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ABSTRACT

BACKGROUND AND PURPOSE: Resting-state fMRI helps identify neural networks in presurgical patients who may be limited in their
ability to undergo task-fMRI. The purpose of this study was to determine the accuracy of identifying the language network from
resting-state-fMRI independent component analysis (ICA) maps.

MATERIALS AND METHODS: Through retrospective analysis, patients who underwent both resting-state-fMRI and task-fMRI were
compared by identifying the language network from the resting-state-fMRI data by 3 reviewers. Blinded to task-fMRI maps, these
investigators independently reviewed resting-state-fMRI ICA maps to potentially identify the language network. Reviewers ranked
up to 3 top choices for the candidate resting-state-fMRI language map. We evaluated associations between the probability of cor-
rect identification of the language network and some potential factors.

RESULTS: Patients included 29 men and 14 women with a mean age of 41 years. Reviewer 1 (with 17 years’ experience) demon-
strated the highest overall accuracy with 72%; reviewers 2 and 3 (with 2 and 7 years’ experience, respectively) had a similar per-
centage of correct responses (50% and 55%). The highest accuracy used ICA50 and the top 3 choices (81%, 65%, and 60% for
reviewers 1, 2, and 3, respectively). The lowest accuracy used ICA50, limiting each reviewer to the top choice (58%, 35%, and
42%).

CONCLUSIONS:We demonstrate variability in the accuracy of blinded identification of resting-state-fMRI language networks across
reviewers with different years of experience.

ABBREVIATIONS: BOLD ¼ blood oxygen level–dependent; ICA ¼ independent component analysis; rs ¼ resting-state

Resting-state (rs) fMRI has emerged as a novel tool to analyze
brain function. In contrast to traditional task-fMRI, no explicit

task is required in rs-fMRI while blood oxygen level–dependent
(BOLD) images are acquired. Owing to an assortment of naturally
occurring fluctuations of BOLD activity in various regions of the
brain, a set of intrinsic brain networks can be identified by examin-
ing spatially distinct, however temporally synchronous, BOLD sig-
nals at rest. The number of discrete brain networks is somewhat

arbitrary and depends on the specific threshold used to define a

network; nevertheless, a relatively consistent set of major networks

has been reliably demonstrated in many studies.1

Although clinical use of rs-fMRI is currently not widespread,
potentially partly due to the variability of brain networks when
examined at the single-subject level,2 there was considerable
effort to translate this technique into clinical practice. Thus, the
most promising use of rs-fMRI currently seems to be in the do-
main of presurgical brain mapping.3 While task-fMRI has been
successfully used to identify critical brain regions for preoperative
planning, task-fMRI requires compliance in performing behav-
ioral paradigms necessary for determining brain activation. This
compliance may be limited or absent in many cases, for example,
in the pediatric population or in the elderly; in patients with lan-
guage barriers, visual or hearing impairment, or cognitive/mem-
ory impairment that may preclude language task performance; or
in those with physical debilitation limiting movement for per-
forming motor tasks. Given the lack of a task, therefore, the use
of rs-fMRI is attractive as an alternative technique to assess brain
function. Furthermore, rs-fMRI may potentially require less time
compared with task-fMRI to obtain comparable data.
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As 1 example, rs-fMRI-derived motor networks have been
shown to be comparable with motor regions activated during
task-fMRI as well as motor regions identified during direct corti-
cal stimulation.4 The concordance between rs-fMRI-derived lan-
guage networks and task-fMRI-activated language regions is more
variable. Earlier reports suggested moderate concordance;5 how-
ever, more recent reports have demonstrated high subject-level
variability.6,7 While motor networks are relatively easily identified
from rs-fMRI due to the relative invariance of the anatomic-func-
tional relationship of the motor system across individuals, identifi-
cation of the language network may be more challenging due to
relatively high variance in localization of language areas across
individuals8 and the similarity of elements of the language net-
work to the spatial distribution of other networks such as the ven-
tral attention network.9

If rs-fMRI is to be used as an alternative to task-fMRI, the accu-
racy of identification of the language network solely from rs-fMRI
must be assessed when one is presented with multiple network
correlation maps, ie, the output generated from commonly used
methods of rs-fMRI analysis such as independent component
analysis (ICA). While automated methods of network identifica-
tion are currently being developed, we were interested in the ability
of humans to correctly identify the language network. We exam-
ined the human accuracy of identifying subject-level rs-fMRI lan-
guage networks using their task-fMRI language activation maps as
the reference standard. We hypothesize that there is low accuracy
in human identification of rs-fMRI language networks when lan-
guage-related task-fMRI activation maps are unavailable.

MATERIALS AND METHODS
Participants
The radiology information system was interrogated for any
patient who underwent fMRI for presurgical brain mapping
between January 1, 2009, and July 1, 2015. Seventy-nine patients
with intracranial neoplasms were identified for whom both lan-
guage task-fMRI and rs-fMRI were available in the same

imaging session. Twenty-one patients had a history of an inva-
sive intracranial procedure (surgery and/or biopsy) and were
excluded to minimize confounding the effect of susceptibility.
Because individual language paradigms commonly activate only
subsets of the global language system, we included only patients
who had completed 3 different language tasks (Silent Word
Generation, Sentence Completion, and Rhyming) during the
same session. Patients who had suboptimal activation on any 1
of the 3 language task-fMRIs, assessed subjectively as is routine
in clinical fMRI cases, were excluded (15 patients). This exclu-
sion was determined by lack of the expected localization of acti-
vation with excessive spurious activation in nonbrain regions
with subject-specific statistical thresholding. After exclusion,
data from 43 subjects were available for analysis (Fig 1).

Handedness
The Edinburgh Handedness Inventory was used to determine
patient handedness.10

Imaging
Images were acquired on 3T Tim Trio MR imaging system
(Siemens) using a 12-channel head matrix coil. For both task-
fMRI and rs-fMRI, T2*-weighted BOLD images were acquired
using 2D gradient-echo echo-planar imaging: TR ¼ 2000 ms,
TE¼ 30 ms, flip angle¼ 90°, FOV¼ 24 cm, acquisition matrix¼
64 � 64 � 33, section thickness ¼ 4mm, section gap ¼ 1mm,
interleaved acquisition. Instructions for rs-fMRI were the follow-
ing: Keep your eyes closed, don’t move, and don’t think of any-
thing in particular. One hundred eighty volumes were acquired for
rs-fMRI (6minutes). We also obtained 3D T1-weighted structural
images: TR¼ 2300 ms, TI¼ 900 ms, TE¼ 3.5ms, flip angle¼ 9°,
FOV ¼ 24 cm, acquisition matrix ¼ 256 � 256 � 176, section
thickness¼ 1mm.

Task-fMRI Paradigms
As is routine at our institution, we instructed the patients and
performed practice sessions outside the scanner before fMRI to
ensure that patients understood the tasks. Real-time fMRI maps
were monitored by the neuroradiologist administering the study
to assess global data quality. Any task with suboptimal activa-
tion assessed subjectively was repeated per our protocol; for
final analysis, the single best run of each task was chosen. The
Prism Software Suite was used for stimulus presentation (Prism
Clinical Imaging). A block design of either 30 (rhyming) or 20
(Silent Word Generation, Sentence Completion) seconds of al-
ternative tasks and control blocks was used for an imaging time
of 3 (Rhyming) or 4minutes (Silent Word Generation, Sentence
Completion).

Image Processing and Analysis
Statistical Parametric Mapping (SPM) Version 8 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm12) and custom Matlab (MathWorks)
scripts were used to process the fMRI.

Task-fMRI
Task-fMRI underwent slice timing correction followed by
motion correction. Images were normalized to a Montreal
Neurological Institute-152 template and spatially smoothed using

FIG 1. Flow diagram of inclusion and exclusion criteria. SWG indicates
Silent Word Generation; SC, Sentence Completion.
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a 6-mm full width at half maximum Gaussian kernel. A general
linear model analysis was performed using a canonical hemody-
namic response function convolved with the boxcar function for
each task, without using model derivatives or global intensity
normalization. A 128-second high-pass filter was used. An
autoregressive was used to account for temporal autocorrelations.
No confound matrix was used. A contrast design matrix set to
detect activation across all 3 tasks compared with rest was used
for each subject. SPM T-contrast maps were generated without
clustering or multiple comparison correction, which is the
approach that we use routinely for clinical language mapping
because clustering is usually not necessary at the selected thresh-
olds and correction for multiple comparisons would be too strin-
gent for such single-subject language-activation analysis.

Rs-fMRI
Rs-fMRI underwent slice timing correction followed by motion
correction. The ArtRepair toolbox (https://www.nitrc.org/projects/
art_repair/)11 was then used to detect volumes with large shifts in
global average signal intensity related to scan-to-scan motion; both
the outlier volumes and additional volumes recommended for de-
weighting were tagged for subsequent removal from analysis (ie,
for “scrubbing”). Rs-fMRI was linearly detrended, and following
coregistration of rs-fMRI and T1-weighted images, physiologic
nuisance regression of rs-fMRI was performed using component-
based noise correction (CompCor method)12 using signal extracted
from eroded white matter and CSF masks. After bandpass filtering
from 0.01 to 0.1Hz, smoothing was performed with a 6-mm full
width at half maximum Gaussian kernel. Finally, images tagged by
ArtRepair were removed (scrubbed) from the rs-fMRI volumes.

The Group Independent Component Analysis of fMRI
Toolbox (GIFT, Medical Image Analysis Lab, http://mialab.mrn.
org/software/gift) was used to generate ICAmaps for each subject
using 20 (ICA20) and 50 (ICA50) target components, using the
InfoMax algorithm with ICASSO13 set at 5 repeats. The language
network was identified by first sorting the ICA components using
multiple regression in GIFT, with the task-fMRI SPM T-maps as
the reference template. Then, the component that demonstrated
the highest spatial overlap with the task-fMRI maps localized to
Broca and Wernicke activation was selected as the rs-fMRI lan-
guage network. Of note, in all cases, there was 1 ICA component
that best represented the primary language network for both ICA
orders. This ICA component was labeled the rs-fMRI language
network map for each subject.

Rs-fMRI Language Network Identification
Three participants independently reviewed the rs-fMRI ICA
maps to identify the potential language network. All were blinded
to the task-fMRI activation maps. The reviewers ranged in fMRI
experience: 17 years (neuroradiologist), 7 years (neuroradiolo-
gist), and 2 years (neuroimaging postdoctoral researcher). Each
of the raters had similar previous exposure to rs-fMRI and had
experience in interpreting rs-fMRI network maps. Images were
presented to each reviewer using the orthogonal viewer in
FSLView (Version 3.1; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FslView/UserGuide) with each subject’s rs-fMRI maps overlaid
on their T1-weighted images. Review was performed independently

for ICA20 and ICA50. The reviewers were allowed to modify
image contrast and thresholds. Reviewers ranked up to 3 top
choices for the candidate rs-fMRI language map, as well as their
confidence in their assessment ranging from 1 (highly confident)
to 5 (not confident).

Statistical Tests
We aimed to discover the association between the probability of
correct identification of the language network and some potential
factors including the reviewers, ICA type, and each selection
scenario.

We modeled this study using generalized linear mixed-effects
models similar to studies of measurement reproducibility. Yijkl

denoted the correctness of identification for subject i by reviewer
j using ICA type k and top choices l. Yijkl takes values 1 or 0, indi-
cating whether the identification is correct. The cross-sectional
structure motivates the generalized mixed-effects model as
follows:

logit P Yijkl ¼ 1jui
� �� � ¼ a þ ui þ b j þ xk þ zl þ hi ð1Þ ;

where the ui is mutually independent normally distributed,
N 0; s 2ð Þ, random intercepts. The covariate b j represents the
fixed effect of reviewer j. The effect of ICA20 and ICA50 is
denoted by x1 and x 2, respectively. The covariates z1; z2; z3
denote the effect of 3 different selection scenarios (top 1 choice,
top 2 choices, and top 3 choices). The term hi denotes the hand-
edness for subject i. To ensure the identifiability of the model,
we introduced constraints b 1 ¼ 0; x1 ¼ 0; z1 ¼ 0.

We performed likelihood ratio tests to investigate interaction
terms between each pair of the fixed effects. The resulting tests
were nonsignificant. We also found that the effect of ICA type
and handedness does not help to improve the model fit, so the
associated terms were excluded. In other words, there was no sig-
nificant effect for the ICA type and handedness, given the other
variables. We also performed the test for necessity of random
intercept effect (H0 : s

2 ¼ 0 versus H1 : s
2. 0) by parametric

bootstrapping. We found improvement in model fit (boot-
strapped P value estimated to be 0) by fitting the model, account-
ing for the subject-specific random effects.

To further explore the association between the probability of
correct identification and the confidence rating or the location of
lesions, adjusted for the effect of each reviewer, ICA types, and
selection scenarios, we fit a similar generalized mixed-effects
model, accounting for these effects. Tumor location was recorded
for involvement of the frontal lobe, parietal lobe, temporal lobe,
occipital lobe, or deep (subcortical) areas, with additional specific
tags for involvement of the left inferior frontal gyrus and right in-
ferior frontal gyrus (either of them potentially involving the
Broca areas) and of the left posterior temporal lobe and right pos-
terior temporal lobe (either of them potentially involving the
Wernicke areas).

The final model we fit is the following:

logit P Yijkl ¼ 1jui
� �� � ¼ a þ ui þ b j þ zl ð2Þ ;

where ui follows the normal distribution, N 0; s 2ð Þ, independ-
ently. This is the simplified version of model 1 after a sequence of
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tests, as described above and will be used for inference and inter-
pretation. From model 2, we can see that the probability of cor-
rect identification is associated with the subject-specific effect,
reviewer-specific effect, and the selection scenarios.

A conditional logistic regression model given the subject-
specific effect was constructed to explore the association between
the probability of correct identification and the confidence rating
adjusted for the effect of each reviewer and ICA type. No signifi-
cant association resulted. To measure the concordance of rs-fMRI
language network map identification among and within the 3
reviewers, we calculated intrarater and interrater k statistics.

All statistical analyses were performed in R statistical and
computing software, Version 3.6.2 (http://www.r-project.org/).

RESULTS
Patients included 29 men and 14
women with a mean age of 41 years
(minimum 18 and maximum 69
years). Thirty-three patients are right-
handed, 8 were left-handed, and 2 were
ambidextrous.

Tables 1 and 2 illustrate the mar-
ginal association between correctness
percentage and the reviewers, ICA
type, and selection scenarios. Table 1
and the Online Supplemental Data
demonstrate the percentage correct
for each reviewer for ICA20 and
ICA50, assessing their top choice (1),
the top 2 choices (11 2), or the top 3
choices (11 213), with Fig 2 graphi-
cally depicting the overall compari-
sons. Reviewer 1, with 17 years of fMRI
experience, demonstrated the highest
overall accuracy with 72% (95% CI,
66.1%–77.4%) correct responses across
all conditions. Reviewers 2 and 3, with
2 and 7 years of experience respectively,
had overall similar percentages of cor-
rect responses (50% [95% CI, 44.1%–
56.6%] and 55% [95% CI, 48.7%–
61.2%]). For each reviewer, the highest
accuracy was obtained using ICA50
and top 3 choices (81%, 65%, and 60%
for reviewers 1, 2, and 3, respectively).
Conversely, the lowest accuracy was
also obtained using ICA50, however
limiting each reviewer to the top choice
(58%, 35%, and 42%).

Significant differences in accuracy
were seen between selecting only the
top choice versus selecting the top 3
choices (Table 2), with the exception
of ICA20 for reviewer 3. In both ICA
conditions and across all raters, no
significant difference in accuracy was
seen between the selection of the top
2 choices versus the top 3 choices.

When we compared the single top choice with the top 2
choices, mixed findings were noted between ICA orders and
raters. Across the raters, inclusion of 3 choices compared with
1 choice improved the accuracy by 13% for ICA and 20% and
24% for ICA50. When examining the converse problem,
whether ICA order increases accuracy, no significant differ-
ence was found for any of the reviewers in any of the 3 choice
conditions (Online Supplemental Data). Figure 3 demon-
strates, averaged across all subjects, the spatial distribution of
task-fMRI language activation, correctly selected rs-fMRI lan-
guage component, and incorrectly selected rs-fMRI.

k statistics (Table 3) demonstrated an overall fair concord-
ance between reviewer 1 and reviewers 2 and 3 (k ¼ 0.35–0.40).

Table 1: Correctness percentage by reviewer and ICA target component
Reviewer ICA Component Top Choices No. (% Correctness) 95% CIs
1 Overall 72.09% 66.12%–77.39%
1 20 Top 1 28 (65.12%) 49.01%–78.55%
1 20 Top 2 32 (74.42%) 58.53%–85.96%
1 20 Top 3 33 (76.74%) 61.00%–87.72%
1 50 Top 1 25 (58.14%) 42.21%–72.63%
1 50 Top 2 33 (76.74%) 61.00%–87.72%
1 50 Top 3 35 (81.40%) 66.08%–91.08%
2 Overall 50.39% 44.13%–56.63%
2 20 Top 1 16 (37.21%) 23.39%–53.28%
2 20 Top 2 23 (53.49%) 37.83%–68.53%
2 20 Top 3 24 (55.81%) 40.01%–70.59%
2 50 Top 1 15 (34.88%) 21.45%–50.99%
2 50 Top 2 24 (55.81%) 40.01%–70.59%
2 50 Top 3 28 (65.12%) 49.01%–78.55%
3 Overall 55.04% 48.74%–61.18%
3 20 Top 1 22 (51.16%) 35.68%–66.44%
3 20 Top 2 26 (60.47%) 44.45%–74.63%
3 20 Top 3 26 (60.47%) 44.45%–74.63%
3 50 Top 1 18 (41.86%) 27.37%–57.79%
3 50 Top 2 24 (55.81%) 40.01%–70.59%
3 50 Top 3 26 (60.47%) 44.45%–74.63%

Table 2: Difference in correctness percentages comparing the top choice with the top 2
and 3 choices
Reviewer ICA Pair Comparison Number (Percentage Differences) P Valuea

1 20 Top 1 vs top 2 4 (8.30%) .063
20 Top 1 vs top 3 5 (11.63%) .031a

20 Top 2 vs top 3 1 (2.33%) .500
1 50 Top 1 vs top 2 8 (18.60%) .004a

50 Top 1 vs top 3 10 (23.26%) ,.001a

50 Top 2 vs top 3 2 (4.65%) .250
2 20 Top 1 vs top 2 7 (16.28%) .008a

20 Top 1 vs top 3 8 (18.60%) .004a

20 Top 2 vs top 3 1 (2.32%) .500
2 50 Top 1 vs top 2 9 (20.93%) .002a

50 Top 1 vs top 3 13 (30.23%) ,.001a

50 Top 2 vs top 3 4 (9.30%) .063
3 20 Top 1 vs top 2 4 (9.30%) .063

20 Top 1 vs top 3 4 (9.30%) .063
20 Top 2 vs top 3 0(0.00%) 1.0

3 50 Top 1 vs top 2 6 (13.95%) .016a

50 Top 1 vs top 3 8 (18.60%) .004a

50 Top 2 vs top 3 2 (4.65%) .250
a P value from the 1-sided sign test.
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FIG 2. Correctness percentage by reviewer and ICA target components with their corresponding confidence intervals.
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Poor concordance was observed between reviewers 2 and 3 (k ¼
0.16). When we limited analysis to the top choice, again reviewer
1 demonstrated fair concordance with reviewers 2 and 3 (k ¼
0.21–0.47), and there was poor concordance between reviewers 2
and 3 (k ¼ 0.028). Similar findings were seen when analyzing the
concordance of any of the top 3 choices (reviewer 1 versus 2 and
3 [k ¼ 0.31–0.42], and reviewer 2 versus 3 [k ¼ 0.12]).

On the basis of model 2, conditional on subject, the odds
of correct identification for reviewer 2 were 0.26 (95% CI,
0.17–0.41) times the odds of reviewer 1, given the same selec-
tion scenario. Similarly, the OR of reviewer 3 against reviewer
1 was 0.34 (95% CI, 0.22–0.53), and the OR of reviewer 3
against reviewer 2 was 1.31 (95% CI, 0.86–1.99). Note that
there was no significant difference between odds of reviewer 2
and reviewer 3, given the same selection scenario conditional
on the subject.

From the same model, the odds of correct identification
for selecting the top 2 choices were 2.39 (95% CI, 1.56–3.69)
times the odds of the top 1 choice, given the same reviewer
and conditional on subject. The OR of selecting the top 3
choices against the top 1 choice was 3.05 (95% CI, 1.98–4.76),
and the OR of including the top 3 choices against the top 2
was 1.28 (95% CI, 0.83–1.98). The difference between the
odds of selecting the top 3 and top 2 choices is not statistically
significant.

Regarding the association between the probability of cor-
rect identification and the confidence rating or the location
of lesions, the likelihood ratio test informs us that there is no

significant effect by the confidence rating and lesion locations
(P value ¼ .365).

DISCUSSION
Rs-fMRI is being increasingly used in the setting of presurgical
brain mapping.3,14,15 Despite the potential subject level variabili-
ty of data accuracy,6,7 nevertheless in select cases, rs-fMRI may
be considered a viable option for presurgical brain mapping;
indeed, at least 1 institution has included rs-fMRI in their pre-
surgical brain mapping paradigm without obtaining task-
fMRI.3,16 For this purpose, obtaining highly accurate intrinsic
brain network data is paramount to avoid adverse outcomes fol-
lowing surgery.

Two widely used methods of rs-fMRI analysis are associ-
ated with unique limitations. Seed-based analysis necessitates
placing ROIs in selected areas of the brain, depending on the
network to be defined. The advantage of this method is that
anatomy can guide placement of ROIs to target specific net-
works if clear landmarks for ROI placement are available, such
as for the motor network. However, in the setting of presurgi-
cal language mapping, several confounds appear. First, pri-
mary language areas are more widely distributed anatomically
across subjects;8 thus, placement of an ROI in the inferior por-
tion of the pars opercularis, for example, may work for 1
patient but not another. Second, often there are anatomic dis-
tortions in expected language regions in patients with large
brain lesions, making it difficult to determine the correct

FIG 2. Continued.

AJNR Am J Neuroradiol 44:274–82 Mar 2023 www.ajnr.org 279



anatomic landmarks. Damage to primary language regions due
to tumor infiltration or prior surgery may also cause reorganiza-
tion of language networks,17,18 further limiting accurate ROI
placement. Finally, neurovascular uncoupling may adversely

affect seed placement due to lack of
expected BOLD fluctuations in net-
work subregions.19

The alternative is to use a data-
driven approach such as ICA. Here,
rs-fMRI time-series typically at the
voxel level is separated into maximally
independent components. The result-
ant component maps each may repre-
sent one of the various intrinsic brain
networks, or nuisance. To determine
relevant maps, one may use auto-
mated methods such as template-
matching; however as is the case with
seed-based analysis in patients with
large lesions, anatomic distortion or
network reorganization may impede
its accuracy. More commonly, rele-
vant network maps are selected by
visual inspection, taking into consid-
eration potential changes in network
topology.

Aside from (however related to)
the problem of choosing the ideal
number of target components in ICA
(ie, ICA order), for which there is no
clear paradigm,20 the issue of catego-
rizing networks derived from ICA can
be especially challenging due to several
factors. First, network maps do not
necessarily break evenly across compo-
nents, and using low ICA orders may
cause merging of one or more net-
works (or even networks and noise),
and using high ICA orders may result

in fragmentation of networks into subnetworks. For our study,
using task-fMRI maps as the target, we found that a single
component for ICA20 and ICA50 best matched the target,
with no fragmentation at these levels of ICA orders. The gen-
eral range of optimum ICA order is affected by several tech-
nical factors, including hardware, length of the scan, and
postprocessing. The rs-fMRI output maps, therefore, may
need to be evaluated in each unique experimental condition
to optimize the general range of target ICA orders. At our
institution for example, an ICA order of 50 appears to be
ideal for use when rs-fMRI is included as part of the presur-
gical brain mapping protocol in addition to task-fMRI, the
scanning of which is limited to 1 scanner. However, empiri-
cally, a higher target order has been necessary when the rs-
fMRI protocol is used on a different scanner, at least partially
due to differences in contrast to noise.

Despite having a relatively long clinical and research fMRI
career of 17 years, the first rater’s accurate identification of rs-
fMRI language maps peaked at 72% across any condition; this
fact should be noted by those who are using this method for
research or clinical reasons. Limiting the choice to the best
guess decreased accuracy to about 65%. With fewer years of

Table 3: Interrater (between reviewers) j statistic by top choice
groups

Reviewer 1 2 3
Overall
1 1.0 0.35 0.40
2 0.35 1.0 0.16
3 0.40 0.16 1.0

Top choice
1 1.0 0.47 0.21
2 0.47 1.0 0.028
3 0.21 0.028 1.0

Top 2 choices
1 1.0 0.37 0.37
2 0.37 1.0 0.27
3 0.37 0.27 1.0

Top 3 choices
1 1.0 0.31 0.42
2 0.31 1.0 0.12
3 0.42 0.12 1.0

FIG 3. Comparison of task- versus rs-fMRI averaged across subjects. Green denotes average
task-fMRI activation of the language system across all subjects. Red denotes the average spa-
tial map of the rs-fMRI component correctly selected across subjects by all reviewers. Blue
represents the average spatial map of the incorrectly selected rs-fMRI component across
subjects by all reviewers. Overlays are additive: Yellow denotes overlapping voxels between
green (task-fMRI) and red (correct rs-fMRI component). The white area in the inferior frontal
gyrus along the inferior frontal sulcus denotes overlap across task-fMRI, incorrect rs-fMRI,
and correct rs-fMRI. While some overlap is noted here, which may be a function of spatial
smoothing, there is a clear distinction between the correct rs-fMRI versus incorrect rs-fMRI
distribution.
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experience, the accuracy was overall not better than chance
(50%). Caution, therefore, is advised when identification of
language maps is a critical component of management, for
example, to decide on an operative approach or the potential
extent of tumor resection. Confirmation of the selected lan-
guage component with additional methods (eg, task-fMRI or
intraoperative mapping) would be critical.

Automated methods of network identification may, therefore,
be necessary when task-fMRI is not available. Using a multilayer
perceptron (a neural network), Mitchell et al21 demonstrated that
reliable intrinsic brain networks could be characterized in 13
patients with distorted brain anatomy with electrocortical stimu-
lation as the criterion standard. Further validation in larger sam-
ple sizes would be necessary to ensure that methods such as this
have high reliability and reproducibility. Finally, a measure of in-
herent reliability of the rs-fMRI maps would be important to
develop.

There are several limitations in our study. We used task-
fMRI as the reference standard for ground truth, due to a lack
of availability of consistent intraoperative mapping. While
intraoperative mapping with direct cortical stimulation itself
has specific limitations such as a potential lack of specificity,
generally, it is considered superior to task-fMRI for functional
localization.

We limited ICA orders to 20 and 50 empirically, on the ba-
sis of the optimum number of target components based on
prior analysis of this data set. In this specific case, the language
component was seen in a single component for both ICA20
and ICA50 as noted above. However, especially in lower ICA
orders, rs-fMRI language networks may have been mixed with
other networks, confounding the labeling of the ICA compo-
nent to the correct network. In the setting of using data-driven
approaches to ICA estimation (eg, as is implemented in the
MELODIC tool in FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
MELODIC) or setting the ICA order to an arbitrary higher
number, mixing (due to low order) or fragmentation (due to
higher order) may result in greater challenges in detecting the
language network.

Finally, while potential distortion of language networks was
addressed in this study, the contribution of technical and physi-
ologic factors that result in further deviation of the networks
from the expected appearance could introduce further difficulty
in identification of the network. For example, the presence of
hemorrhage or prior surgery may result in susceptibility arti-
facts masking certain components of the network. Similar loss
of detection of network subcomponents may occur in the pres-
ence of neurovascular uncoupling.

CONCLUSIONS
We demonstrate the variability of the accuracy of blinded
identification of rs-fMRI language networks across raters and
different years of fMRI experience, using task-fMRI language
activation maps as the reference. In addition to rs-fMRI-based
brain mapping, additional confirmatory methods to supple-
ment this information such as through task-fMRI or intraoper-
ative stimulation may be necessary. Further work is needed to

determine the diagnostic utility of rs-fMRI using a more reli-
able criterion standard.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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