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A B S T R A C T   

In this paper, based on the Riccati transfer matrix method (RTMM), the Riccati fluid structure 
interaction transfer equations (FSIRTE) are established to improve the numerical stability of the 
classical fluid structure interaction transfer matrix method (FSITMM). Combined with numerical 
algorithms for eliminating the singularity points of the Riccati equations, the spare root problem 
in the calculation process is solved. This method can be used for the natural frequency calculation 
of liquid-filled piping systems. Compared with finite element method (FEM), it has the charac
teristics of high calculation efficiency; meanwhile, good numerical stability, compared with 
FSITMM; and accurate calculation results, compared with method of characteristics (MOC). 
Numerical simulation results of typical classical examples are given.   

1. Introduction 

The fluid structure interaction (FSI) phenomenon exists in various mechanical equipment such as oil pipelines, aircraft, and shield 
tunneling machine. Pressure pulsations and mechanical vibrations in liquid-filled piping systems strongly affect system performance 
and safety. Therefore, people’s enthusiasm for the study of FSI has been unabated. 

In 1939, Bourrieres first derived the differential equation of motion of the cantilever liquid-filled tube [1]. Joukowsky published 
the famous paper “On the hydraulic hammer in water supply pipes” through research on the Moscow water supply system [2], and 
proposed the theory of water hammer for the first time. Up to now, there are three main numerical methods for FSI dynamic simu
lation: 1) Method of characteristics (MOC). Since both the liquid pulsations and the pipe vibrations in the liquid-filled piping system 
can be represented by a set of partial differential equations (i.e., wave equations), they can be effectively transformed into a set of 
special ordinary differential equations by MOC, and then by the numerical integration method, it is convenient to use computer for 
calculation, so MOC has been widely used in pipeline response calculation. Wiggert et al. [3–5] studied the calculation of the axial 
vibration response of the liquid-filled piping system considering FSI, and extended it to the bending and torsional vibration of the pipe. 
They also pointed out the error caused by the interpolation calculation. Tijsseling considered the axial and transverse bending vi
brations of a straight pipe, and studied the effect of the coupling between the liquid and the pipe during the in-plane vibration of a 
single-elbow pipe system [6]. Zhang et al. [7–9] proposed the L-MOC based on Laplace transform to solve the FSI problem of a single 
straight pipe, and this method partially improved the numerical accuracy. MOC can directly solve the vibration wave equation in the 
pipe system, and the physical meaning is clear. However, due to the existence of various waves in the pipe system, when MOC is used, 
there are many characteristic lines, and there must be characteristic lines that do not pass through the calculation grid. The parameter 
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values on these nodes must be obtained through interpolation methods, resulting in interpolation errors. Tijsseling [10] had to 
“slightly adjust” the wave speed to achieve the intersection of the characteristic lines. The multi-characteristic lines interpolation error 
problem has not been well solved, and it has become the main factor restricting the further development of MOC in calculating the 
vibration response of the liquid-filled piping systems. 2) Finite element method (FEM). FEM is a relatively mature method for structural 
modal analysis and response calculation [11,12]. The semi-analytical method combined with large-scale engineering software has also 
solved many complex piping problems [13,14]. Now many large-scale software, such as ANSYS FLUENT, have FSI modules for 
calculation and analysis. However, due to the complicated coupling between the pipeline and the fluid, modeling is difficult. FEM has 
low calculation efficiency and long calculation time, that is not suitable for design and optimization in engineering practice. 3) 
Transfer matrix method (TMM). TMM is an effective method for modal analysis of chained systems. Dupuis and Rousselet [15] 
considers the initial deformation of the pipeline under the action of the liquid, the shear of the pipeline, the curvature changes of the 
axial deformation and the bending, and establishes the differential equation of motion of the pipeline, then, uses the TMM to calculate 
it. Lesmez et al. considers Poisson coupling and connection coupling between pipes and liquids [16]. They established the transfer 
matrix of the liquid-filled straight pipe and gave the treatment method of the curved pipe. Variational iteration method is also applied 
to investigate the dynamic behavior and stability of pipe. TMM is used to assemble the system of equations resulting from applying the 
boundary conditions [17,18]. The advantage of TMM is that the calculation efficiency is high, the dimension of the total transfer matrix 
remains unchanged with the increase of elements. However, the total transfer matrix is obtained by matrix-chain multiplication. When 
the system frequency is very high, the elements of the total transfer matrix become very large. This can lead to numerical instability 
when solving the overall transfer equation of the system [19–21]. In order to improve the numerical stability of TMM, Horner and 
Pilkey proposed Riccati transfer matrix method (RTMM) for chained multibody systems [22]. By adding the Riccati transfer matrix, the 
original two-point boundary value problem was transformed into a one-point initial value problem. This approach retains the ad
vantages of the usual transfer matrix while improving numerical stability. RTMM is widely used in the eigenvalue solution of chained 
systems. Rui and Bestle proposed a decoupling method for hinge elements, which solved the calculation problem in the presence of a 
closed loop and expanded the application range of RTMM [23]. However, the RTMM may introduce two more problems, first, there are 
singularity points in the characteristic equation of the system established by RTMM, and these singularity points are often very close to 
the zero point of the characteristic equation. Therefore, using a general search step to solve will get spare roots, and reducing the search 
step will greatly reduce the computational efficiency. The existing literature on the RTMM to study the FSITMM rarely discusses how to 
eliminate singularities. Gu et al. established a method to eliminate singularity points, which effectively improved the eigenvalue search 
efficiency of RTMM [21]. In this paper, this method is also used for numerical simulation of the Riccati fluid structure interaction 
transfer equations (FSIRTE). Second, the RTMM can hardly deal with complex boundary conditions [24]. Since the model in this paper 
is still a chain system, the complex boundary problem is not obvious. For complex systems, tree system models [21] using improved 
RTMM will be built to solve complex boundary problems in the next study. 

Actively generated high frequency waves are studied widely and applied in transient-based leak detection for pipe systems. but the 
model of the pipeline is still a rigid body model [25], it is not seen as a fluid structure interaction model, there is no study of the impact 
of high-frequency waves on the pipeline using the FSI, which will result in less accurate damage location. The impact of high-frequency 
seismic waves on the pipeline is being paid more and more attention to, most of the research has adopted the finite element method 
[26–28], and the study of the high-frequency vibration characteristics of the pipeline system itself is not in-depth. Therefore, it is of 
practical significance to study the high frequency vibration of piping system. 

In section 2 of this paper, the traditional fluid structure interaction transfer matrix method (FSITMM) is derived to obtain the 
transfer equation for the straight pipe. In section 3, with the help of RTMM, FSIRTE are derived, and method to improve the efficiency 
of searching for roots are introduced. In section 4, taking Dundee tube model as an example, numerical simulation is given to verify the 
correctness of FSIRTE. The conclusions given in the last section show the possibility of applying our method to FSI. 

2. Classical FSITMM 

The equations discussed in this paper are in the frequency domain and are based on the physical model of Fig. 1. The model follows 
the assumptions: The model is based on Timoshenko beam theory. Straight pipes are placed horizontally. The wall material is linear, 
uniform and isotropic. The pipe deformation is within the elastic range. The pipe transports compressible Newtonian fluid. The fluid 
flows uniformly in one dimension without cavitation. Gravity of the pipe and fluid is ignored. The damping value is considered as 
additional stiffness, which is not represented independently in the matrix. The coordinate axis Z axis is along the neutral axis of the 
pipe when it is not deformed, and points to the direction of fluid flow; the Y axis is vertically upward; the X axis is given by the right- 
hand Cartesian coordinate system criterion. As shown in Fig. 2, a basic element in the FSITMM is defined, including the pipe wall and 

Fig. 1. Physical model of liquid-filled straight pipe.  
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the fluid in it. The element is subjected to four generalized forces (fz is the pipe axial stress, p is the fluid pressure, fy is the pipe vertical 
stress, mx is the pipe bending moment), which produce four generalized displacements (uz is the axial displacement of the pipe, uf is the 
fluid displacement, uy is the pipe vertical displacement, θx is the pipe bend angle) under the action of the generalized forces. In Fig. 2, 
the subscripts I denote input and O denote output. These eight quantities will be discussed in the next section as the state vectors of the 
system. 

2.1. Axial vibration 

The axial vibration equation considering friction coupling and Poisson coupling [16] can be expressed as 

∂2uf

∂t2 +
1
ρf
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+
Cf μ
4R2

(
∂uf

∂t
−
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∂t

)

= 0 (1)  
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where μ is viscosity, v is Poisson’s ratio, ρf is the fluid mass density, ρp is the pipe mass density, R is the inner diameter of the pipe, e is 
the pipe wall thickness, Ap is the pipe cross-sectional area, E is the pipe Bulk Modulus, K is the fluid Bulk Modulus, af =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

KEe[ρf (Ee + 2KR(1 − v2))]
− 1

√

is the liquid pressure wave velocity, Cz and Cf are damping coefficients [29]. 
By observing the four Eqs. (1)–(4), simplifying towards uz, p is found to be more convenient, 
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where Cf = Cf μ/4R2. 
The mode separation method is used, letting uz = Uz(z)exp(st), p = P(z)exp(st), 
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Fig. 2. Basic element in the FSITMM.  
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After the damping terms are ignored, Eqs. (7) and (8) can be combined as 

∂4P
∂z4 −

(
s2

a2
f
+

s2

a2
p
+

2v2bd
a2

p
s2

)
∂2P
∂z2 +

(
s4

a2
f a2

p

)

P= 0 (9) 

P is defined as P = Cexp(λη), in which η = z/L is the relative position, and substitute it into the characteristic Eq. (9) 

λ4 − (α+ β+ γ)λ2 +αβ= 0 (10)  

where α = (sL)2
/a2

f , β = (sL)2
/a2

p , γ = 2v2bdβ. 
The solution to Eq. (10) has the form as 

P=Q1 cos(λ1η)+Q2 sin(λ1η)+Q3 cos(λ2η) + Q4 sin(λ2η) (11)  

where Qi are undetermined coefficients. 
Similarly, by simplifying Eqs. (1)–(4) to variables fz,uf ,uz, and then performing modal transformation in the same way, an equation 

similar to Eq. (11) with undetermined coefficients can be obtained. 
In order to facilitate the solution, F is regarded as the reference state vector 

F =A1 cos(λ1η)+A2 sin(λ1η)+A3 cos(λ2η) + A4 sin(λ2η) (12) 

Ai are also undetermined coefficients. 
During the simplification process, multiple sets of equations containing only two unknowns are obtained, such as Eq. (7). 

Substituting Eq. (12) into these equations, equations expressed in Ai are presented, respectively, yielding the three equations below 

Vf =B1[A1 sin(λ1η) − A2 cos(λ1η)] + B2[A3 sin(λ2η) − A4 cos(λ2η)] (13)  

Vz =B3[A1 sin(λ1η) − A2 cos(λ1η)] + B4[A3 sin(λ2η) − A4 cos(λ2η)] (14)  

P=B5[A1 cos(λ1η)+A2 sin(λ1η)] + B6[A3 cos(λ2η)+A4 sin(λ2η)] (15)  

where 
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)
,
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2
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)

Further, Eqs. (12)–(15) can be arranged into matrix form as 
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⎢
⎢
⎣
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⎢
⎣
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⎥
⎥
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Eq. (16) holds for any position, of course for η = 0, η = 1, 

[Vf Vz F P ]
T
in =B(0)[A1 A2 A3 A4 ]

T (17)  

[Vf Vz F P ]
T
out =B(1)[A1 A2 A3 A4 ]

T (18)  

In order to remove the undetermined coefficients Ai, Eqs. (17) and (18) are combined to obtain a new equation as 

[Vf Vz F P ]
T
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T
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In the process of numerical simulation of Eq. (19), there is a large difference in the order of magnitudes of the elements. Therefore, 
people often normalize them for numerical stability 

[Vf Vz F P ]
T
out =U[Vf Vz F P ]

T
in (20) 
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where 

U=

⎡

⎢
⎢
⎣
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2
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1
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/
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s in the characteristic equation is actually the natural frequency, so it is recorded as ω . 

2.2. Vertical vibration 

For vertical vibration, a set of four equations can also be proposed [16], 

∂fy

∂z
− Cy

∂uy

∂t
−
(
ρf Af + ρpAp

) ∂2uy
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∂z
− fy −
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mx =EIp
∂θx

∂z
(24)  

where fy is the pipe vertical stress, uy is the pipe vertical displacement, θx is the pipe bend angle, mx is the pipe bending moment, Af is 
the fluid cross-sectional area, k is the distribution coefficient of shear force in circular section, G is the pipe shear modulus, Ip is the 
moment of inertia of the pipeline, Cy is damping coefficient [29]. 

Using the same method as part 2.1, the transfer matrix can be arranged as 
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⎥
⎦
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⎢
⎣
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⎥
⎥
⎥
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/
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(
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3

/
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(α2 − β2)
2/4 + γ2

√

− (α2 + β2) / 2, λ2
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[Vy Θx Mx Fy ]
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/(
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3. Riccati fluid structure interaction transfer equations 

When calculating the vertical vibration, FSITMM has good numerical stability at low frequencies, but at high frequencies, it fails to 
calculate, as shown in Fig. 3(The definition of delta is given in section 3.4). This is due to the hyperbolic functions (cosh, sinh) 
contained in Eq. (25). During the numerical simulation, the terms containing hyperbolic functions in the element matrix will produce 
numerical errors. When the system frequency is high, the total matrix, obtained after matrix-chain multiplication, accumulates this 
error and eventually causes the calculation to fail. RTMM is employed to improve numerical stability. 

3.1. Basic equations derivation 

The content of this chapter has a detailed derivation process in Book [30]. The transfer matrix (20) or (25)obtained in Section 2, for 
the i-th element, can always be written in the form as 

ZO,i =UiZI,i (26)  

where Z is the N-dimensional state vector, U is a N × N dimension transfer matrix, f is an N-dimensional loading function independent 
of the state vector. 

When N is even, using the RTMM, Eq. (26) is divided into blocks as 
[

Za
Zb

]

O,i
=

[
T11 T12
T21 T22

]

i

[
Za
Zb

]

I,i
(27)  

where Za,Zb each contain half of the state vector elements, and their division method will be discussed in section 3.2, matrix T is 
divided into matrix U after rearrangement according to Za,Zb. 

The Riccati transform is defined as 

ZaI,i =SiZbI,i (28) 

By Eq. (28), ZaI,i and ZbI,i are connected. The (N /2) × (N /2) dimension matrix Si is called the Riccati transfer matrix (RTM) at the 
input point PI,i. 

Eq. (27) is expanded as 

ZaO,i =T11,iZaI,i + T12,iZbI,i (29)  

ZbO,i =T21,iZaI,i + T22,iZbI,i (30) 

Substituting Eq. (28) into Eq. (30), one can obtain 

ZbI,i =
(
T21,iSi + T22,i

)− 1ZbO,i (31) 

Further, Substituting Eq. (31) into Eq. (29) leads to 

ZaO,i =
(
T11,iSi +T12,i

)(
T21,iSi + T22,i

)− 1ZbO,i (32) 

Fig. 3. Numerical stability of FSITMM.  
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can also be abbreviated as 

ZaO,i =Si+1ZbO,i  

where 

Si+1 =
(
T11,iSi +T12,i

)(
T21,iSi + T22,i

)− 1  

3.2. The basis for dividing Za and Zb 

The division of Za and Zb is determined by boundary conditions. Typically, boundary conditions come in two forms. 1) If the 
equations are homogeneous, then half of the state vector known by the boundary conditions there should be put into Za and the 
unknown into Zb. 2) If the equation is inhomogeneous, the two state vectors that are linearly related should be placed in Za and Zb, 
respectively. 

After rearranging Za and Zb, matrix T and vectors fa, f b will be obtained elegantly. 

3.3. Calculation process 

Assuming that the system boundaries are homogeneous, ZaI,1 = 0,ZbI,1 ∕= 0 are obtained from the boundary conditions at the input 
of the system. Substituting ZaI,1 = 0,ZbI,1 ∕= 0 into Eq. (28), one can obtain 

S1 = 0, e1 = 0 (33)  

If it is a chain system, Eq. (32) can be used to obtain Si, ei of the whole system. 
If the system consists of n elements, then for another boundary of the system, the output point PO,n, there is the equation 

ZaO,n =Sn+1ZbO,n + en+1 (34) 

Substituting the boundary conditions here, the frequency equation corresponding to the eigenvalue is obtained. Then the value of 
the state vector of the output point is calculated. Further, scanning backward from the output point to the input point, the value of the 
state vector at any point in the system is obtained. 

3.4. Improved root search method 

From Eq. (31), matrix inversion exists in the process of RTMM recursion. When the determinant of (T21,iSi +T22,i) is 0, the frequency 
ω is the pole of the equation Δ(ω) = |Sn+1|. On either side of the pole, Δ(ω) will have opposite signs. If the calculation program uses the 
dichotomy method to scan the roots of the equation, the singularity points are mistakenly considered to be the roots of the equation. 

Fig. 4. Elimination of singularities using improved RTMM.  
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Therefore, this paper adopts the method of literature [21] to scan the root of 

Δ(ω)= |Sn+1|
∏n

i=1
|Γ i| (35)  

where Γ i = T21,iSi + T22,i. 
∏n

i=1
|Γ i| is all the denominators in Sn+1, so equation Eq.(35) no longer contains singularity points. 

For example, in the tube model used in section 4, the numerical simulation shows three singularities in the first 100 Hz when 
calculating the vertical vibration, which is unacceptable. If the classical RTMM is applied, these intermittent points need to be found 
manually and then removed. These problems are avoided by using the improved RTMM method, which is shown in Fig. 4. 

4. Numerical simulation and discussion 

The simulation example adopts the classic example named Dundee tube model [31], shown in Fig. 5. 
A straight liquid-filled pipe is closed at both ends and suspended from the ceiling soft springs. The tube can be considered as 

unaffected by the support and is able to move freely in the plane. regardless of the mass of the plug. The specific parameters are shown 
in Table 1. 

Natural frequencies below 1000 Hz in different directions are calculated. Case A: Axial. Case B: Vertical. 

Fig. 5. Dundee tube model.  

Table 1 
Tube parameters.  

Tube Parameters 

Length (m) 4.502 
Inside Diameter (m) 2.601e-2 
Tube Wall Thickness (m) 3.933e-3 
Poisson’s Ratio 0.29 
Tube Bulk Modulus (Gpa) 168 
Tube Mass Density (kg/m3) 7985 
Fluid Bulk Modulus (Gpa) 2.14 
Fluid Mass Density (kg/m3) 999  

Fig. 6. Physical model and topological graphs of liquid-filled straight pipe system.  
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According to Fig. 5, the physical model of Fig. 6(a) is given. The FSI equations are a set of Quasilinear equations, which are not 
completely linearized, some nonlinear factors in the matrix are approximated as linear factors, and the error caused by the approx
imation will become larger if the pipe section is longer. Therefore, increasing the number of segments will increase the numerical 
accuracy, but more transfer matrices will decrease the computational speed [32]. The unit division process is a process of finding the 
balance position of accuracy and computational speed. The pipe was divided into different sections, including four cases from one 
section to four sections. The calculation results of vertical vibration frequency are shown in Table 2. In the case of only one section, the 
high frequency cannot be calculated. The results obtained from the two-to four-section calculations are stable. To ensure the success of 
the calculations, the pipeline was divided into three equal sections. 

According to the theory of topological graphs [33], the transitive relationship is shown in Fig. 6(b). 

4.1. Case A: Axial 

The natural frequencies are shown in Table 3. It can be seen that the calculated results of FSITMM, L-MOC or FSIRTE are in good 
agreement with the experimental data, which proves the correctness of FSIRTE. 

Table 2 
Vertical Natural Frequencies of liquid-filled straight pipe with different sections.   

One section Two sections Three sections Four sections 

1 13.69 13.69 13.69 13.69 
2 37.40 37.40 37.40 37.40 
3 72.89 72.89 72.89 72.89 
4 120.0 120.0 120.0 120.0 
5 178.3 178.3 178.3 178.3 
6 247.5 247.5 247.5 247.5 
7 327.2 327.2 327.2 327.2 
8 416.8 416.8 416.8 416.8 
9 516.1 516.1 516.1 516.1 
10 624.5 624.5 624.5 624.5 
11 – 741.5 741.5 741.5 
12 – 866.6 866.6 866.6 
13 – 999.3 999.3 999.3  

Table 3 
Axial Natural Frequencies of liquid-filled straight pipe system.   

Experiment [31] L-MOC [9] FSITMM FSIRTE 

1 173 172 172.4 172.4 
2 289 286 284.6 284.6 
3 459 453 453.9 453.9 
4 485 493 489.2 489.2 
5 636 633 634.2 634.2 
6 750 741 741.2 741.2 
7 918 907 907.3 907.3 
8 968 980 976.4 976.4  

Table 4 
Vertical Natural Frequencies of liquid-filled straight pipe system.   

Experiment [31] L-MOC [9] FSITMM FSIRTE 

1 13 14 13.69 13.69 
2 36 37 37.40 37.40 
3 70 73 72.89 72.89 
4 116 120 120.0 120.0 
5 173 179 178.3 178.3 
6 241 248 247.5 247.5 
7 320 328 327.2 327.2 
8 411 418 416.8 416.8 
9 510 518 516.1 516.1 
10 619 627 624.5 624.5 
11 737 744 – 741.5 
12 864 870 – 866.6 
13 999 1003 – 999.3  
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Fig. 7. Vertical vibration mode of liquid-filled straight pipe system.  
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4.2. Case B: Vertical 

As shown in Table 4, it can be seen that when the frequency is too high, FSITMM cannot obtain the natural frequency due to poor 
numerical stability. Compared with the improved MOC(L-MOC), FSIRTE are still competitive. For FSIRTE, not only the natural fre
quencies are obtained, but also it is in good agreement with the experimental value. The numerical stability of FSIRTE is demonstrated. 

For beam models, more attention has been paid to the modes of vertical vibrations. The first ten vibration modes of the liquid filled 
pipeline are shown in Fig. 7. From the figure, it can be seen that the vertical vibration modes of the liquid-filled straight pipe system 
with both ends free have similar shapes to the vertical vibration modes of the solid beam with both ends free. For each order of 
frequency increase, the vibration mode will increase by one peak. This also verifies that the calculated natural frequency does not omit 
or add roots. 

The simulation results of FSIRTE for a liquid-filled straight pipe system are satisfactory. The future work includes several aspects.  

1. The calculation of the vibration characteristics of the liquid-filled pipe by FSIRTE method for complex boundary.  
2. The dynamic response of the pipe under forced vibration.  
3. The rapid determination of the number of pipe segments by mathematical methods. 

5. Conclusion 

In this paper, by introducing the Riccati transfer matrix method into the study of fluid structure interaction vibration characteristics 
of liquid-filled pipes, the Riccati transfer equations of fluid structure interaction of liquid-filled pipes are established. In this way, the 
numerical stability of the classical transfer matrix method when evaluating the vibration characteristics of liquid-filled pipes, espe
cially in the high-frequency domain, is improved. 

Meanwhile, the improved algorithm of removing the singular points of the Riccati transfer matrix significantly improves the 
computational efficiency of the Riccati transfer matrix method, as relative larger scanning steps are applicable. 

Theoretically, the numerical instability of the dynamic model in this paper is caused by hyperbolic function; The calculation 
strategy introduced in this paper may be extended to many other calculation models containing hyperbolic functions, such as the 
Timoshenko beam model and its related models, which has reference significance and potential application value for the study of high- 
frequency vibration characteristics of other calculation models in the field of fluid structure coupling. 
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