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Extracellular vesicles (EVs) are gaining increasing attention for
diagnostic and therapeutic applications in various diseases.
These natural nanoparticles benefit from favorable safety pro-
files and unique biodistribution capabilities, rendering them
attractive drug-delivery modalities over synthetic analogs.
However, the widespread use of EVs is limited by technological
shortcomings and biological knowledge gaps that fail to un-
ravel their heterogeneity. An in-depth understanding of their
biogenesis is crucial to unlocking their full therapeutic poten-
tial. Here, we explore how knowledge about EV biogenesis
can be exploited for EV bioengineering to load therapeutic
protein or nucleic acid cargos into or onto EVs. We summarize
more than 75 articles and discuss their findings on the forma-
tion and composition of exosomes and microvesicles, revealing
multiple pathways that may be stimulation and/or cargo
dependent. Our analysis further identifies key regulators of
natural EV cargo loading and we discuss how this knowledge
is integrated to develop engineered EV biotherapeutics.
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INTRODUCTION
Extracellular vesicles (EVs) are natural membrane-enclosed nanopar-
ticles secreted by all cells. They are important mediators of intercel-
lular communication that convey messages to surrounding or distant
cells in the form of proteins, lipids, nucleic acids,1,2 and even organ-
elles.3–6 Thus, EVs exert not only physiological but also pathological
functions, which renders them attractive therapeutic targets.7,8 Corre-
spondingly, they serve as diagnostic biomarkers, mainly for cancer
and neurodegenerative diseases.8 Last, owing to their unique
biodistribution capabilities, versatility, and immune tolerance, EVs
are being increasingly exploited as drug-delivery vehicles.9 However,
their widespread application is partially limited by technical chal-
lenges in addressing EV heterogeneity.8 These issues encompass
things from the choice of producer cell to the methods of EV isolation
and characterization.9,10 Another similar concern sometimes is a lack
of robust cargo loading strategies that rely on the biogenesis or
composition of EVs.

Classically, EVs are divided into three types of vesicles based on their
origin: (1) exosomes (50–200 nm), formed in the endolysosomal
system11 or at the plasma membrane12; (2) microvesicles or ecto-
Mo
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somes (0.1–1 mm), budding directly from the plasma membrane13–15;
and (3) apoptotic bodies (1–5 mm) generated by dying cells.16 Since
the last are recognized and removed by macrophages,17 it is mainly
exosomes and microvesicles that are of therapeutic interest and
thus will be the focus of this review. To date, the field has struggled
to physically separate these two classes of EVs because they overlap
in size and composition. They even share commonalities in their
biogenesis pathways, which complicates the definition of mutually
exclusive properties for characterization.18 However, owing to tech-
nological advancements, increasingly more is known about the
mechanisms that govern their biogenesis and determine their compo-
sition. In addition, understanding the underlying processes is crucial
for harnessing them as biotherapeutics.
BIOGENESIS OF EVs
The biogenesis of EVs relies on intricate processes that are mediated
by a complex interplay of signaling molecules and regulators (Fig-
ure 1). In Table 1 we compare 77 studies focusing on the regulators
of different steps in EV biogenesis. For each study, we list the EV
regulator of interest along with the examined producer cell types
and, if relevant, applied stimuli. Moreover, we state the method of
intervention with the EV regulator, the investigated EV population,
and, ultimately, the impact the intervention had on EV biogenesis
as measured predominantly by EV production (Table 1). The impli-
cations of the findings of these studies are discussed in more detail
below. The overarching goal of this analysis was to provide a compre-
hensive overview of known regulators of EV biogenesis and, eventu-
ally, their putative role in EV bioengineering as discussed in the later
sections of this review.
EXOSOMES
Only recently, Pegtel and Gould challenged the common notion that
exosome-sized vesicles stem primarily from the endolysosomal
system.11 Indeed, Fordjour et al. showed experimentally that efficient
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Figure 1. EV biogenesis and its regulators

The shedding of microvesicles from the plasma membrane is controlled by small GTPases, ceramide, or ARRDC1. Exosome biogenesis is a more complex process taking

place directly at the plasma membrane or in the endolysosomal system. Cargo is sorted into endosomes from the plasma membrane or the TGN. The early endosome then

matures and starts forming ILVs, thereby becoming anMVB. ILV formation can be regulated by the ESCRTmachinery, tetraspanins, syndecan-syntenin-ALIX, and ceramide.

(Top right) ESCRT machinery: HRS (subunit of ESCRT-0) recognizes ubiquitinated proteins and PtdIns3P, leading to the recruitment of ESCRT-I by binding of its TSG101

subunit to HRS. ESCRT-II then drives the invagination and ESCRT-III the scission of the membrane. Reuse of ESCRT-III is enabled by VPS4. (Bottom right) Syndecan-

syntenin-ALIX: syndecan recruits syntenin, which is regulated by ARF6 and PLD2. Subsequent interaction with ALIX promotes ILV formation, which is finalized by ESCRT-III

and VPS4. This pathway commonly involves tetraspanins. After their formation, MVBs can fuse with lysosomes for degradation, which is promoted by ubiquitination of

proteins, ISGylation of TSG101, and tetraspanin 6. ATGs, on the other hand, can facilitate MVB biogenesis. For secretion, MVBs are transported to the plasma membrane

with the help of cytoskeletal elements, molecular motors, and RABs. Ultimately, fusion with the plasma membrane leading to the release of exosomes is mediated by

SNAREs, small GTPases, and calcium. This figure was created using BioRender. ARF6, ADP ribosylation factor 6; ARRDC1, arrestin-domain-containing protein 1; ATG,

autophagy-related protein; ESCRT, endosomal sorting complexes required for transport; HRS, hepatocyte growth factor-regulated tyrosine kinase substrate; ILV, intra-

luminal vesicle; ISG, interferon-stimulated gene; MVB, multivesicular body; PLD2, phospholipase D2; PtdIns3P, phosphatidylinositol 3-phosphate; RAB, Ras-associated

binding protein; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TGN, trans-Golgi network; TSG101, tumor susceptibility gene 101; VPS4,

vacuolar protein sorting-associated protein 4.
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budding from exosomes can occur at the plasma membrane,12 which
was recently confirmed independently.57 Given the novelty of these
observations, pre-existing literature considered typically only endoly-
sosomal exosome biogenesis, which begins with the formation of
multivesicular bodies (MVBs), which are then transported to the
plasma membrane and, upon fusion, release exosomes into the
extracellular space (Figure 1).1 MVBs are formed during endosome
maturation, which is mediated by Ras-associated binding (RAB)
GTPases, particularly the conversion of RAB5 to RAB7 (Table 1).58–
60 During the transition from early to late endosomes, the limiting
membrane invaginates to give rise to intraluminal vesicles (ILVs).
Multiple drivers of this process have been identified, including the
endosomal sorting complex required for transport (ESCRT) machin-
ery (Table 1).61 This machinery consists of four subunits (ESCRT-0,
-I, -II, and -III) that act in succession. HRS, a component of ESCRT-
0, is the first to engage with the endosomal membrane, where it
interacts with ubiquitinated proteins62,63 and binds to phosphoinosi-
tide (PtdIns3P).64–66 Next, ESCRT-I is recruited by binding of
1232 Molecular Therapy Vol. 31 No 5 May 2023
its TSG101 subunit to HRS.67,68 ESCRT-II assembly follows, and
ESCRT-II, together with ESCRT-I, drives the invagination of the en-
dosomal membrane.69–71 Recruitment of ESCRT-III results in mem-
brane scission, thereby finalizing ILV formation.72,73 To enable reuse,
disassociation of ESCRT-III requires VPS4 (Figure 1).74–76 Impor-
tantly, depletion of the ESCRT machinery does not abolish exosome
production, demonstrating that MVBs can also be formed by other
means.77

Alternative processes for MVB formation have been proposed;
however, their cross talk and interdependence are still understudied.
Tetraspanins, particularly CD63, CD81, and CD9, have emerged as
key regulators of alternative MVB formation processes (Table 1).
They are involved in ILV formation by clustering together and
sequestering other proteins to form tetraspanin-enriched microdo-
mains.78,79 CD63, for instance, was found to compete with HRS in
ILV formation,24 implying that the production of tetraspanin-
containing exosomes does not require the canonical ESCRT
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Table 1. Regulators of EV biogenesis

Regulator Cell Intervention EVs studied Effect Reference

Exosomes

Endosome maturation

RAB5

MCF7
overexpression
(RAB5Q79L)

Bulk
Y EV secretion (syndecan,
CD63, syntenin, ALIX)

Baietti et al.19

mOli-neu + PLP
overexpression
(RAB5Q79L)

Bulk Y EV release of PLP Trajkovic et al.20

RAB7 MCF7 RNAi Bulk
Y EV secretion (syndecan,
CD63, syntenin)

Baietti et al.19

MVB formation

ESCRT machinery

ESCRT-0

- HRS

HeLa-CIITA RNAi CD63 (CD81+/MHCII+) Y EV production Colombo et al.21

stimulated mDCs RNAi Bulk Y EV production Tamai et al.22

mBMDCs RNAi Bulk Y EV production Tamai et al.22

SCC25-H1047R RNAi Bulk Y EV production Hoshino et al.23

HeLa RNAi N/A
[ MVB diameter

Edgar et al.24
Y ILVs per MVB

A431 RNAi N/A Y ILVs per MVB area Razi and Futter25

- STAM1 HeLa-CIITA RNAi CD63 (CD81+/MHCII+) Y EV production Colombo et al.21

ESCRT-I

- TSG101

HeLa-CIITA RNAi CD63 (CD81+/MHCII+) Y EV production Colombo et al.21

HeLa RNAi N/A
[ MVB diameter

Edgar et al.24
Y ILVs per MVB

A431 RNAi Na Y MVB formation Razi and Futter25

ESCRT-III

- CHMP6 HeLa GFP-CHMP4B RNAi bulk
Y EV proteins (CD9,
CD63, CD81, syntenin)

Larios et al.26

VPS4B

HeLa-CIITA RNAi CD63 (CD81+/MHCII+) [ EV production Colombo et al.21

HeLa
overexpression
(hVPS4E223Q)

N/A Y ILVs per MVB Sachse et al.27

Tetraspanins

CD82/CD9 HEK293T
overexpression
(CD82/CD9)

bulk
[ EV production;
EV b-catenin

Chairoungdua et al.28

CD9 HEK293 CD9�/�/- overexpression
(CD9YEVM)a

bulk Y EV protein (CD9) Fordjour et al.12

CD63

MNT-1 RNAi N/A Y ILVs per MVB van Niel et al.29

HEK293 KO bulk Y particles per cell Hurwitz et al.30

HEK293 CD63�/� overexpression
(CD63Y235A)

bulk [ EV protein (CD63) Fordjour et al.12

Syndecan-syntenin-ALIX

Syndecan MCF7 RNAi bulk Y EV production Baietti et al.19

Syntenin
MCF7 RNAi bulk Y EV production Baietti et al.19

MCF7 Overexpression bulk [ EV production Baietti et al.19

- ARF6

MCF7 RNAi bulk
Y EV proteins (syntenin,
ALIX, CD63, SDC1CTF)

Ghossoub et al.31

MCF7
overexpression
(ARF6T157N)

bulk
[ EV proteins (syntenin,
ALIX, CD63)

Ghossoub et al.31

(Continued on next page)
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Table 1. Continued

Regulator Cell Intervention EVs studied Effect Reference

– PLD2 MCF7 RNAi bulk
Y EV proteins (syntenin,
ALIX, CD63)

Ghossoub et al.31

ALIX

HeLa-CIITA RNAi CD63 (CD81+/MHCII+) [ MHCII on EVs Colombo et al.21

MCF7 RNAi bulk Y EV production Baietti et al.19

HeLa GFP-CHMP4B
overexpression
(ALIXDPRR)

bulk [ EV proteins (CD9, CD63, CD81) Larios et al.26

HeLa GFP-CHMP4B RNAi bulk
Y EV proteins (CD9, CD63,
CD81, syntenin)

Larios et al.26

Ceramide

nSMase2

mOli-neu + PLP
GW4869/spiroepoxide/
glutathione/RNAi

bulk Y EV release of PLP Trajkovic et al.20

HEK293T + CD82 GW4869 bulk Y EV proteins (flotillin, b-catenin) Chairoungdua et al.28

SCC25-H1047R GW4869 bulk Y EV production Hoshino et al.23

HEK293T GW4869/RNAi bulk

Y EV production

Leidal et al.32Y EV proteins (LC3,
SAFB, HNRNPK)

HeLa FLAG-RAB31Q65L GW4869 bulk
Y EV proteins (FLAG, EGFR,
FLOT1, FLOT2, CD9, CD81, CD63)

Wei et al.33

ATGs

ATG5 MEF, MDA-MB-231 KO bulk
Y EV production

Guo et al.34
Y EV proteins (Flotillin2, Tsg101)

ATG12-ATG3 MEF
overexpression
(ATG3K243R)

bulk
Y EV proteins (total; ALIX,
TSG101, GAPDH)

Murrow et al.35

Transport

Cortactin
SCC61 RNAi bulk

Y EV production

Sinha et al.36Y EV proteins (TSG101,
CD63, Flotillin1)

SCC61 Overexpression bulk [ EV production Sinha et al.36

RAB GTPases

RAB11 K562
overexpression
(RAB11S25N)

bulk
Y EV proteins (TfR, Lyn, Hsc70)

Savina et al.37
Y EV AChE activity

RAB35 mOli-neu + PLP
overexpression
(RAB35N120I),
RNAi

bulk Y EV release of PLP Hsu et al.38

RAB27A, RAB27B HeLa RNAi bulk

Y EV production

Ostrowski et al.39Y EV proteins (HLA-DR,
CD63, TSG101, HSC70)

RAB27A B16-F10,SK-Mel-28 RNAi bulk Y EV protein (total) Peinado et al.40

RAB27A TS/A, 4T1 RNAi bulk
Y EV proteins (total; ALIX,
HSC70, CD63, TSG101)

Bobrie et al.41

Fusion

VAMP7 K562
overexpression
(NT-VAMP7)

bulk
Y EV production

Fader et al.42
Y EV AChE activity

YKT6
HEK293 RNAi bulk Y EV proteins (WNT3A, CD81) Gross et al.43

A549 RNAi bulk Y EV protein (TSG101) Ruiz-Martinez et al.44

SNAP23

A549 RNAi bulk Y EV production Wei et al.45

HeLa + histamine +
CD63-pHluorin

RNAi CD63-pHluorin Y fusion activity Verweij et al.46

(Continued on next page)
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Table 1. Continued

Regulator Cell Intervention EVs studied Effect Reference

Syntaxin-4
HeLa + histamine +
CD63-pHluorin

RNAi CD63-pHluorin Y fusion activity Verweij et al.46

RAL1 4T1 RNAi bulk

Y EV production

Hyenne et al.47Y EV proteins (ALIX, CD63,
TSG101, HSC70)

RalA/B 4T1 RNAi bulk Y EV production Ghoroghi et al.48

Calcium K562 monensin bulk
[ EV protein (TfR, Hsc70)

Savina et al.49,50
[ EV AChE activity

Microvesicles

ARF6 LOXARF6-GTP overexpression
(ARF6Q67L)

bulk [ EV protein (total)
Muralidharan-
Chari et al.51

RhoA HeLa + EGF
overexpression
(RhoAF30L)

bulk
[ EV production

Li et al.52
[ GFP release in EVs

ARF1 MDA-MB-231 RNAi bulk
Y EV protein (total)

Schlienger et al.53
Y EV MMP9 activity

ASM

astrocytes imipramine bulk Y EV fluorescence Bianco et al.54

N9 r-SMase bulk [ EV fluorescence Bianco et al.54

RBCs amitriptyline Annexin V Y EV percentage Awojoodu et al.55

ARRDC1 HEK293T
overexpression
(ARRDC1-GFP)

bulk [ GFP release in EVs Nabhan et al.56

For each study, the producer cell type and, if relevant, any applied stimuli are mentioned. Moreover, the method of intervention, the investigated EV population, and the impact the
intervention had on EV biogenesis are stated. EVs were predominantly studied in bulk and only a few studies looked at specific subpopulations.
Regulators: ALIX, programmed cell death 6-interacting protein; ARF, ADP ribosylation factor; ARRDC1, arrestin-domain-containing protein 1; ASM, acid sphingomyelinase; ATG,
autophagy-related protein; CHMP, charged multivesicular body protein; ESCRT, endosomal sorting complexes required for transport; HRS, hepatocyte growth factor-regulated tyro-
sine kinase substrate; nSMase2, neutral sphingomyelinase 2; PLD, phospholipase D; RAB, Ras-associated binding protein; RAL, Ras-like protein; Rho, Ras homologous protein; SNAP,
synaptosomal-associated protein; STAM1, signal-transducing adaptor molecule 1; TSG101, tumor susceptibility gene 101; VAMP, vesicle-associated membrane protein; VPS4B, vacu-
olar protein sorting-associated protein 4B; YKT6, synaptobrevin homolog. Cells: MCF-7, human breast cancer cell line; 4T1, murine breast cancer cell line; A431, human epidermoid
squamous carcinoma cell line; B16-F10, murine melanoma cell line; CIITA, major histocompatibility complex class II transactivator; HEK, human embryonic kidney cell line; HeLa,
human cervical cancer cell line; K562, human myelogenous leukemia cell line; LOX, human melanoma cell line; mBMDCs, murine bone marrow-derived dendritic cells; MDA-MB-
231, human breast cancer cell line; mDCs, murine dendritic cells; MEF, mouse embryonic fibroblasts; mOli-neu, murine oligodendroglial precursor cell line; N9, microglial cell line;
RBCs, red blood cells; SCC, squamous cell carcinoma cell line; SK-MEL-28, human melanoma cell line; TS/A, murine mammary adenocarcinoma cell line. Others: Y, reduction; [,
increase; AChE, acetylcholinesterase; EGFR, epidermal growth factor receptor; FLOT, flotillin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HLA-DR, human leukocyte an-
tigen DR; HNRNPK, heterogeneous nuclear ribonucleoprotein K; HSC70, heat-shock 70 kDa protein; ILV, intraluminal vesicle; KO, knockout; LC3, microtubule-associated protein
1A/1B-light chain 3; Lyn, tyrosine-protein kinase; MHCII, major histocompatibility class II; MMP9, metalloproteinase 9; MV, microvesicle; MVB, multivesicular body; N/A, not appli-
cable; PLP, proteolipid protein; RNAi, RNA interference; r-SMase, recombinant sphingomyelinase; SAFB, scaffold-attachment factor B; SDC1CTF, syndecan-1 cytoplasmic fragment;
TfR, transferrin receptor; WNT3A, Wnt family member 3A.
aCD9 mutant that carries endosome-targeting signal.
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machinery.29,33 In fact, CD63 has been shown to regulate exosome
production,29,30 and the cone-like shape of CD9 has been proposed
to aid membrane curvature.80 However, increasing evidence suggests
that tetraspanin-dependent exosome biogenesis requires other regu-
lators, such as ALIX, ESCRT-III,26 or syntenin.33 This so-called syn-
decan-syntenin-ALIX pathway utilizes ESCRT-III and VPS4 but does
not require ESCRT-0 or ubiquitination.81 Instead, syndecan recruits
syntenin, which then interacts with ALIX to promote ILV biogen-
esis.19,82 Syntenin, in turn, was shown to be regulated by ARF6 and
phospholipase D2 (PLD2) (Figure 1).31 In another study, however,
exosomal secretion of b-catenin driven by CD82 or CD9 overexpres-
sion was dependent on ceramide,28 which is another known regulator
of ILV formation. Briefly, neutral sphingomyelinase (nSMase) 2 hy-
drolyzes sphingomyelin to ceramide, which initiates membrane cur-
vature. Multiple studies have shown that inhibition of sphingomyeli-
nase reduces exosome release,20,23,28,32,83–85 while induction with
ceramide causes an increase (Table 1).20,85,86 Recently, non-conven-
tional exosome production at the nuclear envelope of activated neu-
trophils was found to require nSMase1 and ceramide.87 In addition,
interaction of nSMase activation-associated factor (NSMAF), a regu-
lator of nSMase2, with microtubule-associated protein 1A/1B-light
chain 3 (LC3) is pivotal for its loading and secretion in ceramide-
dependent exosomes.32 Also, ceramide-dependent formation of
EGFR-containing exosomes requires RAB31 to engage flotillin pro-
teins.33 Intriguingly, Wei et al. hypothesize that RAB31-flotillin regu-
lates tetraspanin sorting into exosomes, which upon stimulation (e.g.,
EGFR) predominates over the basal syndecan-syntenin-ALIX
pathway.33 Clearly, MVB formation is a highly complex process
that appears cargo and stimulation dependent and involves redun-
dant pathways.
Molecular Therapy Vol. 31 No 5 May 2023 1235
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After their formation, MVBs either are destined for degradation in
lysosomes or fuse with the plasma membrane, leading to the release
of ILVs as exosomes (Figure 1). The drivers of this decision are largely
unknown, but are believed to be determined already during MVB
formation. For instance, ubiquitination of proteins,88,89 ISGylation
of TSG101,90 or tetraspanin-6, a negative regulator of syntenin,91

have been shown to lead MVBs down the degradative pathway.
This supports the notion that ESCRT-dependent formation of
MVBs is commonly associated with degenerative and syndecan-syn-
tenin-ALIX with secretory MVBs.19,92 Also, lysobisphosphatidic acid
(LBPA), a partner of ALIX, has been proposed to regulate the fate of
ILVs.26,81,93,94 Aside from that, unconventional protein secretion
from autophagosomes can involve MVBs.95 In fact, autophagy-
related (ATG) proteins have been implicated in exosome production
(Table 1) by decreasing the acidification of MVBs34 or by interacting
with and stimulating ALIX.35

The transport of MVBs to the plasma membrane is largely unknown
but shares mechanisms of conventional vesicular trafficking along
cytoskeletal elements. Hence, it is an active process driven by molec-
ular motors and directed by small GTPases (i.e., RAB GTPases). The
involvement of cytoskeletal proteins was exemplified in a study where
exosome-mediated transfer of CD63-GFP from polarized T cells to
antigen-presenting cells (APCs) was abolished in the presence of actin
cytoskeleton inhibitors.96 Furthermore, cortactin, as a regulator of
branched actin dynamics, was found to control MVB docking at
the plasma membrane.36 Also, ALIX has been suggested to play a
role in actin-dependent intracellular distribution of endosomes.97

Apart from that, RABGTPases have been identified as spatiotemporal
coordinators of MVB traffic (Table 1). Initially, RAB11 was found to
regulate exosome release in K562 cells37 and has since been shown
to do so by influencing plasmamembrane docking ofMVBs,49 similar
to RAB35 in oligodendroglial cells.38 In addition, RAB27 isoforms
have been observed to function differently depending on the cell
type (Table 1). Similarly, in contrast to K562 cells,37 RAB11 inhibition
did not affect the production of exosomes in HeLa cells,39 supporting
the overall notion that RAB GTPases regulate exosome secretion in a
cell-type-dependent manner.

The fusion of MVBs with the plasma membrane and release of exo-
somes are driven by soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptor (SNARE) proteins. Here, vesicle-associated
membrane proteins (VAMPs; or v-SNAREs) interact with syntaxin
and SNAP (or t-SNAREs) on the plasma membrane to form trans-
SNARE complexes, which provide proximity and the necessary
mechanical force.98 SNAREs involved in exosome release include
VAMP7,99,42 YTK6,43,44 SNAP23,45,46 and syntaxin-4 (Table 1).46

Their downregulation negatively affects exosome release rates, but
in the case of VAMP7, only in K56242 and not inMDCK cells.99 Other
proteins involved in exosome secretion include V-ATPases100 and
small GTPases. Intriguingly, Verweij et al. developed a pH-sensitive
system using CD63-pHluorin to directly visualize fusion of MVBs
with the plasma membrane.46,101 Using this technology, the same
group showed recently that dynamic endoplasmic reticulum-late en-
1236 Molecular Therapy Vol. 31 No 5 May 2023
dosome membrane contact sites can modulate exosome secretion by
regulating certain MVB fusion events to the plasma membrane,
showing crucial involvement of RAB27.102 Moreover, the small
GTPase RAL1 was found to control exosome production in 4T1 cells
and was further demonstrated to recruit syntaxin 5 (t-SNARE) in
C. elegans, thereby promoting MVB fusion with the plasma mem-
brane.47 Since then, other Ral GTPases, specifically RalA/B, have
been implicated, not necessarily in the fusion step, but in MVB
homeostasis and exosome secretion by acting directly through
PLD1.48 Furthermore, to overcome electrostatic repulsion between
membranes, the fusion event can be facilitated by bivalent ions.98

In fact, MVB fusion with the plasma membrane was demonstrated
to depend on calcium in K562 cells.49,50

MICROVESICLES
Considerably less is known about the formation of microvesicles
(MVs) or ectosomes. Only a few regulators of MV shedding from
the plasma membrane have been identified and studied (Table 1).
Increasing evidence points to the involvement of small GTPases,
such as the Rho family103 and ARFs,51–53 by regulating cytoskeletal
elements. Activation of ARF6, for example, was found to enhance
MV production in melanoma cells, which was further shown to
depend on the recruitment or activation of its downstream effectors
PLD, ERK, and myosin II light chain kinase (MLCK).51 Another
study was unable to observe the same effect of ARF6 in HeLa cells,
but instead demonstrated that RhoA and its effectors (ROCK,
LIMK, cofilin) are involved in MV formation.52 Moreover, it is not
surprising that, as an upstream regulator of the Rho family, ARF1
was found to govern MV shedding in MDA-MB-231 cells.53 Apart
from that, acid sphingomyelinase (ASM), as another regulator of
ceramide in addition to nSMase, which is involved in exosome
biogenesis, has been implicated in MV biogenesis. Initially, it was
found that ATP stimulates the production of MVs in microglia,104

which relies on the activation of the ionotropic ATP receptor
P2X7,105 phosphorylation of p38, and ultimately ASM.54 Similarly,
MV generation in red blood cells was linked to ASM.55 Last, the for-
mation of adaptor protein arrestin domain-containing protein 1
(ARRDC1)-mediated MVs was shown to share commonalities with
viral gag-induced membrane shedding. Both require the help of
TSG101 and VPS4 as well as localization to the plasma membrane,
which for ARRDC1 is mediated by its arrestin domain.56

CARGO SORTING INTO EVs
EVs are gaining ground as drug-delivery modalities for a wide range
of diseases. They benefit from favorable safety profiles as well as the
ability to cross biological barriers and protect their contents from
degradation.8,9 While some applications exploit the inherent thera-
peutic properties of EVs, others manipulate them to deliver a specific
cargo.8,9,106–108 This manipulation can be realized by endogenous or
exogenous means, referring to methods performed pre- or post-EV
isolation, respectively.108 Exogenous techniques show high effi-
ciencies but may compromise EV integrity and are restricted to
smaller payloads (extensively reviewed elsewhere108,109). Endogenous
approaches are generally more labor intensive, yet suitable for
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larger macromolecular cargos.108,109 Endogenous loading techniques
mainly encompass genetic engineering of the source cells to overex-
press a protein of interest fused to proteins involved in EV biogenesis,
consequently exploiting their inherent capabilities to be incorporated
into EVs.106,108,110 In addition, non-genetic source cell manipulation
approaches have been successfully established.110 In the following
section, we will first briefly illustrate the natural loading of macromo-
lecular cargo during EV biogenesis, focusing on protein and nucleic
acid cargo. Next, we will discuss current strategies for endogenous
bioengineering of source cells to specifically sort therapeutic cargo
molecules into or onto EVs by modifying EV biogenesis pathways.

Protein cargo

EVs carry a broad range of transmembrane proteins, membrane-
associated proteins, and luminally loaded soluble proteins. For
instance, Hurwitz et al. performed proteomic characterization of
EVs derived from 60 different cancer cell lines and identified 6,071
proteins in total, of which 213 were common to all cell types, and
only a minority were exclusive to a specific cell source.111 Similarly,
Kugeratski et al. identified 3,759 proteins in EVs derived from 14
cell lines, of which 642 proteins were unique to different cell types.112

Furthermore, Hoshino et al. analyzed 497 EV preparations from cell
lines, tissue explants, and plasma, from both mice and humans, and
identified homologies in the protein signature of these EVs.113 These
studies at large reflect the fact that the majority of the EV proteomes
are similar and enriched in proteins involved in EV biogenesis. In
addition, only a minority of the proteome reflects the cell-type spec-
ificity. Importantly, the mechanisms involved in sorting or loading of
EV-associated proteins are yet to be determined, but most of these
proteins are cell-surface receptors, which could indicate that they
originate from plasma membrane budding or shedding.

EVs are highly enriched in various tetraspanins such as CD81, CD63,
CD9, CD82, and CD37.114,115 The tetraspanin family comprises
proteins that are neither enzyme-linked receptors nor catalytically
active receptors, but that may promote the sorting of protein cargos,
especially tetraspanin-interacting proteins such as integrins,116

ICAM-1,117 IGFS-8,118 major histocompatibility complex (MHC) class
II proteins,115,119 and syndecan.19However, various reports failed to see
differences in EV numbers or EV proteomes upon overexpression or
silencing of CD63, CD81, or CD9.120,121 Furthermore, based on the
cellular localization of tetraspanins, it has been speculated that tetraspa-
nins such as CD63 are exclusively present on EVs of MVB origin,
whereas CD81, which is primarily localized on the cell surface, is pref-
erentially sorted into MVs.12,57,122 This is reflected by the fact that
CD63-positive vesicles are CD81 low or negative and vice versa.12 In
addition to tetraspanins, there are also other scaffolding transmem-
brane proteins that are associated with EVs, such as flotillin 1 and
2,123 IL-6R,124 EGFR,125 T cell receptor,126 chimeric antigen receptor,127

Notch receptors,128 GPCR receptors,129,130 PD-L1,131 TGFB,132 and
ADAMproteases,133 on the surface of EVs. Apart from transmembrane
proteins, the surface is also rich in membrane-interacting proteins,
especially proteins with glycosylphosphatidylinositol (GPI) anchors,
for example, complement-inhibiting proteins DAF and MAC-IP,134
aswell as cell-surface proteoglycan glypican-1.135 In addition, on the in-
ner leaflet, a range of proteins have been identified, including small
GTPases, which are involved in the biogenesis and adhere to the inner
leaflet by post-translational prenylation.38,39,136 In addition to preny-
lated proteins, myristoylated proteins such as BASP-1137 and Src
signaling kinases136 also interact with the inner leaflet and sort into
EVs. Similarly, lentiviral gag uses N-terminal myristoylation for
loading into viruses or EVs.138 Other posttranslational modifications
that have been shown to drive cargo sorting are ubiquitination,
SUMOlyation,139,140 and phosphorylation.141 Other proteins that are
abundant in EVs interact with, or are part of, ESCRT complexes such
as ALIX, TSG101, and syntenin.71 Apart from biogenesis-related pro-
teins, EVs are also enriched with molecular chaperones such as
Hsp70, Hsp90, and Hsp20.142–144 Finally, cytosolic proteins, such as
actin and tubulin, are also sorted into EVs, most likely upon MV shed-
ding from the plasma membrane.111

RNA cargo

More than a decade ago, multiple studies showed the EV-mediated
functional intercellular transfer of RNA.145–150 According to numerous
reports using next-generation sequencing and microarray technologies
to characterize RNA content in EVs derived from cell culture, tissues,
or biological fluids, EVs contain both coding and non-codingRNA spe-
cies.151 Apart from mRNA, EVs are enriched in small RNA species,
such as transfer RNAs (tRNAs), microRNAs (miRNAs), small nuclear
RNAs (snRNAs), small nucleolar RNAs (snoRNAs), mitochondrial
RNAs (mtRNAs), piwi-interacting RNAs (piRNAs), vault RNAs
(vtRNAs), and Y RNAs.96,151–156 Circular RNAs (circRNAs) and frag-
ments of ribosomal RNAs (rRNAs) and long non-coding RNAs
(lncRNAs) have also been identified in EVs.157–163

The molecular mechanisms of RNA sorting into EVs are still not fully
understood. Current literature indicates that factors like RNA abun-
dance, sequence length, cellular location, or the ability to associate
with certain proteins or membrane lipids regulate RNA sorting into
EVs.164,165 Generally, sorting mechanisms are classified as active or
passive RNA-loading processes.166 Passive loading into EVs strongly
depends on the intracellular concentration of a certain RNA, and its
enrichment in EVs is exclusively source cell conditional.157,167 An
active, or selective, loading mechanism of RNA into EVs, on the other
hand, is indicated by an enrichment for a certain RNA in EVs that is
not necessarily mirrored in the overall RNA content of the source
cell.96,146,168,169 For instance, preferential enrichment in EVs was re-
ported for 30 UTR mRNA fragments with regulatory elements and
recurring motifs, such as variations of a stem-loop-forming 25-nt
“zip code” sequence encompassing a GTGCC core motif and a single
miRNA-1289 binding site.160,170 This was also shown specifically for
miRNA containing so-called EXOmotifs, with the strongest being
CGGGAG, while miRNAs with CELLmotifs, such as AGAAC,
CAGU, or AUUA, were retained in the source cells.171 Furthermore,
40 miRNA seed sequences were identified as motifs enriched in
lncRNA associated with prostate cancer EVs.172 Overall, these studies
suggest an intriguing mechanism for sorting certain miRNAs into
EVs: by using mRNA fragments or lncRNAs as RNA sponges.170,172
Molecular Therapy Vol. 31 No 5 May 2023 1237

http://www.moleculartherapy.org


www.moleculartherapy.org

Review
Correspondingly, the enrichment of certain sequence motifs in EV
RNA could point to a sorting mechanism involving RNA-binding
proteins (RBPs) with differential sequence affinities. As there are
more than 4,000 RBPs annotated in the human genome at the
time of this writing,173 and RBPs comprise 25% of the EV protein
content,157 it can be safely assumed that they play a key role
in the active sorting of RNA into EVs. In fact, several RBPs
and their selective RNA cargo have been linked to EVs, such
as YBX1,174–177 SYNCRIP,178,179 Arc1,180 AGO2,181,182 ALIX,183

MVP,184,185 hnRNPU,186 and ANXA2.187,188 Apart from specific
binding of RNA sequence motifs, additional EV sorting signals
include RNA or RBP modifications, such as SUMOylation, as re-
ported for miRNA loading into EVs by hnRNPAB1140; phosphoryla-
tion, as shown for exosomal 50pppRNA in latent EBV infection189; or
LC3 conjugation, as described for hnRNPK and SAFB-mediated
loading of small ncRNA species during the secretory autophagy
pathway.32 In addition, RNA association with different membrane
lipids during vesicle formation was proposed as another distinct
mechanism for selective RNA sorting into EVs.190–193

Even with years’ worth of outstanding research, the genuine
complexity of RNA loading mechanisms during EV biogenesis path-
ways is by far not completely understood. A recent study clearly
demonstrated the heterogeneity of RNA content in different EV sub-
populations, indicating distinct preferences and, possibly, limitations
in loadingmechanisms and EV capacity depending on the EV biogen-
esis pathway.151 Therefore, additional efforts to understand EV
heterogeneity, especially considering vesicular RNA cargo sorting
pathways, are essential. Moreover, recent reports questioned the
consensual knowledge of the true biological impact of EV-derived
RNA, in particular low-abundant miRNA.194 Similarly, awareness
was raised in the field to reflect on EV isolation methodologies and
the limitations of certain functional assays, especially when working
with RNA from EVs produced by transient transfection.195–197

Thus, careful assessment of biological claims and ample use of proper
controls is key to unravel the true role and functional impact of
EV-derived RNA.

DNA cargo

While RNA as a cargo nucleic acid in EVs has been extensively studied,
there are substantially fewer studies on the biogenesis or clinical signif-
icance of EV-associated DNA. To date, DNA species reported associ-
ated with EVs include genomic double-strandedDNA (dsDNA),198–201

along with dsDNA-binding histone proteins,202 single-stranded DNA
(ssDNA),203 mitochondrial DNA (mtDNA),204,205 and viral DNA.206

Predominantly, EV-associated DNA has been proposed as a putative
biomarker in liquid biopsies of cancer patients198,207–210 or as a tool
for non-invasive prenatal diagnostics.210,211 However, EV-associated
DNA is mostly sensitive to enzymatic treatment and thus detected
mainly on the outside of certain EV subpopulations.212 Interestingly,
no chromosomal regions have been found to be overrepresented in re-
maining EV-enclosed DNA, hinting at the absence of a specific loading
mechanism for genomic DNA into EVs.212 Yet, a nucleosome-associ-
ated pattern212 of long genomic DNA fragments as well as chromati-
1238 Molecular Therapy Vol. 31 No 5 May 2023
nized DNA structures209 in EVs was observed, suggesting a still elusive
mechanism for genomic DNA loading during EV biogenesis.

Conversely, despite evident reports of EV-associated DNA, its pres-
ence and biological impact are still highly disputable, as the field often
considers EV-associated DNA a contaminant from improper EV pu-
rification.122 Thus, the authentic role of DNA in EV biogenesis re-
mains to be elucidated.210

HIJACKING THE EV BIOGENESIS PATHWAY FOR
BIOTHERAPEUTIC CARGO LOADING
EVs are enriched with a variety of biomolecular cargo, including
lipids, proteins, and nucleic acids. With the application of new genetic
tools, such as RNAi, CRISPR-Cas9, and recombinant DNA technol-
ogy, in combination with the recent technological advances in EV
characterization, the biological phenomena involved in the sorting
of cargo molecules into EVs are starting to unravel (Table 1). Thus,
by employing current state-of-the-art methods of synthetic biology,
we and others have exploited the known biological mechanisms to en-
gineer EVs with a variety of therapeutic cargo.

Protein cargo loading into EVs

Protein sorting into EVs is a highly regulated process, and the major-
ity of these proteins are ubiquitously enriched in EVs irrespective of
the source cell due to their involvement in EV biogenesis. Therefore,
hitchhiking on proteins involved in EV biogenesis serves as an
efficient mean of endogenously bioengineering EVs with bio-
therapeutics. For endogenous loading, the parental cells are geneti-
cally engineered to overexpress the desired protein fused to an EV
scaffold, which is then incorporated into the secreted vesicles during
EV biogenesis (Figure 2).108 Myriads of endogenous engineering scaf-
folds have been tested in the past decade for EV luminal and surface
engineering (Figure 2). However, with such a vast diversity of proteins
involved in EV biogenesis and cargo loading, identifying versatile
strategies to load biotherapeutic cargo into EVs is highly challenging.
Importantly, fusion of a certain cargo to one regulator of EV biogen-
esis may lead to suboptimal loading into EVs, while fusion to another
could result in superior engineering performance. Our group has
shown this for eGFP, where fusion to ALIX yielded several orders
of magnitude lower cargo encapsulation into EVs compared with a
fusion to CD63.121 Thus, adapting known molecular mechanisms
involved in EV engineering is ambitious, owing to their extraordinary
complexity, but mindful design and further deepening of our knowl-
edge will result in the development of successful strategies. In the
following sections, we discuss current strategies for endogenous EV
bioengineering and cargo loading based on native EV biogenesis
and touch upon emerging developments and future directions of
the EV bioengineering field.

Luminal-protein loading

EVs are enriched with numerous luminal proteins; however, not all EV
proteins can be used for the endogenous engineering of EVs. This is pri-
marily due to loss of functionality upon fusion of the protein of interest
to an EV sorting scaffold.121 Ideally, the EV engineering scaffold should
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Figure 2. Endogenous EV engineering strategies for therapeutic cargo loading

The top illustrates the general principle of producer cell engineering. A genetic expression construct encoding the therapeutic cargo connected to an EV sorting domain is

introduced into and expressed by EV producer cells. The therapeutic cargo is sorted into EVs during EV biogenesis. Depending on the nature of the EV sorting domain,

engineered EVs originate from the MVB-exosome pathway or microvesicle pathway. The bottom lists means of luminal or surface engineering of EVs, including examples for

EV sorting domains successfully used in the field. This figure was created using BioRender.
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allow for efficient packagingofmultiple copiesofproteinswithout inter-
fering with the EV biogenesis pathway and luminal content of the EVs.
Therefore, various studies have systematically compared different EV
sorting domains for endogenous engineering using the latest innova-
tions in EV characterization to determine the efficiency at a single-EV
level. For instance, we previously systematically compared 12 endoge-
nous EV engineering scaffolds for encapsulating EGFP into EVs and
identified the tetraspanins CD63, CD81, and CD9 as the most efficient
loading scaffolds.121 For instance, CD63 could load 40–60 EGFPmole-
cules per vesicle.Moreover, a recent studybySilva et al. achieved loading
of 150 molecules of EGFP per vesicle using TSPAN14 as the EV scaf-
fold.213 Interestingly, the subcellular location and resulting EV prote-
ome were largely unaltered upon engineering EVs endogenously with
CD63-EGFP fusion proteins.12,121 In addition to tetraspanins, other
identified EV sorting domains include syntenin,121 ARRDC1,214
BASP-1,137 syndecan-1,121 and HIV-I Nef protein.215 Importantly, a
direct fusion of the therapeutic protein, to either theNor theC terminus
of an EV scaffold, may affect the functionality of the therapeutic protein
in the recipient cells.216 Therefore, various sophisticated systems have
been developed, such as the light-induced dimerization system216 and
small-molecule-controlled protein association,217 which allow for the
release of biotherapeutic cargo from theEVscaffoldpost-encapsulation.
Also, the fusion of certain tags to the protein of interest canmediate EV
sorting. For instance, insertion of the KFERQ motif can drive loading
into Lamp2A-positive EVs.218 Similarly, WW-domain-tagged proteins
are ubiquitinated upon recognition by Ndfip1 and are efficiently pack-
aged into EVs.219 Based on these novel developments in endogenous
EV engineering, EVs have been bioengineered for the delivery of
CRISPRCas9,217,220 IkBa superrepressor,221 Cre recombinase,214,216,219

and lysosomal enzymes.222 Importantly, all these endogenous EV
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engineering strategies achieve the labeling of certain EV subpopulations
only, as one sorting domain mainly makes use of one of multiple EV
biogenesis pathways.1 Therefore, exploring different combinations of
EV sorting domains to achieve the engineering of a broader EV popu-
lation will aid in enhancing the therapeutic efficacy of EVs.

Surface-protein engineering

As mentioned earlier, the EV surface is enriched with various trans-
membrane proteins or GPI-anchored proteins. These proteins have a
variety of effector functions, such as ligands for target cell recogni-
tion223 and signaling131 or receptors for decoying toxins, biologics,
and viruses.133,224 For developing advanced therapies using EVs, sur-
face engineering is crucial for achieving targeted delivery, signaling,
and decoy function. Similar to the luminal engineering of EVs,
various surface engineering scaffolds have been identified through a
systematic comparison of EV-associated transmembrane proteins.
One of the most widely used scaffolds for the surface display of
ligands is Lamp2, a transmembrane protein associated with the endo-
lysosomal pathway.225 Importantly, Lamp2b labels vesicle popula-
tions originating from the endolysosomal pathway, and engineering
efficiency is highly dependent on the producer cell.121,226 Therefore,
novel surface engineering scaffolds are much needed to target a
broader range of EV subpopulations and ensure high engineering ef-
ficiencies independent of their cell sources. In addition to their appli-
cation in luminal engineering of EVs, tetraspanins can be exploited
for the display of protein biologics on the EV surface. The second
extracellular loop of tetraspanins is highly modular and facilitates
the insertion of ligands for the surface engineering of EVs.227 With
this strategy we recently dramatically increased EV circulation times
in vivo by displaying an albumin-binding domain on their surface.227

Notably, the use of tetraspanins for surface engineering should be done
with caution, as the display of ligands in a closed-conformation extracel-
lular loopmay affect the functionality. Furthermore, the display of large
ligands in the extracellular loop can have a negative impact on the sort-
ing of the fusion protein intoEVs.121 To overcome this limitation, afifth
transmembrane domain has been added to either the N or the C termi-
nus of tetraspanins, or the fourth transmembrane domain is deleted to
facilitate the display of larger ligands on the EV surface.226,228 Apart
from the tetraspanin protein family, PTGFRN was identified as a scaf-
fold for surface engineering of EVs and achieved loading of up to 1,000
engineered molecules per EV.137 Importantly, PTGFRN interacts with
CD9 and CD81, and the use of this scaffold may target CD9 and
CD81 EV subpopulations.229 Similarly, PDGF, another EV-associated
transmembrane protein, has been used for EV engineering.230 Apart
from transmembrane proteins, GPI anchors231 and phosphatidylser-
ine-binding proteins such as MFGE8232 can also facilitate surface engi-
neering of EVs. Notably, the association of these scaffolds with an EV
surface is reversible and dependent on phospholipid composition,
which may limit the engineering efficacy. EV-associated luminal pro-
teins have also been used for surface engineering of EVs. We recently
described one such approach in which transmembrane proteins,
upon fusionwith syntenin and anoligomerization domain, enabled effi-
cient EV surface engineering, while the EV surface proteomewas largely
1240 Molecular Therapy Vol. 31 No 5 May 2023
unaltered.226 Importantly, this strategy proved to be more efficient for
the surface display of cytokine receptors than for the use of other scaf-
folds, such as PTGFRN, MFGE8, PDGF, or CD63.226

Nucleic acid cargo loading

After the discovery of functional RNA transfer via EVs,145 tremen-
dous efforts were invested to create bioengineered EVs as nanosized
biomimetic delivery agents for therapeutic nucleic acid cargo. While
small RNA species can nowadays be efficiently and successfully
encapsulated into post-purified EVs by exogenous loading
approaches,225,233,234 the development of efficient and robust endog-
enous loading required for larger nucleic acid cargos has proven
significantly more difficult. As exact sorting mechanisms of any nu-
cleic acid species into EVs remained unclear, the first approaches to
endogenous EV bioengineering for nucleic acid loading were based
on overexpression of sequence-optimized miRNAs, small interfering
RNAs (siRNAs), and other small RNAs,190,235–237 as well as therapeu-
tic mRNAs (Figure 3).238,239 However, as knowledge about specific
RNA sorting mechanisms deepened, the resulting exploitation of
EV biogenesis pathways has greatly accelerated the development of
EV bioengineering strategies. For instance, siRNA sequences incor-
porated into a Dicer-independent pre-miRNA stem loop (pre-miR-
451) showed enhanced loading efficiency using the miRNA sorting
machinery into EVs.240 Also, this approach of siRNA delivery
dramatically decreased the siRNA dose needed in target cells for effec-
tive gene silencing.240 For EV loading of nucleic acid cargo, the
endogenous loading strategies for therapeutic proteins as discussed
previously have been adapted by fusing a nucleic acid-binding protein
to an EV-sorting protein. Transient or stable co-expression of the
fusion protein with the nucleic acid displaying the compatible binding
motif leads to nucleic acid binding and efficient loading into the EVs
during biogenesis (Figure 3). This methodology has been successfully
employed for small RNAs,230,241,242 as well as longer RNA species,
such as mRNA.214,243,244 Target therapeutic mRNA expression in
EV source cells also leads to therapeutic protein expression and pas-
sive protein loading into EVs.245 Thus, special care needs to be
applied when evaluating cargo mRNA functionality upon delivery
of engineered EVs to recipient cells.245 Consequently, in an experi-
mental setting, the co-delivery of passively loaded protein needs to
be properly controlled for, while in a therapeutic setting, co-delivery
of mRNA and therapeutic protein can be favorable. A recent
approach addressing this methodological issue elegantly combined
endogenous and exogenous EV loading strategies.246 Here, they ex-
pressed a DNA aptamer sealing target mRNA translation in producer
cells while being efficiently loaded into EVs by a CD9-zinc finger
fusion protein.246 To disable DNA aptamer binding, purified
mRNA/DNA aptamer-loaded EVs were electroporated to encapsu-
late a Klenow fragment exonuclease, degrade the aptamer, and enable
mRNA translation in recipient cells in vitro and in vivo.246

As increasing numbers of strategies for EV endogenous engineering
platforms for therapeutic RNA delivery emerge, the scientific discus-
sion about capacity limitations of EVs as a drug-delivery tool becomes
more pressing. For instance, naturally sorted rRNA and snRNA have

http://www.moleculartherapy.org


Figure 3. Strategies for nucleic acid loading into EVs

RNA species are sorted into EVs either passively, triggered by high local abundance and membrane proximity, or specifically, by means of active sorting. Active sorting

processes are initiated by the presence of defined motifs in the RNA sequence, such as EXOmotifs or RBP motifs, that either associate with luminal membranes during MVB

formation or are recognized by RNA-binding proteins (RBPs), which in turn are incorporated into EVs during biogenesis. These natural sorting pathways during EV biogenesis

can be exploited for bioengineering strategies to achieve targeted loading of therapeutic RNA cargos into EVs. This figure was created using BioRender.

www.moleculartherapy.org

Review
been identified at more than one copy per EV, while full-length
mRNA copies have been reported at a maximum figure of 1 in
1,000 EVs.151,165 Moreover, full-length mRNA transcripts longer
than 1,000 nt are almost absent in small EVs and detectable only in
larger vesicles.151 Thus, the question arises as to which of the biolog-
ically very heterogeneous EV populations have the physical capacity
and means to be endogenously loaded with full-length, functional
longer RNA species? Furthermore, once acquired, how can the field
translate this knowledge into technology development? Currently,
there are neither binding official agreements on nucleic acid quanti-
fication or reporting methods nor a gold standard in EV purification
methodology.18,164,247 EV production and purification are subject to
informed methodological decisions of the respective researcher, and
thus a fair comparison of RNA loading figures from the literature
seems nearly impossible. However, efficiencies of up to one selectively
loaded mRNA copy per EV have been reported when passive loading
of protein, attached to the mRNA or translated from it, was sup-
pressed.246 This observation points to a promising avenue toward
improving RNA loading strategies. In addition, and highly remark-
ably, as biomimetic vehicles for RNA delivery, EVs performed
much more efficiently than state-of-the-art lipid formula-
tions.237,240,248 Thus, further unlocking mechanisms of EV biogenesis
for the development of safe, elegant, and efficient engineering strate-
gies for nucleic acid delivery via EVs will tremendously accelerate the
nanomedicine and gene therapy fields for a plethora of applications.

NON-GENETIC SOURCE CELL MODIFICATIONS FOR
ENDOGENOUS EV LOADING
Genetic engineering for endogenous cargo loading into bioengineered
EVs bears certain safety risks for their clinical applicability.110,249

Thus, non-genetic means of source cell modifications exploiting EV
biogenesis pathways are valuable to the field. Current methodologies
Molecular Therapy Vol. 31 No 5 May 2023 1241
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include cellular metabolic labeling and intrinsic cell membrane
modifications.110,249 For instance, glycans of EV producer cells were
metabolically engineered to incorporate active azides into the mem-
branes of secreted EVs, which were then combined with bioorthogonal
click conjugation to modulate the EV characteristics after EV purifica-
tion.250,251 Furthermore, the treatment of endothelial cells with ethanol
led to increased sorting of pro-angiogenic miRNAs and lncRNAs into
secreted EVs.252,253 Another non-genetic loading technique is the recy-
cling of externally provided EV cargos. Interestingly, phagocytic cells
have been reported to incorporate superparamagnetic iron oxide nano-
particles along with therapeutic agents into their EVs by phagocytosis
when suppliedwith the EVcargo through simple addition to the growth
medium.254,255 Alternatively, fusing the EV source cell membrane with
synthetic membrane fusogenic liposomes containing hydrophobic
compounds was described as another method to load cargo into
secreted EVs.256,257 As large-scale EV production is still a significant
bottleneck in clinical translation of EV therapeutics, non-genetic ap-
proaches to produce sufficient yields of therapeutically active EVs can
be indispensable additions to existing EV bioengineering strate-
gies.239,258–260 Methodologies to boost EV production and secretion
include, but are not limited to, metabolic changes in the source cells
by defined medium compositions,258–260 3D cultures in bioreac-
tors,253,258,261,262 and physical stimulation.239,263,264

CONCLUSIONS
The field of EVs has seen an immense transformation in the past few
decades, from being their regarded as garbage bags to now being re-
garded as essential mediators in intercellular communication. Owing
to their unique ability to transfer macromolecules across cells and bio-
logical barriers, EVs are considered a rising star in the field of drug de-
livery. Notably, EVs outcompete the majority of the synthetic delivery
vectors in terms of better efficacy, extrahepatic delivery, andmuch lower
toxicity.Overall, these developments have led to the initiation of various
clinical trials using EVs as a therapeutic intervention. Intriguingly,
several trials report therapeutic activity and, most importantly, no
toxicity has been observed overall in the study participants. These re-
ports on ongoing phase 1 clinical trials are highly promising, and it is
hoped they will lead to a progression to phase 2/3 placebo-controlled
settings soon. However, although technologies for large-scale and
GoodManufacturingPractice (GMP)-grade culturingof cells exist, clin-
ical manufacturing of EVs is still an unaddressed territory. This is pri-
marily hindered by a lack of technologies that allow for large-scale pro-
duction of highly pure EVs without affecting their integrity and
biophysical properties. A particular challenge for the purification of
EVs from the extracellular environment is its enrichment in apoptotic
bodies, protein aggregates, and ribonucleic complexes, which display
features similar to those of EVs, such as size or density, and thus poten-
tially co-purify with EVs using current technologies. Another obstacle,
which is largely unaddressed, is the GMP/Good Clinical Practice
(GCP)-grade storage while conserving the therapeutic effect of EVs.
Acquisition of more in-depth knowledge about EV stability and devel-
opment of purification technologies for enriching specific EV popula-
tions will be key to achieve a smooth translation from bench to bedside
in the future.
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