
Abstract. Network meta-analysis (NMA) as the quantification
of pairwise meta-analysis in a network format has been of
particular interest to medical researchers in recent years. As a
powerful tool with which direct and indirect evidence from
multiple interventions can be synthesized simultaneously in the
study and design of clinical trials, NMA enables inferences to
be drawn about the relative effect of drugs that have never
been compared. In this way, NMA provides information on the
hierarchy of competing interventions for a given disease
concerning clinical effectiveness, thus giving clinicians a
comprehensive picture for decision-making and potential
avoidance of additional costs. However, estimates of treatment
effects derived from the results of network meta-analyses
should be interpreted with due consideration of their
uncertainty, because simple scores or treatment probabilities
may be misleading. This is particularly true where, given the
complexity of the evidence, there is a serious risk of
misinterpretation of information from aggregated data sets. For
these reasons, NMA should be performed and interpreted by
both expert clinicians and experienced statisticians, while a

more comprehensive search of the literature and a more careful
evaluation of the body of evidence can maximize the
transparency of the NMA and potentially avoid errors in its
interpretation. This review provides the key concepts as well
as the challenges we face when studying a network meta-
analysis of clinical trials.

Meta-analysis is a highly recognized scientific discipline
capable of providing high-quality evidence in medical
research, particularly in clinical oncology (1-3). The main
goal of a meta-analysis is to provide a definitive answer to
the fundamental clinical research question about which
treatment is most effective when it has been evaluated by
multiple studies but with inconsistent results (4). In
particular, the purpose of meta-analysis steps in clinical
trials, as in any intervention study in general, is to calculate
the true effect size of a specific treatment, that is, the same
type of intervention compared with similar control groups.
Therefore, it is possible to assess whether a particular type
of treatment is effective. For the strategy followed in
randomized controlled trials (RCTs), pairwise meta-analysis
is a well-known statistical tool for synthesizing evidence
from multiple trials but refers only to the relative
effectiveness of two specific interventions. Therefore, the
utility of pairwise meta-analyses is very limited in medical
reality. Because there are usually many competing
interventions for a given disease, studies related to some of
the pairwise comparisons may be missing. Only a small
percentage of these have been examined in head-to-head
studies. For these reasons, needs have led to the development
of network meta-analysis (5-7) (NMA), which is also called
mixed treatment comparisons (8-11) (MTC) and may provide
more accurate estimates of treatment effects than a pairwise
meta-analysis (12). Especially when comparisons between
important treatments are missing (13), NMA may be a more
useful technique, as it is used to compare multiple treatments
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simultaneously in a statistical study, whereby combining
direct and indirect evidence in a network of randomized
controlled trials (RCTSs) (13-16), by providing a more
complete picture to clinicians and thus enabling them to
more clearly ‘rank’ treatments using summary results. This
is achieved by assessing a composite (mixed) effect size as
the weighted average of these direct and indirect
components, which then allows competing interventions to
be ordered more clearly according to their relative
effectiveness, even if they have not been compared in a
single trial (17, 18).

In recent years this statistical approach has matured as a
technique (19, 20), where models are available for raw data
that produce different aggregated outcome measures, using
both frequentist and Bayesian models through statistical
software packages (16). Especially in the last decade, many
applications have been published (21, 22), as there are
methodological developments in the subject of NMA. The
study of the concept of NMA came to the fore to ‘open wider
horizons’ for clinicians, by drawing information from the
evaluation of a connected network of studies comparing the
results of several interventions simultaneously (23). This
approach has gained great popularity among clinicians and
decision-makers because the costs involved in the development
of new or unnecessary clinical studies may be reduced.

The study of an NMA model during the approval process
of a drug can make a decisive contribution to the design of
a clinical trial by giving accurate information about both the
competitive picture and the corresponding evidence so that
the information collected can help to ensure that the clinical
trial design is the best possible to receive strong support.
Consequently, the NMA is a very useful tool for evaluating
the comparative effectiveness of different treatments
commonly used in clinical practice, provided, however, that
appropriate care is taken in the interpretation of the concepts
that characterize it so that the results are not biased or
bulging (24). Although this technique is increasingly used by
biomedical researchers, it has created several challenges and
pitfalls that deserve careful consideration, especially since
this technique cultivates all the hypotheses of pairwise meta-
analysis but with greater complexity due to the multitude of
comparisons involved. Moreover, despite the wider
acceptance of NMA, there are concerns about the validity of
its findings (25). However, as NMA remains a hot research
topic to this day, the purpose of this review is to examine the
key concepts underlying it, focusing on its risks and benefits,
and outlining relevant emerging issues and concerns.

Network Geometry

In clinical trials it is known that for n treatments in NMA the
maximum number of designs (i.e. each combination of
treatments within a study) is 2n-n-1, while for each multi-

arm study, there are (n¦2)=n(n-1)/2 comparisons including all
possible unique comparisons, even if they are not observed
in clinical trials or a pairwise meta-analysis (Figure 1),
which would lead to a fully connected network. However,
some of the comparisons predicted by the combinatorial
formula will be ineligible due to protocol compliance or post
hoc limitations (26).

The most important parameter in the utility of a treatment
network before relevant data analysis is the assessment of its
geometry (27-29), showing which interventions have been
directly compared in RCTs and which can only be indirectly
compared. In particular, the geometry of the network allows
one to understand how many choices there are for each
treatment, whether or not certain types of comparisons have
been avoided, and whether there are particular patterns
among the possible choices of the comparators. However, a
network can ‘mutate’ over time as more tests are carried out,
thus modifying its geometry which must be studied at each
evolving step.

NMA Assumptions

NMA requires the same steps as a conventional meta-analysis
but is graphically represented with a network, thus providing
direct information about treatments that can be compared
with each other and identifying all interventions linked to a
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Figure 1. Venn Diagram resulting from overlapping comparisons of
network meta-analyses (from the binomial formula), pairwise
comparisons (from network diagrams), and trial comparisons (from
study-based registry).



common comparator (the linking treatment). For example,
two different treatments have been compared with a placebo
in different trials. An NMA allows a hypothesis test to be
created that compares these active treatments to each other
based on their effectiveness against a common comparator
(usually a placebo), thus providing ‘indirect’ evidence. These
indirect comparisons provide the opportunity to fill the
knowledge gaps of efficacy comparisons of existing
treatments, thereby providing a more comprehensive
understanding of the multitude of treatment options for the
clinician. In short, the network estimate is an aggregate result
of the direct and indirect evidence for a given comparison or
the indirect evidence if no direct evidence is available. Then,
once all the treatments in the existing network have been
compared, there are different methods for ranking (30-33) the
treatments in terms of their net effectiveness.

The main objective of NMA is to examine and statistically
validate the effects of each treatment by evaluating and
analyzing three or more interventions/treatments using both
direct and indirect evidence. Therefore, basic assumptions
such as transitivity, consistency, and homogeneity of direct
evidence should be satisfied for performing NMA to be
valid. More specifically, these assumptions should be
evaluated with statistical tests (34). However, these
methodological aspects, although poorly understood, are
nevertheless key concepts for understanding a network meta-
analysis (35, 36). For this reason, we will explain the basic
principles governing these assumptions.

The Concepts of Transitivity, Consistency, and
Heterogeneity in ΝΜΑ

Transitivity (37) is the composition of studies that makes a
direct comparison between 2 meta-analytic estimates A vs. C
and B vs. C meaningful when the studies are similar in
important clinical characteristics that influence the relevant
treatment effects (9) (effect modifiers, i.e., characteristics
that influence the relevant outcomes of a clinical
intervention) which need not be identical and therefore can
be examined by comparing the distribution of potential effect
modifiers across the different comparisons (38). Indirect
information on the relative effect of 2 interventions will be
considered valid if the studies and comparisons in the
network do not differ in terms of the distribution of the
various effect modifiers (the intervention effects are
transitive). A valid indirect comparison (such as AB) requires
both AC and BC studies to be similar in terms of the
distribution of these characteristics, and only then will the
assumption of transitivity apply. Then the indirect
comparison (AB) is calculated by subtracting BC from AC
as defined by the formula (20, 39): 

where θ denotes the observed estimates of treatment effects in
terms such as odds ratios (OR), mean difference (MD), etc. In
oncology, time-to-event data (40) are used where the hazard
ratio (HR) (41) is taken as the necessary measure to interpret
treatment efficacy. The HR is calculated using Cox regression
models (42) in the survival analysis and indicates the relative
probability of the event (e.g., death). Transitivity, although is
an essentially incalculable hypothesis, nevertheless, its validity
can be assessed by clinical and epidemiological methods (34),
and suitable models have been found through which, with
suitable modifications, its valid hypothesis can be ensured
(43). However, if the clinical characteristics are different (e.g.,
different patient populations), then the transitivity assumption
is violated, so the estimate of the indirect AB comparison is
invalid (44, 45). Furthermore, detecting the absence of
transitivity can often be difficult because sufficient details
published in clinical trials are not always available to allow a
detailed assessment (46).

The transitivity translated into statistical terms (36) is
essentially the consistency (or coherence) and occurs when the
above abstraction equation is supported by the corresponding
data, but it can only be evaluated when there is a loop in the
evidence network, that is when there is direct and indirect
evidence for a specific comparison of interventions. The basic
assumption underlying the validity of indirect and mixed
comparisons is that there are no significant differences
between trials making different comparisons in addition to the
treatments already compared. So, an area that remains open
and is one of the biggest challenges in NMA is inconsistency
(36, 44, 47) which generally occurs when direct and indirect
evidence diverge (37) . 

More specifically, the inconsistency may arise from the
characteristics of the studies due to their different design or
when the estimates of the size of the direct and indirect
effects differ (48).

The magnitude of inconsistency in an NMA can be
statistically calculated by comparing direct and indirect
summative effects in predetermined loops (15, 49) or a network
by fitting models that allow and disallow inconsistency (50,
51). There are several methods for measuring inconsistency
when suspected (48), such as the Akaike (52) and Deviance
(53) information criteria for assessing the goodness of fit of
models in frequentist/Bayesian approaches to NMA or meta-
regression models (50). Also, several methods for detecting
inconsistency in an RCT network include the inconsistency
parameter approach (48) and the net heat graphical approach
(54, 55). ‘Node splitting’ model methods (56-58) have been
reported too in the literature to assess inconsistency in NMA,
with any direct comparison excluded from the network and
then calculating the difference between these direct and indirect
components from the network, while appropriate decision rules
have been defined to select only those comparisons belonging
to potentially inconsistent loops in the network (57). As
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mentioned earlier, inconsistency exists when discrepancies
between direct and indirect estimates exist, therefore
transitivity is a common cause of inconsistency.

Another very important advantage of ΝΜΑ is its ability to
investigate whether there is homogeneity or heterogeneity
between the results from different clinical trials in each of the
pairwise comparisons it involves, and therefore, assessment
of heterogeneity in the results of different trials in each of the
pairwise comparisons is important and should be considered.
There are many valuable reviews on assessing and dealing
with heterogeneity (59, 60) in a network. Heterogeneity in a
meta-analysis is usually assessed with Cochran’s Q statistic
(61-64) and in particular with Cochran’s generalized Q
statistic for multivariate meta-analyses, where it can be used
in the context of NMA to quantify heterogeneity across the
network, both within trials and between trials (the latter is
known as inconsistency). Although heterogeneity variance is
often the most difficult parameter to estimate, several
alternative approaches to estimating this variance have been
explored in NMA studies (65) in recent years such as the use
of the I2 statistic (62, 66-68) (proportion description between-
study variation) or meta-regression models (69, 70) are
mainly used to reduce heterogeneity (and inconsistency)
between RCTs in the network. Measures have also been
considered to assess its confidence in the results of an NMA,
where the impact of its variability on the corresponding
clinical decisions is analyzed (71). In the special case when
variances in between-study heterogeneity are estimated with
considerable imprecision (because the data are sparse),
including external evidence usually improves the conclusions
(72). However, as the power and precision of indirect
comparisons included in the NMA study depend on sample
size and extensive statistical information, further
improvements in methodology should be made.

Ranking Treatments in NMA

The results of the studies are closely associated with
uncertainty, and consequently, we cannot be sure that the
treatment is the most effective. But we can determine the

probability of a particular outcome about which treatment is
best. With Bayesian thinking for each treatment, the
probability of having a particular rank is derived from the
posterior distributions of all possible treatments. The
treatments are then ranked by the area under the cumulative
rank curve SUCRA (30), which is a quantification of the
overall rank and presents a unique number associated with
each treatment. The higher the SUCRA value and the closer
to 100%, the higher the probability that a treatment is close
to the first place, while the opposite is true when this value
is close to 0. To compare treatments in an NMA, a frequent
analog of SUCRA -by considering the frequentist
perspective- called P-score is also used. Both concepts allow
the ranking of treatments on a continuous scale of 0-1 (73),
while rankograms represent these values graphically (74).

Bayesian Statistical Inference

In addition to frequentist inference which is arguably more
commonly used in most research fields, Bayesian statistics
(75, 76) is another very important statistical inference tool,
having as its main advantage a framework that properly
accounts for uncertainty in variance heterogeneity (77), and at
the same time is more flexible as it can handle problems that
frequency techniques cannot, such as handling missing data.
In addition, it is considered more robust because it gives more
precise effect estimates with smaller credible intervals, thus
implying that it should not be considered as a competitive
method of frequentist statistical analysis, but as an additional
tool that contributes to the success of a more significant result.

Bayesian statistics treat the unknown quantities as random
variables and assign a prior probability distribution to each of
them, whereby specifying a joint probability distribution for
the data (i.e., a likelihood) we get a full probability model for
the set of observable and unobservable quantities. In a few
words, in Bayesian inference, prior beliefs (represented by
prior distributions) are combined with existing data to arrive
at a posterior distribution (Figure 2). So let us assume that the
observed data are represented by y and the unknown
parameters by θ. Then to have relevant inference for we use
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Figure 2. Illustration of Bayes’ theorem applied to medical research where data, in the form of symptoms, is used to determine the likelihood of
those symptoms if the patient has a particular disease. Bayes’ rule combines this probability with prior knowledge to determine the posterior
probability that the patient has the disease, given the observed symptoms.



Bayes’ theorem (78, 79) to get a posterior distribution for
making predictions about future events, i.e., the joint
distribution of all the parametric models that depend on the
observed data: p(θ|y)∝p(θ)p(y|θ). Here p(y|θ) is the
conditional probability of the data given the model parameters
which is known as the likelihood function, while the term p(θ)
is the probability of certain model parameter values in the
population which is the prior distribution. Therefore, the
posterior distribution p(θ|y) is proportional to the likelihood
function times the prior distribution (80, 81). 

Methodology

Bayesian meta-analysis is mainly based on the hierarchical
Bayes model, with the basic principles of this model being
very similar to the ordinary random-effects model. When
fitting Bayesian meta-analysis models, it is critical to test the
model for whether it included sufficient iterations for
convergence, as well as to perform sensitivity analyses with
different prior standards to assess the effect on the overall
simulation results. The Markov Chain Monte Carlo (MCMC)
algorithm (82) that is used in Bayesian probabilistic models
must have found the optimal solution (due to convergence);
otherwise, more iterations will have to occur. MCMC
simulation plays a very important role here because it allows

the estimation of the posterior distributions of the parameters
for the results of the NMA (83). 

Software Options for Fitting NMA Models and
Assessing Inconsistency

The most popular software R (84) packages accessible and
currently available for Bayesian and frequentist inference in
NMA are included in Table I. Details on how data is
analyzed, its input options, and the corresponding statistical
models can be found in each package’s respective manuals,
which are also mentioned in the references. However,
because most of these packages require strong contact with
statistical programming for their use (existence of routines
for performing NMA), there are also toolkits based on
simple and standard instructions, intended to present the
results using only the graphs of the analyses (85).

An Example of a Network Meta-analysis in Diabetes

The objective of the NMA that was applied in Diabetes disease
was considered as an example for the estimation of the relative
effects on HbA1c (glycated hemoglobin) change to a baseline
sulfonylurea therapy in patients with type 2 diabetes, where the
mean HbA1c change from baseline was used in the study and
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Table I. Summary of the most important R software packages for reporting and interpretation of results regarding the Bayesian and Frequentist
inferences in network meta-analyses.

RJags                   R package provides an interface from R to the Just Another Gibbs Sampler (JAGS) (57, 86, 87) library for Bayesian data analysis 
                            (88, 89).

BUGSnet             R package (Bayesian inference using Gibbs sampling to conduct network meta-analysis) (90) where Bayesian analyses are
conducted with JAGS using generalized linear models and accounting for heterogeneity and inconsistency, combined with the
surface under the cumulative ranking curve (SUCRA). 

gemtc                  R package which incorporates evidence of multiple treatments by fitting generalized linear models under Bayesian statistics
assumptions using JAGS. Also, it includes methods to assess heterogeneity and inconsistency, and several standard visualizations
(8, 57, 83, 87, 91). In this way, NMA models are built using MCMC simulations based on our choice and using in parallel: JAGS
called by the rjags R package, OpenBUGS (92) using the BRugs R package (93) or the WinBUGS (80) software called by the
R2WinBUGS R package (94). 

multinma             R package (95) that includes functions for setting up NMA and multilevel meta-regression (ML-NMR) models (96, 97). More
specifically a suite of tools is used for performing ML-NMR and NMA with individual patient data (IPD) (98, 99), aggregate data
(AD), or mixtures of both (100, 101). A range of results is thus obtained by performing model fitting estimated in a Bayesian
framework using the Stan sampler (102, 103).

Stan                     R package (103), a probabilistic programming language for specifying statistical models, defines a log-likelihood function on
parameters that depend on specified data and constants that provide Bayesian inference for continuous variable models. These
models operate through MCMC methods, such as the No-U-Turn sampler (104), which is an adaptive form of Hamiltonian Monte
Carlo sampling. Maximum likelihood (penalized) estimates are calculated using optimization methods, such as the Broyden-
Fletcher-Goldfarb-Shanno limited memory algorithm (105).

MCMCpack        R package (106) as a computational tool that uses MCMC methods to perform Bayesian inference so that we can fit innovative
models of our choosing.

netmeta                R package (107-109) which provides frequentist methods for network meta-analysis. 
pcnetmeta            R package which provides functions for arm-based NMA (110, 111).
Runjags               R package for MCMC models via JAGS evaluating their performance with drop-k validation and providing additional distributions 
                            including the Pareto family (112).



measurements of HbA1c were after a follow-up ranging 3-12
months (113). The studies contained in this data set compared
different treatments for blood glucose control in patients with
diabetes. The researchers selected 26 studies which consisted
of a total of 6,646 patients and 10 drug groups that were
acarbose (acar), benfluorex (benf), metformin (metf), miglitol
(migl), pioglitazone (piog), placebo (plac), rosiglitazone (rosi),
sitagliptin (sita), sulfonylurea alone (sulf), and vildagliptin
(vild). In the corresponding network, there were 15 different
designs (i.e., the set of treatments compared in one study). The
data recorded the treatment effect (TE), where the effect was
introduced here as MD, the standard error of the effect (seTE),
the names of the treatments, and finally the name of each study.
The effects measure was the MD in blood plasma glucose
concentration, while the fixed effects model was used. The
visualization of the network (Figure 3) was done via the
netmeta R statistical package (108, 114). Based on the ranking
of treatments (rankogram) in the network with the P-score (73)
measurement, the top 3 interventions are rosiglitazone
treatment which seems to be the most effective (1P-
score=0.978), metformin (2P-score=0.851), and pioglitazone
(3P-score=0.768), while the corresponding SUCRA values
have very little deviations (rosiglitazone=0.983,
metformin=0.852, and pioglitazone=0.766) (108). However,
clinicians and decision-makers should not consider an
intervention to be best just because it comes first unless the

quality of the evidence used and the confidence in the NMA
results are considered (30).

Discussion

In general, NMA can provide increased statistical power
when normal network connectivity is possible and sample
sizes are sufficient. Mathematical approaches exist to
‘measure’ network connectivity, but raw data are required to
calculate these indicators (39, 115). However, inappropriate
use of NMA can lead to erroneous results, such as when there
is low network connectivity and therefore low statistical
power (1, 44, 116) or when the results are derived from
indirect data which, although they remain observations, are
nevertheless not interpreted with due care (7, 14). Regarding
indirect treatment comparisons, there is disagreement among
researchers about the validity of their use in decision-making
and especially when direct treatment comparisons are also
available (117-119). More specifically, it is argued that
decisions should not be made based on rank probabilities
alone (especially when treatments are not directly compared)
as they may be incompletely informed (120), but also because
estimates of rank probabilities are extremely sensitive as they
are influenced by factors such as an unequal number of
studies per comparison in the network, sample size of
individual studies, overall network configuration, and effect
sizes between treatments. For example, an unequal number
of studies per comparison may lead to biased (121) estimates
of treatment rank probabilities for each network considered
and thus to an incorrect NMA analysis, as a result of
increased variability in the precision of treatment effect
estimates (122). For these reasons, it is necessary to provide
detailed reports on the strategy researchers intend to follow
to assess transitivity and consistency and clarify their
calculation methods. Clinicians should also always be
cautious about effect sizes and treatment rankings because a
good ranking does not necessarily mean a clinically important
effect size, and on the other hand, treatment rankings derived
from NMAs can often show some degree of inaccuracy (123).
This is because their uncertainty can be ignored and so the
rankings give the illusion that some interventions are better
than others when the relative effects are not different from
zero beyond chance (28). However, even so, NMA has
serious advantages over pairwise meta-analyses. Especially
when there are cycles of evidence (loops), the Bayesian NMA
approach has been shown to significantly improve effect
estimates compared to separate pairwise meta-analyses (124).

Another equally important aspect that should be
considered before constructing an NMA and could help
researchers to further improve the results is, as mentioned
above, the exploring of the geometry of the network, and by
extension the number of nodes (treatments) that will be
included in the network, because a decision maker may not
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Figure 3. The treatment network for meta-analysis of multiple
interventions for investigating efficacy in Diabetes. Nodes represent the
treatments in the network and lines represent relative direct
comparisons between the treatments. Nodes are weighted by the number
of patients receiving each treatment relative to the number of
participants in all studies, while the thickness of the line grows
proportionally to the number of studies referred to in each comparison.



be interested in all pairwise comparisons of the network.
Thus, because the therapeutic effect between two active
treatments can often be more influential in decision-making
than the relative effects of all active treatments versus
placebo, researchers could modify the network by using only
a subset of available treatments, namely those that are
considered clinically more relevant (36) (the most effective
treatments). Otherwise, inclusion in the main studies of data
comparing treatments without clinical interest provides
additional indirect evidence of clinical interest, which may
increase the precision of the estimates (9, 125), but may also
lead to additional inconsistencies (126). In network studies,
it is common to exclude trials and specific comparators
based on a variety of different criteria, because choosing to
include all possible interventions ever evaluated in an RCT
gives unclear and discouraging conclusions. After all, some
trials deviate significantly from others and it is not advisable
to combine them in NMA (trial-level outliers), where studies
suggest corresponding Bayesian outlier detection measures
(127). However, deriving treatments from an NMA can
significantly change the effect estimates and thus the
probability ranking of the most appropriate treatment. Well-
connected treatments appear to have the most influence
(128). Consequently, the greatest impact on the results occurs
when well-connected nodes are removed and so the most
evaluated treatments available for a condition must be
considered necessary for a network to be valid. Special care
is required when it comes to exclusions of potential nodes,
and decisions on eligibility criteria must be carefully
justified, because small “mutations” in the geometry of the
NMA have a direct impact on the analysis and in turn affect
the decision-making process. That is why the ‘node-making’
process has been identified as one of the most important
problems in NMA, where different ways of generating
treatment nodes could significantly affect the results (129-
131). But in addition to network size, it is proposed to
incorporate the description of specific graph theory statistical
measures to complement graph information (132, 133).
Particularly for distinguishing similar NMAs, sensitivity
analysis is critical to perform when ‘confounding’ is
identified in the initial review to infer the absence of
heterogeneity, especially when the studies are few (134).

An also very strong reason that the definition of the nodes
is critical, is that the interventions are combined with more
than one treatment. It is common for researchers to tend to
combine treatment arms, where treatments with different
characteristics or patients with different subtypes that cannot
belong to the same group are merged as one treatment at a
node. This has the goal of increasing the statistical power of
the network or connecting the network (1), thus introducing
bias into the network (135, 136). The simplest approach
would be to analyze each combination as a different node in
the NMA. Furthermore, evidence has shown that meta-

analysis across multiple smaller RCTs is more valuable than
one large RCT (137). As there are always confounding
factors in studies that can affect the results, the variation in
treatment effect between trials gives a better estimate of the
mean effect than an RCT. A simulation study showed that
when treatment effects are truly additive, the ‘conventional’
NMA model does not outperform them (138). 

A notable venture in NMA that has also taken place very
recently and is steadily gaining ground is the incorporation of
non-randomized data to assess relative treatment effects,
especially in cases with limited randomized data to avoid
disconnected network phenomena. By incorporating real-world
evidence from non-randomized studies can confirm findings
from RCTs, thereby increasing the accuracy of results and
empowering the decision-making process (139). Because
quality meta-analysis is highly dependent on the availability of
individual study data, the use of IPD in NMA is increasingly
recognized in the scientific community today. More
specifically, the benefits of integrating various proportions of
individual patient data (IPD) studies into one NMA and
aggregate data (AD) and IPD into the same NMA have been
explored. This is because standard NMA methods combine
aggregate data from multiple studies, assuming that effect
modifiers are balanced across populations (95). New methods
such as population fitting methods relax this assumption. One
such approach is to analyze IPD from each study in a meta-
regression model. IPD-based NMA can lead to increased
precision of estimated treatment effects. Additionally, it can
help improve network coherence and account for heterogeneity
across studies by adjusting participant-level effect modifiers
and adopting more advanced models to deal with missing
response data. Although the availability of such data is not
always feasible, an increased IPD rate has been shown to lead
to more accurate estimates for most models (140, 141) and
these methods need further evaluation. A typical example is the
multilevel network meta-regression (ML-NMR) method as the
most recent application, which in this case, is the generalization
of NMA for synthesizing data from a mixture of IPD and AD
studies that provide estimates for a population decision target
(95, 96, 103, 142). This use of meta-analysis, which is also the
future of population adjustment, including individual studies,
can be extended to areas such as prognostic models and
prognostic factors that are particularly important in medical
disciplines such as oncology. 

Conclusion

As NMA becomes more and more popular and therefore
more influential in the scientific community, familiarity with
statistical network concepts will be a one-way street as the
demands for transparency and more reliable synthesis of the
original data increase. Enriching these data belonging to
databases for meta-analysis combined with the opinion of
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experienced researchers can improve the construction of
more reliable predictive models for the desired outcome. But
this should be done on the assumption that the construction
and study of an NMA should always be based on detailed
protocols, as this is the only way to protect against decisions
such as the selective use of circumstantial evidence. In any
case, NMA as a statistical tool is undoubtedly very useful for
evaluating the comparative results of multiple competing
interventions in clinical practice and is the ‘next step’ in
meta-analysis for further health technology development.
However, more specialized training is needed to ensure that
the basic methodologies underlying NMAs are understood
by health researchers to maximize their ability to interpret
and validate these results.
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