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Abstract

With the increasing awareness of the health impacts of particulate matter, there is a growing 

need to comprehend the spatial and temporal variations of the global abundance of ground level 

airborne particulate matter with a diameter of 2.5 microns or less (PM2.5). Here we use a suite 

of remote sensing and meteorological data products together with ground-based observations 

of particulate matter from 8,329 measurement sites in 55 countries taken 1997–2014 to train a 

machine-learning algorithm to estimate the daily distributions of PM2.5 from 1997 to the present. 

In this first paper of a series, we present the methodology and global average results from this 

period and demonstrate that the new PM2.5 data product can reliably represent global observations 

of PM2.5 for epidemiological studies.
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Introduction

Numerous studies show that among air pollutants, particulate matter (PM), especially with 

a diameter of 2.5 microns or less (PM2.5), has the strongest link with human health effects 

(Brook et al., 2010a,b, 2013a,b; Pope et al., 2011; Lary et al., 2014). Increased morbidity 

and mortality has been associated with exposure to PM2.5 suggesting that improved life 

expectancy is possible by reducing the exposure level (Pope et al., 2009). Not only in the 

United States of America (USA), but also in European studies, a significant number of 

premature deaths, including those due to cardiopulmonary and lung cancer, are attributed to 

long-term exposure to PM2.5 (Boldo et al., 2006, 2011; Ballester et al., 2008). The many 

health impacts of such particulate matter (Table 1) depend in part on its abundance at ground 

level in the atmospheric boundary layer where it can be inhaled.
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For more than half a century, researchers have been studying the impact of PM on health. 

Initially the attempt was to learn about the possible adverse effects; then the focus shifted to 

investigate the exposure-response relationships. With further advancement in technology and 

more awareness of health-concerns, studies on composition-specific effects have emerged 

(Ayala et al., 2012). With implementation of computational fluid dynamics (CFD) models 

and digital imaging of organs, researchers have started to study the pathophysiology 

associated with PM to better understand the translocation of particulates in the human body 

after their deposition and how they impact health.

Most short-term exposure impact studies on PM2.5, whether for morbidity or mortality, focus 

on cardiovascular/cardiopulmonary (Brook et al., 2010b) or respiratory (Dockery et al., 

1993) conditions. Our dataset, with daily temporal scale, is suitable for such studies. We are 

already studying daily asthma-related hospital admissions associated with PM2.5 using our 

estimated data. On the other hand, diseases, such as lung cancer, require study of long-term 

exposure. Data generated from this study are expected to contribute to Health Impact 

Assessment (HIA) in different parts of the world concerning long-term exposure to PM2.5. 

Currently, long-term values are not available in many localities and in many instances, PM2.5 

values are estimated from PM10 for long-term HIA (Boldo et al., 2011). Studies also suggest 

that even low-level PM2.5 exposure can contribute to serious health impacts (Pope et al., 

2006; Franklin et al., 2007; Crouse et al., 2012; Cesaroni et al., 2014). We have already 

created daily global estimates of PM2.5 with an associated uncertainty for more than 13 

years providing an appropriate dataset for extended cohort studies for the areas with both 

high and mid-level concentrations of ambient PM2.5. In addition, long-range transportation 

of particles as, such dust can provide potential vectors for bacteria (Ginoux and Torres, 

2003; Prospero, 2003). With global coverage of this study, tracking PM2.5 transport is now 

easier for public health surveillance.

In recent years, researchers are finding it worthy to investigate potential links between 

PM2.5 exposure and adverse birth outcomes (Slama et al., 2008; Dadvand et al., 2013), 

epigenetic alteration (Baccarelli et al., 2008; Salam et al., 2012; Byun et al., 2013; Hou et 

al., 2013) infant mortality (Woodruff et al., 1997; Lipfert et al., 2000; Dales et al., 2004; 

Glinianaia et al., 2004) atherosclerosis (Araujo et al., 2008; Araujo, 2011; Kaufman, 2011), 

stroke (Brook, 2008; Brook and Rajagopalan, 2009, 2012; Maheswaran et al., 2010, 2012), 

rheumatic autoimmune disease (Zeft et al., 2009; Farhat et al., 2011), central nervous system 

disorders (Sunderman, 2001; Kreyling et al., 2006; Block and Calderon-Garciduenas, 2009; 

Pearson et al., 2010; Wang et al., 2012) and diabetes (Andersen, 2012; Andersen et al., 

2012). Since many of these health conditions are interlinked, comprehensive studies are 

required to better understand the impact of PM2.5. With increasing availability of electronic 

health records, reliable PM2.5 data with seamless temporal and geographic coverage can 

contribute to revealing many unknowns of PM2.5 impacts on health.

It could be noted that the type and degree of adverse effect greatly depends on the 

composition of the particulate matters. Composition mostly varies due to source materials. 

Our current study does not provide information on the composition of PM2.5. However, this 

study can be extended to examine the potential of source apportionment considering land 

use / land cover conditions and transportation mechanisms. Recent studies show specific 
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adverse impacts of exposure to ultrafine particles (UFPs). Future studies are recommended 

to derive further size fractions beyond just PM2.5, particularly UFPs in the sub-micron size 

range. Various networks of ground-based sensors routinely measure the abundance of PM2.5. 

However, the spatial coverage has many large gaps and in some countries no observations 

are made at all. Globally more observations of PM10 are available than for PM2.5. This paper 

focuses on PM2.5, which has been related to a wider variety of health conditions than PM10 

or UFPs (Table 1).

Several studies have sought to overcome this limitation of spatial coverage by using remote 

sensing and satellite-derived Aerosol Optical Depth (AOD) coupled with regression and/or 

numerical models to estimate the ground-level abundance of PM2.5 (e.g. Engel-Cox et al., 

2004a; Zhang et al., 2009, 2011; Hoff and Christopher, 2009; Weber et al., 2010). Studies 

have shown that the relationship between PM2.5 and AOD is not always suitable for simple 

regression models. Rather it is determined by a multi-variate function of a large number 

of parameters, including: humidity, temperature, boundary layer height, surface pressure, 

population density, topography, wind speed, surface type, surface reflectivity, season, land 

use, normalised variance of rainfall events, size spectrum and phase of cloud particles, 

cloud cover, cloud optical depth, cloud top pressure and the proximity to particulate sources 

releasing PM2.5 (Liu et al., 2005; Lyamani et al., 2006; Choi et al., 2008; Paciorek et al., 

2012; Zhang et al., 2009). The picture is further complicated by the biases present in satellite 

AOD products (e.g. Lary et al., 2009; Hyer et al., 2011; Shi et al., 2012; Reid et al., 2013), 

the difference in spatial scales of the in-situ point PM2.5 observations and remote sensing 

data (several km per pixel) and, finally, the sharp PM2.5 gradients that can exist in and 

around cities.

Zhang et al. (2009) presented a comprehensive study for the ten Environmental Protection 

Agency (EPA) regions across USA using multi-linear regression between the PM2.5 

abundance observed by the EPA monitoring sites and the Moderate Resolution Imaging 

Spectroradiometer (MODIS), AOD and a set of meteorological parameters. In their multi-

linear regression study (Zhang et al., 2009) found the best correlations of PM2.5 with 

AOD in the eastern states during summer and autumn, with EPA region number 4 having 

a correlation coefficient of more than 0.6. They observed the poorest correlation for 

the south-western USA, with EPA region number 9 having a correlation coefficient of 

approximately 0.2. Weber et al. (2010) extended the work by Zhang et al. (2009) for five 

EPA monitoring sites in the Baltimore/Washington DC Metro area by considering AOD 

from MODIS, the Multi-Angle Imaging Spectroradiometer (MISR) and the Geostationary 

Operational Environmental Satellite (GOES). These PM2.5 estimates are made available 

through the Infusing satellite Data into Environmental Applications (IDEA) website (http://

www.star.nesdis.noaa.gov/smcd/spb/aq).

In a notable study, van Donkelaar et al. (2006) took the alternative approach of using 

remote sensing and a global transport model to present a global estimate of the long-term 

average PM2.5 concentrations between the years 2001 and 2006 using satellite observations 

of AOD from MODIS to estimate η = PM2.5/AOD. The three-dimensional (3D) chemical 

transport model used was GEOS-Chem (http://acmg.seas.harvard.edu/geos/), and the authors 

found a significant spatial agreement with their estimates; the correlation coefficient for 
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North American PM2.5 measurements was 0.77 and elsewhere 0.83. PM2.5 estimates using 

this approach have since been used in a variety of health studies (van Donkelaar et al., 

2010a; Anderson et al., 2012; Brauer et al., 2012; Crouse et al., 2012; Hystad et al., 2012). 

Meanwhile, Liu et al. estimated the ground level abundance of PM2.5 by using scaling 

factors from the GEOS-Chem, GOCART models and AOD from the MISR (Liu et al., 2004, 

2005, 2007a,b,c, 2009a,b,c).

This study makes five incremental contributions:

i. we believe we have used the most comprehensive training dataset to date 

for a study that empirically relates hourly in situ PM2.5 observations to 

remote sensing, meteorological and other contextual, environmental data. This 

is important as the local context of the various PM2.5 observations varies widely 

and in order to have a robust estimation of the global PM2.5 distribution, we 

need representative observations in a wide range of conditions. Hourly PM2.5 

observations were acquired from 1997-present from across the world. In this 

study we used hourly PM2.5 data from 8,329 measurement sites in 55 countries;

ii. we believe we have used the widest range of contextual variables to date 

(over 30 identified from the literature and presented in the last section) in our 

analysis of the measured multivariate, non-linear, non-parametric relationship 

between ground based observations of PM2.5 and remote sensing observations, 

meteorological observations and associated contextual information;

iii. we have used the most-suitable multivariate, non-linear, non-parametric 

machine-learning approach currently available (briefly described in the next 

section) and not previously used for investigating the empirical relationship 

between hourly in-situ PM2.5 observations and remote sensing, meteorological 

and other contextual environmental data;

iv. we not only estimate the PM2.5 abundance, but also provide an uncertainty 

estimate; and

v. we cover the longest time period estimating the PM2.5 abundance on a daily basis 

(from September 1, 1997 to the present).

Materials and methods

Many studies have shown that the relationship between PM2.5 and AOD is a multi-variate 

function of a large number of parameters (Liu et al., 2005; Lyamani et al., 2006; Choi et al., 

2008; Natunen et al., 2010; Liu and Harrison, 2011). Further, many of these relationships are 

non-linear, some are of unknown functional form and many have non-Gaussian distributions. 

Therefore, any successful description of the relationship between PM2.5 and AOD needs 

to be multi-variate, non-parametric (we do not know the functional form from theory) and 

able to deal with non-linear behaviour and non-Gaussian distributed variables. This would 

suggest that a machine-learning algorithm should be used.

Machine-learning can provide a valuable regression tool for empirically estimating variables 

of interest, when we do not have a complete theoretical description of a process but do have 
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a useful set of observations. Machine-learning encompasses a broad range of algorithms 

(e.g. Neural Networks, Support Vector Machines, Gaussian Processes, Decision Trees, 

Random Forests, etc.) that can provide multi-variate, non-linear, non-parametric regression 

or classification based on a training dataset. We have used all of these approaches for 

estimating PM2.5 and have also developed our own proprietary ensemble approach with full 

error estimation (a description of which is beyond the scope of this text). The key points to 

highlight as relevant to this study are:

i. the approach includes a full independent validation. A fraction of the training 

data is randomly selected and held back for independent validation. These 

validation points are shown in red in Fig. 3;

ii. at every location we considered, the approach provides both an estimate of the 

PM2.5 abundance as well as an error estimate;

iii. an ensemble of independent predictors are used at every location, and our 

estimate of the PM2.5 abundance is the mean of the ensemble of estimates. A 

full error characterisation showed that beyond an ensemble size of 6, there was 

no significant error reduction. However, we used an ensemble size of 12 to be 

completely sure we had an ensemble that was large enough;

iv. the approach provides a ranking of the relative importance of each of the 

variables used in the regression;

v. the approach can handle records with missing values. However, in this study we 

chose to ignore records with missing values.

Datasets used in machine-learning regression

PM2.5 data –—We used as many in-situ hourly PM2.5 observations as possible from 8,329 

sites in 55 countries from August 1, 1997 to the present (shown as red squares in Fig. 1). 

Fig. 2 shows the spatial and temporal coverage of this training data. Most of the observation 

sites were in the northern hemisphere. The high-latitude satellite data coverage is greatest 

in summer, so the number of in-situ PM2.5 observations with satellite overpasses is greatest 

in summer as can be seen by the annual summer peaks in the Figure. Having training data 

from as many different physical environments as possible is critical, so a wide range of 

diverse conditions should be incorporated in the training data. The quality of the global 

machine-learning estimates of PM2.5 improved dramatically with the inclusion of data from 

the southern hemisphere (Chile, Brazil, South Africa, Australia and New Zealand) and Asia 

(China, India, Japan, Taiwan and Hong Kong). A random sample comprising 5% of each 

training dataset was held back for independent evaluation of the PM2.5 estimate produced 

using machine-learning.

Satellite AOD data –—This study used satellite data from three satellite instruments: the 

Sea-viewing Wide Field-of-view Sensor (SeaWIFS) launched on August 1, 1997 (Melin et 

al., 2013). Two MODIS instruments (one onboard the Terra satellite (EOS AM) launched in 

1999, the other on Aqua (EOS PM) launched in 2002) (Remer et al., 2008) were chosen, 

both for their coverage and their near-real time data delivery. The latest distribution of 

MODIS data collection 5.1 was used. In this study we used the level 2 collection 5.1 data 
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and a spatial grid with a resolution of 10 × 10 km (approximately 0.1° × 0.1°). MODIS 

collection 5 introduced the Deep Blue algorithm for retrieval of AOD over bright arid 

surfaces, an approach based on the idea that desert regions are darker at shorter wavelengths 

so the aerosol signal is clearer when using the shorter deep blue wavelengths (Hsu et al., 

2004, 2006; Sayer et al., 2013).

The MODIS aerosol data files are called MOD04 for Aqua and MYD04 for Terra. In 

addition to the MODIS aerosol optical depth over land and ocean, the product data files 

include the viewing and solar illumination geometries, surface reflectance, scattering angle, 

angstrom exponent and various quality and cloud flags. These additional parameters turned 

out to be invaluable in providing an accurate multivariate, non-parametric regression to 

estimate the surface abundance of PM2.5.

In MODIS collection 5.1, Deep Blue Terra data are not available after 2007. When 

collection 6 is released this should be remedied, there will be greater Deep Blue data 

coverage and higher spatial resolution. Collection 6 will include various refinements to 

Deep Blue, including extended coverage to vegetated and bright land surfaces, improved 

cloud screening and surface reflectance and aerosol microphysical models. Many of these 

improvements were developed during the recent application of Deep Blue to SeaWiFS data.

Meteorological data –—The meteorological data used in this study come from the 

NASA Modern Era Retrospective analysis for Research and Applications (MERRA) (http://

gmao.gsfc.nasa.gov/merra/) (Rienecker et al., 2011). The historic data are available from 

the Modeling and Assimilation Data and Information Services Center (MDISC) at http://

disc.sci.gsfc.nasa.gov/mdisc/. The real-time and forecast data are available as part of the 

experimental forecast suite at http://gmao.gsfc.nasa.gov/forecasts/.

PM2.5 product evaluation

Let us now evaluate the quality of the machine-learning regression using several different 

approaches.

Scatter diagrams –—Scatter diagrams using data for the entire period of 1997 to present 

provide a visual means for evaluating the quality of the estimated PM2.5 abundance. A 

perfect fit would yield a scatter diagram with a slope of one and an intercept of zero. Fig. 

3 shows scatter diagrams of the observed in-situ hourly average PM2.5 abundance in μg/m3 

on the x-axis and the machine-learning estimate on the y-axis. The blue circles depict the 

training dataset and the red squares the randomly chosen independent validation dataset; the 

associated probability density function is shown along each axis. The title of each panel 

shows the satellite data product used, the correlation coefficient for the independent training 

dataset Rt, the correlation coefficient for the independent validation dataset Rv and the 

sample size n. The table tabulates the correlation coefficients in descending order of Rv. It 

should be noted that the correlation coefficient for each of the five training datasets is 0.96 

or greater and that the estimates (blue circles) are tightly clustered about the 1:1 line. The 

correlation coefficient for each of the independent validation datasets (red squares) is 0.52 or 

greater and, as would be expected, there is a little more scatter. We see that the quality varies 
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slightly by satellite with the best fits obtained from Terra data, followed by Aqua and then 

SeaWIFS.

Quintile-Quintile plots -—these permit comparison between the shapes of the observed 

and the estimated probability density functions. Two probability density functions of the 

same shape yield a straight line. For a good agreement we expect at least the 25th to 

75th quintiles (the “overplotted” red squares) to form a straight line as it does for our 

machine-learning fits of the PM2.5 abundance.

The probability density functions (PDF) are shown along each axis of the scatter diagrams 

in Fig. 3. We can see that the PDFs of the in-situ observations and our machine-learning 

estimates have very similar shapes. The relative shapes of the independent validation PDFs 

are further tested graphically using quintile-quintile plots (Fig. 4). The observed PM2.5 

abundance quintiles are plotted on the x-axis and the machine-learning estimated PM2.5 

abundance quintiles for the independent validation dataset on the y-axis. Typically the 25th 

to 75th quintiles of globally observed PM2.5 abundance falls in the range of 5–20 μg/m3. The 

extremely polluted areas in Asia and around some large cities are outliers (falling above the 

75th quintile) in the global PM2.5 abundance PDF.

If the quintile-quintile plot is a straight line y = ax + b, but the slope is not 1. This means that 

the machine-learning fit and the observed data distributions differ slightly in their location 

and scale (Chambers et al., 1983; Fowlkes, 1987). The slope and intercept provide estimates 

of the scale and location. In our case the left end of the pattern is generally slightly above 

the 1:1 line and the right end of the pattern is slightly below the line indicating that the PDF 

for the machine-learning fit has slightly shorter tails at each end of the distribution when 

compared to the PDF of the observations. In most cases the machine-learning approach 

slightly underestimates the largest PM2.5 abundances, but agrees with in-situ observations to 

within the estimated uncertainty.

Taylor diagrams –—This type of graph, intoduced by Taylor (2001) provides another 

visual way to compare the machine-learning fit to the hourly average PM2.5 abundance in 

μg/m3 to the observations (Fig. 5). The Taylor diagram quantifies the similarity between 

the fit and observations based on the correlation coefficient, the centred root-mean-square 

(RMS) difference between the fit and observations and the amplitude of their variations 

using the standard deviation. In each case the observations are denoted by point A on the 

x-axis. The green contours shown around A indicate the centred RMS differences between 

the fit and observations. The radial distance of a point from the origin is proportional to 

the amplitude of variation quantified by the standard deviation. Points lying on a radial 

arc the same distance from the origin as point A have the same standard deviation as the 

observations indicating that the simulated variations have the correct amplitude. We can see 

from Fig. 5 that all the machine-learning fits are of reasonable quality, but those using the 

Deep Blue data simulate the amplitude of variation seen in the observations better than the 

standard algorithm.

Ensemble errors –—Fig. 6 shows the ensemble training errors in μg/m3 for our PM2.5 

abundance estimates. The blue lines show the RMS error evaluated for the training dataset 
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and the red lines show the RMS error for the independent validation dataset. The ensemble 

training errors depend on how many members are in the machine-learning ensemble. There 

is a decrease in the error between one and six ensemble members that then plateaus with 

little benefit in having more than fifteen learners. In this study we have used an ensemble 

size of twelve.

Multi-annual estimate of PM2.5 abundance

A useful validation of the new PM2.5 data product is to survey the key features of the 

global PM2.5 distribution and see if they capture, what we expect to find, and what has 

been reported in the literature. The upper panel of Fig. 7 shows the global average of the 

surface PM2.5 abundance estimated using machine-learning of the 5,874 daily estimates 

from August 1 1997 to August 31 2013 in μg/m3. Overlaid as colour-filled circles are the 

observations for those locations, for which we have both a machine-learning estimate of the 

surface PM2.5 abundance and an observation for at least one third of the 5,874 days between 

August 1, 1997 to August 31, 2013. The agreement between the machine-learning estimate 

and the in-situ observations is well within the estimated uncertainty shown in the lower 

panel.

Results

Machine-learning estimates works best with a high volume of good quality training data 

(i.e. USA, Europe, Israel, Tasmania, a few sites in Chile and some parts of Asia). As can 

be seen in Fig. 2, the volume of training data has increased with time. The most significant 

recent data sources have come from a network of Chinese monitors. Asia is probably the 

most challenging region to accurately estimate PM2.5 abundance. This is due to both the 

magnitude of the sources and the large spatial and temporal gradients. The estimates in 

Asia were dramatically improved by the inclusion of the Asian monitoring sites in our 

training datasets. The second most challenging regions are Africa and South America due 

to the paucity of observations and a range of large PM2.5 sources. The inclusion of Israeli, 

South African, Mexican, Chilean and Brazilian monitoring sites in our training datasets 

did improve the quality for Africa and South America. The third most challenging regions 

are Australia and New Zealand. The inclusion of the excellent Tasmania network as well 

as Australian and New Zealand monitoring sites dramatically improved the quality of our 

PM2.5 abundance estimates in these countries. However, more PM2.5 monitoring stations 

are needed in the Arabian peninsula, Africa, the Philippines, Indonesia, India and South 

America.

It is worth noting that the uncertainty estimate is provided by our machine-learning 

approach. Just as we learnt the behaviour of the PM2.5 abundance as a function of the 

30 plus parameters obtained from satellites, meteorological analyses and population density 

estimates, we also learnt a second quantity, namely the uncertainty of our PM2.5 abundance 

as a function of the same 30 plus parameters. So for Saharan Africa and the Middle 

East, where there are few PM2.5 monitors (apart from in Israel), the uncertainty is based 

objectively on how well the machine-learning algorithm was able to estimate the PM2.5 

abundance for that part of the parameter space defined by the 30 plus parameters covering 
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AOD, temperature, humidity etc. Sporadic wild-fires and biomass burning are a major 

source of PM2.5 in places such as sub-Saharan Africa, Amazonia, parts of Mexico, western 

USA, etc. These sporadic sources are not so pronounced in Fig. 7 as it represents such 

a long-term average as 5,874 daily estimates from August 1 1997 to August 31 2013. 

However, the burning in some regions is so persistent that it is evident even in the long-term 

average, e.g. in the Democratic Republic of Congo (marked M in Fig. 8).

Key features by region

The Americas –—In Fig. 8a we see that the eastern half has a higher average abundance 

of PM2.5than the western half of the USA with the exception of California (Herner et 

al., 2005). This is consistent with the overlaid EPA observations shown as colour-filled 

circles. The fill for the observations uses the same colour scale as the machine-learning 

background estimates. There are persistently high levels of PM2.5 in Mexico’s dusty and 

desolate Baja California Sur. The particularly high values are in Muleg Municipality close to 

Guerrero Negro (A). The Sonoran Desert (B), a region characterised by high average PM2.5 

abundance and American dust storms (Haboobs) (Idso et al., 1972; Vasquez et al., 1998; 

Wilt et al., 1998), straddles the region close to the Mexico, Arizona and California borders 

(Brazel and Nickling, 1978; Holcombe et al., 1997). It covers an area of 311,000 km2 and 

is one of the hottest and dustiest parts of North America. This is clearly evident in the high 

16-year average PM2.5 abundance in this region.

The persistently high PM2.5 abundance associated with Los Angeles (C) is visible. As 

observed by van Donkelaar et al. (2006), the regions of high population density coincide 

with the region of high particulate abundance. California’s heavily agricultural Central 

Valley (D) has a high PM2.5 load (note the good agreement of our estimates with the 16 

year average observations). The EPA has designated Central Valley as a non-attainment area 

for the 24-hour PM2.5 National Ambient Air Quality Standards (NAAQS). The high PM2.5 

abundance associated with the Great Salt Lake Desert in northern Utah (E) close to the 

Nevada border stands out. There is a nearby measurement “supersite” at Salt Lake City 

(Long et al., 2003) recording a particulate abundances consistent with our estimates.

Mexico City is known for its high levels of particulates and is clearly visible as a localised 

hotspot (F). Close to the Mexico/Texas border we see the elevated PM2.5 abundance 

associated with the Chihuahuan Desert and the Big Bend Desert (G). Dust storms in this 

area often impact El Paso in Texas and Ciudad Juarez in Mexico (Rivera et al., 2010, 2009; 

Baddock et al., 2011). The Ohio River Valley (H) encompasses several states and is home 

to numerous coal-fired power plants, chemical plants and industrial facilities, leading to high 

levels of ambient particulates (Khosah et al., 2000; Anderson et al., 2004; Yatavelli et al., 

2006; Kim et al., 2007). The Ohio River Valley has a higher average abundance of PM2.5 

than the rest of the East Coast. Our analysis agrees closely with the in-situ observations 

reported by (Yatavelli et al., 2006) for the Athens “supersite”. The Piura Desert in northern 

Peru (I) on the coast and western slopes of the Andes is a region of high particulate 

abundances. The region in South America (J) stretching from the high Andean semi-arid 

Altiplano basin in the North, coming down through the Salar de Uyuni Desert (the world’s 

largest salt flats), passing by Santiago in Chile (Koutrakis et al., 2005) and San Miguel 
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de Tucumn, San Juan and Mendoza in Argentina and down to the Neuquen Basin in the 

South is characterised by a high abundance of particles from a combination of dust, salt 

and pollution. The southern Amazon in Bolivia and the surrounding region (K) has a lot of 

burning leading to persistently high particulate abundances.

Africa –—The Bodelle depression (L) is Chad’s lowest point on the Sahara’s southern 

edge that supplies the Amazon forest with the majority of its mineral dust (Washington and 

Todd, 2005; Koren et al., 2006; Washington et al., 2006a,b; Todd et al., 2007; Bouet et al., 

2012). The high abundance of PM2.5 over the Bodelle is clearly visible. Typically, there are 

dust storms originating from the Bodelle depression around 100 days a year. Washington 

and Todd (2005) examined the dynamical controls of the Bodelle low-level jet features. 

The major source of the world’s Aeolian dust is the Sahara (Goudie and Middleton, 2001; 

Middleton and Goudie, 2001). The low, flat area that is Western Sahara is some of the 

most inhospitable and arid land on earth and a substantial dust source, clearly visible in the 

high abundance of PM2.5. Burning in the Democratic Republic of Congo (M) leads to high 

levels of particulates. Much of coastal Somalia (N) is desert characterised by high levels of 

particulates.

Europe –—An example of a local pollution hotspot in Europe is Moscow (O). Otherwise, 

the Italian Po Valley (P) has some of the highest average fine particle abundance in Europe 

with industrial emissions coupled with persistent fog leading to smog (Zappoli et al., 1999; 

Schaap et al., 2002; Putaud et al., 2004; Crosier et al., 2007).

Australia –—Lake Eyre (Q) is Australia’s largest lake and lowest point, but it usually only 

fills with water after heavy rains that typically occur only every three years; otherwise it 

consists of a salt crust. When the lake does fill, the depth is usually up to 1.5 m; once in a 

decade it will fill up to 4 m, after which the level falls by around 30 cm a month. When Lake 

Eyre has dried out, it is Australia’s largest dust source, while the PM2.5 abundance there and 

in its vicinity is lower than usual during the periods when it is filled with water. Just east of 

the Lake Eyre Basin is the Strzelecki Desert (R), another major Australian dust source. The 

arid region just south of the Hamersley Range in Western Australia, i.e. the Gibson Desert, 

Great Victoria Desert and MacDonnell Ranges, are also dusty environments with elevated 

average abundances of PM2.5.

Asia –—Asia has some of the highest particulate abundances anywhere on Earth. The Aral 

Sea (S) lying across the border of Kazakhstan and Uzbekistan is heavily polluted with major 

public health problems. The Ganges Valley (T) is home to 100 million people and is highly 

polluted. The cold Taklimakan Desert of northwest China (U) has an area of 337,000 km2 

and is a major source of PM2.5, and so is the situatuion in the Sichhuan the Sichuan Basin 

(V) and in the western China in the region from Beijing in the North down to Guangxi in the 

South (W).

Discussion

A PM2.5 data product useful for human health studies needs to resolve both spatial and 

temporal variability. Figs. 3 and 4 show that our machine-learning approach well reproduces 
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the shape of the probability distributions of the globally observed PM2.5 abundance. Figs. 7 

and 8 show that it also reproduces the global average spatial distributions well.

A strength of this study is the daily global coverage from 1997 to the present. However, as 

a consequence of having a wide array of point sources, the PM2.5 abundance can contain 

high spatial variability on small scales. The spatial resolution of our study is 10 × 10 km 

(approximately 0.1° × 0.1°) determined by the spatial resolution of the MODIS collection-5 

aerosol products. Spatial variability on scales smaller than 10 km is present. However, 

they are unresolved in our data product and there are also data gaps due to both cloud 

coverage and the difficulty that the standard MODIS retrieval algorithm has with retrievals 

over bright surfaces. MODIS collection-6 is about to be released and will help address 

several of these issues. This collection will have 3-km resolution and greater Deep Blue 

data coverage. Collection-6 will include various refinements, such as extended coverage 

to vegetated and bright land surfaces, improved cloud screening, surface reflectance and 

aerosol microphysical models. In addition, any satellite instrument has a finite life and 

both MODIS satellites (Terra and Aqua) are aging. We hope data continuity will be 

provided by the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) on 

the Suomi National Polar-orbiting Partnership weather satellite. When data quality from 

VIIRS becomes acceptable those data can also be used. Although to our knowledge, we have 

used more training data than any other studies of PM2.5 estimation, there are yet certain 

parts of the world from where we are still collecting such data. This lack of uniformity in 

training data may cause some inconsistency in data product quality. However, as we make 

progress in acquiring more ground PM2.5 data from different parts of the world with missing 

information, the quality of our dataset will be improved for those parts of the world as well.

Conclusions

A new approach to use ground-based observations of PM together with a suite of remote 

sensing and meteorological data products training a machine-learning algorithm to estimate 

the daily distributions of PM2.5 has been demonstrated. This new PM2.5 daily global data 

product reproduces global observations and spans an unprecedented 16 years from 1997 to 

the present. The correlation coefficient for each of the five training datasets is 0.96 or greater 

and the correlation coefficient for each of the independent validation datasets is 0.52 or 

greater. The quality varies slightly with satellite, with the best fits obtained from Terra data, 

followed by Aqua and SeaWIFS. In all cases the shape of PM2.5 data product reproduces the 

observations between the 25th and 75th quantiles. The machine-learning PM2.5 data product 

is useful for human health studies as it resolves both spatial and temporal variability.
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Fig. 1. 
Map showing the 8,329 PM2.5 measurement site locations from 55 countries studied 1997–

2014. Black squares show sites, where measurements were made against the background 

colour scale of global topography and bathymetry. North America, Europe and Asia have the 

greatest density of sites but there are also southern hemisphere sites in South America, South 

Africa, Australia and New Zealand.
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Fig. 2. 
Temporal (left) and spatial distribution (right) of the training data. The temporal range is 

different for each instrument and algorithm combination. The size of the symbols in the 

panels to the right is proportional to the PM2.5 abundance.
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Fig. 3. 
Scatter diagrams showing the hourly average PM2.5 abundance. PM2.5 load in μg/m3 

on the x-axis and the machine-learning estimate (or fit) on the y-axis. The associated 

probability density function is also shown along each axis. The title of each plot shows the 

MODIS product used, the correlation coefficient for the training dataset (Rt), the correlation 

coefficient for the independent validation dataset (the 5% random selection of data left 

out of the training data set for independent validation - Rv and the sample size (n)). The 

blue circles represent the data used in the training and the red squares the independent 

validation dataset. The table insert gives the correlation coefficients in descending order of 

the correlation coefficient for the independent validation dataset.
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Fig. 4. 
Quintile-quintile diagrams for the independent validation data showing the observed 

quintiles of in-situ hourly average PM2.5 abundance. PM2.5 abundance in μg/m3 on the 

x-axis and the machine-learning estimated quintiles on the y-axis. The blue circles represent 

the data used in the training and the red squares the independent validation dataset. The table 

insert gives the correlation coefficients in descending order for the independent validation 

dataset. Every percentile between 1 and 100 plotted.
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Fig. 5. 
Taylor diagrams quantify the similarity between the fit and observations and the amplitude 

of their variations, i.e. the similarity between fit and observations based on the correlation 

coefficient and the centred RMS difference on the one hand, and the amplitude of their 

variations using the standard deviation on the other. In each case, the observations are 

denoted by point A on the x-axis. The green contours around A show the centred RMS 

differences between fit and observations. The radial distance of a point from the origin is 

proportional to the amplitude of variation quantified by the standard deviation. Points lying 

on a radial arc, at the same distance from the origin as point A, have the same standard 

deviation indicating that the simulated variations have the correct amplitude.

Lary et al. Page 24

Geospat Health. Author manuscript; available in PMC 2023 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Ensemble training errors in μg/m3 for the Aqua Standard machine-learning PM2.5 estimates 

(a), and the Aqua Deep Blue machine-learning PM2.5 estimates (b). The blue lines show 

the RMS error evaluated for the training dataset, and the red lines the RMS error for the 

independent validation dataset.
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Fig. 7. 
The global average of the surface PM2.5 abundance of the 5,874 daily estimates from August 

1 1997 to August 31 2013 (upper panel) with the estimated uncertainty (lower panel). 

The surface load of PM2.5 is expressed in μg/m3 with the observations for those locations, 

for which we have both a machine-learning estimate of the surface PM2.5 abundance and 

an observation for at least one third of the 5,874, overlaid as colour-filled circles. The 

agreement between the machine-learning estimate and the in situ observations is well within 

the estimated uncertainty shown in the lower panel.
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Fig. 8. 
The average of the surface PM2.5 abundance of the 5,874 daily estimates from August 1, 

1997 to August 31 2013 in μg/m3 for the world’s inhabited continents. Particularly high 

levels of PM2.5 are found in Muleg Municipality close to Guerrero Negro (A); the Sonoran 

Desert (B); Los Angeles (C); Central Valley in California (D); Great Salt Lake Desert, Utah 

(E); Mexico City (F); the Chihuahuan and the Big Bend deserts (G); Ohio River Valley (H);. 

Piura Desert (I); coast from Andean Altiplano Basin to Neuquen Basin (J); Amazon area, 

Bolivia (K); Bodelle depression in Chad (L); south of Congo River (M); coastal Somalia 

(N); Moscow (O); Po Valley (P); Lake Eyre (Q); Strzelecki Desert (R); Aral Sea (S) Ganges 
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Valley (T); Taklimakan Desert (U); Sichuan Basin (V); and the region from Beijing to 

Guangxi in China (W).
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