5.4 Neighbourhood Adjustments

5.4.1 Stochastic partial differential equation modelling—Section 2.4 introduces 

the SAR model that defines the regression of the response onto the treatment after 

subtracting the means across neighbouring regions. The motivation for building a model 

on the differences is to remove the effects of spatially smooth confounding variables. The 

stochastic partial differential equation models of Lindgren et al. (2011) can be viewed as 

an extension of this idea to the continuous (geostatistical) spatial domain. In the stochastic 

partial differential equation framework, models are specified on the partial derivatives of 

the response surface, which is a generalisation of the SAR model that can be applied to 

differentiable functions such as U. Lindgren et al. (2011) show that this approach can be 

used to approximate Gaussian processes with the Matérn covariance function and develop 

approximations that resemble the SAR covariance model.

5.5 Spillover/Interference Methods

Defining interference for geostatistical applications requires returning to the general 

potential outcomes formulation in Section 5.1, where the potential outcome for observation 

i depends on the entire field of treatments, a, and is denoted as Y⊂i(a). Relating the 

spatial field a with the scalar potential outcome requires assumptions about the form of 

interference. A general form of the interference is

Y i(a) = a si β1 + a si β2 + Xiγ + Ui + εi (31)

a si =
D\si

w si, s a(s)ds, (32)

where w is a weighting function that determines the spillover effect a si  and β⊂1 and β⊂2 

control the direct and indirect effects, respectively. Given this potential outcome model, the 

four causal effects (direct, indirect, total and overall) can be defined and interpreted as in 

Section 3.1 with a⊂−i defined as the surface a excluding a(s⊂i), or perhaps excluding a for 

all sites within a small radius of s⊂i.
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The form of spillover in Equation (32) encompasses many common interference 

assumptions. For example, partial/cluster interference can be implemented by fixing w(si, 

s) = 0 if sites s⊂i and s are in different groups. A structure resembling Markov/network 

interference assumes that w(si, s) = 1/(πr2) if s is within radius r of s⊂i and w(si, s) = 0 

otherwise. This reduces the spillover measure a si  to the average treatment within radius 

r of s⊂i. If strict bounds on the range of interference cannot be assumed, then the weight 

function could be a decreasing function of the distance from s⊂i, such as the Gaussian 

kernel function with w si, s = exp −0.5 s − si /ϕ 2 / 2πϕ2.

Even after reducing the complexity of the model by selecting a simple form for the 

weighting function, computing the spatial integral in Equation (32) is often impossible 

because the treatments are only observed at a finite number of locations. One remedy is 

to use spatial interpolation (Kriging) to impute the treatments onto a fine grid of locations 

covering the spatial domain and then approximate the integrals as sums over the grid points. 

In this case, uncertainty about the estimated spillover variables should be accounted for 

using Bayesian or multiple imputation methods.

Given a form of interference and the assumption of no missing confounders, estimation of 

the direct and indirect effects can proceed with the usual spatial linear model. One approach 

to accounting for missing spatial confounders is to include spatial propensity score models 

for both the direct treatment A⊂i and the spillover effect Ai (Giffin et al., 2020). The 

propensity score for A⊂i can be estimated as in the areal case with say a spatial logistic 

regression to give e si .

6 Summary and Future Work

The field of spatial causal inference has seen impressive advances in recent years. 

There are now methods to address the fundamental problems including accounting for 

missing spatial confounding variables and modelling spatial interference. However, there 

are many opportunities for future work that we discuss below, including orthogonalisation 

of confounders and treatment, combining data types, relaxing model assumptions, going 

beyond mean estimation and using causal estimates for decision making.

Our discussion of spatial confounding began with the observation that fixed effects (e.g. 

treatment) estimates can be quite different between spatial and NS regressions because the 

spatial covariates and spatial random effects compete for the same spatial signal. In a spatial 

casual analysis, the treatment variables, covariates and random effects may all have spatial 

patterns. One way to resolve this conflict is to restrict the spatial random effects to be 

orthogonal to the observed treatment variables (Reich et al., 2006; Hughes & Haran, 2013; 

Hanks et al., 2015; Page et al., 2017; Prates et al., 2019). However, Khan & Calder (2020) 

showed that this can lead to poor performance for treatment estimates. A motivation for 

the orthogonal regression approach is that it is easier to interpret a regression model if the 

signal is attributed to known quantities (e.g. Plumlee & Joseph, 2018). While this may be 

appealing in some settings, it is contrary to the conservative causal-inference approach that 
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the treatment effect is what remains after adjusting for confounding variable. Resolving 

these two approaches is an area of future work.

We have discussed methods for areal data (Section 2) and point-referenced/geostatistical 

data (Section 5) separately, but many analyses require utilising both types of data. For 

example, treatments may be defined at point locations (e.g. air pollution concentration) 

while the response variable is defined regionally (e.g. hospital admission rate by zip code). 

In spatial statistics, this is referred to as the change of support problem (Gotway & Young, 

2002; Gelfand et al., 2010). One approach to combining data with different supports is to 

conceptualise the areal data as an aggregation of a continuous latent process and then specify 

geostatistical models such as those presented in Section 5 on the latent process. Extending 

these methods to the causal inference would require carefully specifying the causal estimand 

and devising computationally efficient methods for estimation. Zigler & Papadogeorgou 

(2021) may provide a template for this work.

Change of support issues also arise when the treatment is a point source, such as an oil spill, 

power plant or wildland fire. The effect of point source treatment variables can be direct, 

but their most prominent causal effects will likely be the spillover effects (Section 3) felt by 

nearby locations. The spillover effects can be modelled as a function of the distance from 

the response location to the point source or mechanistically using a mathematical dispersion 

model (Section 3.4). These methods can also be extended to the spatiotemporal setting 

using spillover effects that decay in space and time (e.g. Kim et al., 2018; 2019). Inferential 

methods that rely on modelling the treatment variables (e.g. propensity scores) could apply 

a spatial point pattern analysis (Baddeley et al., 2015), such as an inhomogeneous Poisson 

process model, to estimate the treatment intensity. It may also be possible to leverage work 

on informative sampling (Diggle et al., 2010; Pati et al., 2011) that uses a joint model for the 

sampling locations and the responses to reduce the effects of systematic bias in the sampling 

design.

Most of the methods discussed in this review rely on strong parametric assumptions such 

as linearity and normality. Parametric methods dominate spatial statistics because in the 

canonical problem with one observation at each spatial location there is insufficient data 

to relax these assumptions. In contrast, most causal inference methods aim to be robust 

to model misspecification. There is a body of work on non-parametric spatial methods 

(Gelfand et al., 2010; Reich & Fuentes, 2015) that might be used to relax the parametric 

assumptions in spatial causal inference, but these ideas have yet to be applied in this context.

We focused only on the average treatment effect, and future work is to extend spatial causal 

inference to other types of treatment effects. For example, extreme events are often the 

most impactful in environmental studies, and thus, it would be of great interest to extend 

causal inference ideas to spatial quantile regression (e.g. Reich et al., 2011; Reich, 2012; 

Lum & Gelfand, 2012) or extreme value analysis (e.g. Davison & Huser, 2019). Another 

simplification made throughout the review is that the confounder and treatment effects are 

the same throughout the spatial domain. A more general approach is a locally adaptive 

model with spatially varying coefficients (Gelfand et al., 2003), which would be a spatial 

application of conditional treatment effects (Wu et al., 2020).
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Ultimately, causal effect estimates can be used to influence decision making. An area of 

future work is to use these estimates to derive individualised/localised treatment rules. This 

is complicated in the spatial case by interference between regions that require considering 

simultaneously assigning the treatments to all regions to achieve optimality. Laber et al. 

(2018) and Guan et al. (2020) propose a policy-search method for optimal treatment 

allocation for spatiotemporal problems, but a general theory awaits development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A directed acyclic graph (DAG) represents the dependence of the random variables. Z is the 

instrumental variable, A is the treatment, Y is the outcome, X is the observed confounder 

and U is the unobserved confounder.
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Figure 2. 
Simulation study results. The boxplots summarise the sampling distribution of the causal 

estimates across data sets and the solid line at 0.5 is the true value. The scenarios vary by the 

spatial dependence parameter of the confounder (ρ⊁u) and treatment (ρ⊂v) variables, and 

whether the joint model is misspecified. The competing methods are defined in Section 2.8. 

The empirical coverage of 95% credible intervals for the causal effect are given above the 

model labels.
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Figure 3. 
Plots of the COVID-19/PM⊂2.5 data. Panel (a) plots the sample log COVID-19 mortality 
rate, log(Yi/Ni), through 12 May 2020 with gray denoting no observed deaths (Yi = 

0); panel (b) maps the long-term (2000–2016) average fine particulate matter (PM⊂2.5) 
concentration. Alaska and Hawaii are excluded from the study.
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Figure 4. 
Causal effect estimate for the COVID-19/PM⊂2.5 analysis. Posterior distribution of the log 

relative risk of an increase of 1 μg/m3 in long-term average (PM⊂2.5) (β) on a county’s 

COVID-19 mortality rate. The four models are defined by whether they are non-spatial 

(‘NS’) or spatial (‘S’) and whether they include a spatial propensity score (‘+ P’).
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Figure 5. 
Variable dependencies under different forms of interference. Spatial location is indicated 

horizontally. Indirect effects are shown as dashed lines, and confounding relationships are 

shown as solid lines at a location and dotted lines across locations. A is the treatment, Y is 

the outcome and X is the observed confounder.
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Figure 6. 
Illustration of regression discontinuity. The treatment region  is the region above the 
curve, the points are the sample locations s⊂i with samples with Ai = 1 filled and the 
background color is the mean function A(s)β + U(s) were A (s) indicates that s = (s1, s2) ∈ 
A.
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