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Abstract

Study Design: Retrospective review.

Objective: To use predictive modeling and machine learning to identify patients at risk for venous thromboembolism (VTE)
following posterior lumbar fusion (PLF) for degenerative spinal pathology.

Methods: Patients undergoing single-level PLF in the inpatient setting were identified in the National Surgical Quality
Improvement Program database. Our outcome measure of VTE included all patients who experienced a pulmonary embolism
and/or deep venous thrombosis within 30-days of surgery. Two different methodologies were used to identify VTE risk: 1) a novel
predictive model derived from multivariable logistic regression of significant risk factors, and 2) a tree-based extreme gradient
boosting (XGBoost) algorithm using preoperative variables. The methods were compared against legacy risk-stratification
measures: ASA and Charlson Comorbidity Index (CCI) using area-under-the-curve (AUC) statistic.

Results: 13, 500 patients who underwent single-level PLF met the study criteria. Of these, 0.95% had a VTE within 30-days of
surgery. The 5 clinical variables found to be significant in the multivariable predictive model were: age > 65, obesity grade II or
above, coronary artery disease, functional status, and prolonged operative time. The predictive model exhibited an AUC of 0.716,
which was significantly higher than the AUCs of ASA and CCI (all, P < 0.001), and comparable to that of the XGBoost algorithm
(P > 0.05).

Conclusion: Predictive analytics and machine learning can be leveraged to aid in identification of patients at risk of VTE following
PLF. Surgeons and perioperative teams may find these tools useful to augment clinical decision making risk stratification tool.
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Introduction

Posterior lumbar fusion (PLF) is a commonly performed

surgery for degenerative spinal diseases including lumbar

spinal stenosis and spondylolisthesis1. From 1998 to 2014, the

utilization rate for spinal fusions has increased from 74 to 139

cases per 100, 000 persons, with lumbar fusions being the pri-

mary driver of this trend.2-5 Despite increasing surgeon expe-

rience and more advanced techniques, complication rates have

remained relatively stable over time.3,6 Among the commonly

cited complications of PLF, venous thromboembolism (VTE)

occurs in 0.13% to 3.7% of cases and is a notable source of

morbidity, mortality, and increased healthcare utilization.7-9 If

not treated promptly, these thromboembolic complications can

lead to cardiopulmonary compromise, myocardial infarction,
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cerebral ischemia, and even sudden death.10 Many risk factors

have been previously identified, with a recent systematic

review reporting elderly age, female gender, diabetes, chronic

kidney disease, non-ambulatory functional status, prolonged

operative time, and postoperative blood transfusion as the inde-

pendent risk factors for VTE after spine surgery.9 While sev-

eral studies have determined independent risk factors for VTE

in spine surgery using conventional regression analysis, ulti-

mately more comprehensive and implementable tools, such as

predictive models and potentially machine learning algorithms,

are needed in clinical practice.

Given the importance of improving patient outcomes and

quality of care, as well as lowering costs associated with com-

plications, there has been a focus recently on preoperative risk

stratification in orthopedic surgery.11,12 A variety of risk stra-

tification scales for other orthopedic surgeries have been pro-

posed including for outpatient spine surgery, total joint

arthroplasty, and open reduction and internal fixation of ankle

fractures.13-15 At present, surgeons use a combination of clin-

ical judgment and legacy risk-stratification metrics like

American Society of Anesthesiologists (ASA) and Charlson

Comorbidity Index (CCI) to identify patients who may be at

risk of complications following spine surgery.16-18 However, to

our knowledge, there are no standardized risk stratification

tools for determining patients at risk of VTE following PLF.

The purpose of this study was to develop clinically useful

tools using predictive analytics and machine learning to

improve upon these existing methods for identifying patients

at risk of postoperative VTE following PLF. We hypothesized

that both the scoring tool and the machine learning model

would be predictive of VTE, though the machine learning

model would have a higher receiver operator area under the

curve (AUC) metric due to its greater computational complex-

ity relative to the scoring tool.

Methods

Data Source

The National Surgical Quality Improvement Program (NSQIP)

database is a prospectively collected surgical registry contain-

ing data on more than 7-million patients from over 500 parti-

cipating United States medical institutions. The registry

includes information on patient demographics and comorbid-

ities, surgical procedures, metrics of healthcare utilization

(i.e. operative time, length of stay), and 30-day postoperative

complications. The NSQIP database has been shown to have

high validity and is commonly used for orthopedic research.19

After institutional review, our study was exempted from IRB

review and informed patient consent.

Patient Population

Adult patients undergoing in-patient, single-level PLF from

2010 to 2017 were identified using Current Procedural Termi-

nology (CPT) codes 22612, 22630, 22633. We specified

single-level PLF by excluding patients with CPT codes denot-

ing add-on levels (22614, 22632, 22634). Patients with Inter-

national Classification of Diseases Ninth Revision and Tenth

Revision (ICD) diagnosis codes indicating revision surgery,

trauma, or vertebral malignancy were excluded (N ¼ 389). All

codes used to define our cohort are displayed in Online Appen-

dix 1. Patients with any missing data in the outcome measure or

predictive variables were removed from the analysis

(N ¼ 1,174).

Outcome Measure and Predictive Variables

The primary outcome measure was VTE, which was defined as

the presence of either deep vein thrombosis (DVT) or pulmon-

ary embolism (PE) within 30 days of the index operation.

Variables tested in the initial multivariable logistic regres-

sion for inclusion into the predictive model and extreme gra-

dient boosting (XGBoost) machine learning algorithm

included: age, sex, body mass index (BMI), diabetes, conges-

tive heart failure, coronary artery disease (CAD), chronic

obstructive pulmonary disease (COPD), hypertension, renal

failure, hematocrit, albumin, INR, bilirubin, current tobacco

use, functional status, and operative time. Prolonged operative

time was defined as above the 90th percentile. Per convention,

obesity was categorized in terms of grades (grade I: BMI

31-35; grade II: BMI 36-40; grade III: �41).

Statistical Analysis—Predictive Model

A randomly split 80% of our dataset was used to train our

models, and the remaining 20% was used to test our models.

We performed multivariable logistic regression with backward

elimination to determine the variables most predictive of VTE,

and these variables were included in the predictive model.

Based on nomogram analysis of our logistic regression, each

variable was given a scaled weight based on its relative impor-

tance within the model. The nomogram was calibrated such

that the maximum weight was 3. The final resulting model was

then used to predict VTE in the test cohort, and the most effec-

tive cut-off value for the model was determined using You-

den’s index analysis. The methodologies used to construct our

score-based model were designed and executed based on pre-

vious peer-reviewed methodologies.13-15,20

Statistical Analysis—XGBoost

We again randomly split our dataset into 80% used to train our

XGBoost models and 20% use to test our models. XGBoost is a

form of supervised machine learning which uses decision trees

to iteratively partition data from the training dataset into

smaller, distinct subsets based on similar characteristics using

the “dart” boosting method.21,22 We used a native feature

importance algorithm built upon multivariate logistic regres-

sion to identify and include the top 10 most predictive variables

for our outcome measure: BMI, operative time, hematocrit,

age, albumin, CAD, gender, smoking status, COPD, and
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functional status. We only included these 10 variables to mini-

mize any bias from overfitting our model.23 After the model

was constructed using these 10 variables, predictions on new

data in the test set are made based on the probability of a

datapoint falling within a given subset having a particular out-

come based on the outcomes of the other datapoints in that

subset. We internally validated our XGBoost algorithm by

applying it to the test dataset.

Statistical Analysis—Validation

AUC analysis was used to measure the effectiveness of the

predictive model and the XGBoost algorithm. We performed

similar AUC analysis on ASA and CCI legacy indices.24,25

AUC scores were interpreted according to statistical con-

vention: an AUC score of 0.5 indicates no discriminative abil-

ity, and 0.7-0.8 indicates good discrimination.26 Significance

was set at P ¼ 0.05 for analyses. Our scoring system was

developed and validated using STATA version 15.0 (Stata-

Corp, College Station, TX). The XGBoost algorithm was con-

structed and validated using R, version 4.0.3 (R Project for

Statistical Computing).

Results

Study Population

A total of 13, 500 adult patients who underwent inpatient

single-level PLF were identified in the NSQIP registry. The

mean age was 50.6 years old, and 55.7% (7,516) were female

(Table 1). Of the 13, 500 patients in our final cohort, 0.95%
(128) were found to have a VTE within 30-days of surgery.

Detailed demographic and comorbidity data is shown in

Table 1. Mean operative time was 193 minutes, and prolonged

operative time was defined as >90th percentile (>304

minutes).

Predictive Model Parameters

For the 10, 750 patients included in our training dataset, 5

variables were independently predictive of VTE on multivari-

able analysis: age over 65 (OR ¼ 1.52, 95% CI [1.07, 2.17], P

¼ 0.019), obesity grade II or higher (OR¼ 1.56, 95% CI [1.07,

2.26], P¼ 0.019), history of CAD (OR ¼ 10.52, 95% CI [2.33,

47.59], P ¼ 0.019), dependent functional status (OR ¼ 2.40,

95% CI [1.16, 4.97], P < 0.001), and prolonged operative time

(OR ¼ 3.27, 95% CI [2.19, 4.87], P < 0.001). The univariate

and multivariable regression analyses demonstrating the asso-

ciations between VTE risk and each of these variables are

displayed in Tables 2 and 3, respectively. These variables were

used to create the predictive model, and nomogram analysis

produced weighted point values for each variable. One point

was assigned for: elderly, obesity, and dependent functional

status. Two points were assigned for prolonged operative time,

and 3 points were assigned for CAD.

Predictive Model Validation

For the 2,750 patients included in the test dataset, each increase

in the predictive model score was associated with a significant

and incremental increase in the odds of developing VTE.

Table 1. Patient Demographics and Comorbidities.

N %

Total 13, 500 -
Age
19-34 490 3.63%
35-49 2,146 15.90%
50-65 5,050 37.41%
65þ 5,814 43.07%

BMI
<30 7,244 53.66%
31-35 3,692 27.35%
36-40 1,537 11.39%
40þ 1,027 7.61%

Sex
Female 7,516 55.67%

Comorbidities
Diabetes 2,797 20.72%
COPD 714 5.29%
CAD 19 0.14%
CHF 44 0.33%
Renal failure 7 0.05%

Functional status
Independent 13, 214 97.88%
Partially dependent 269 1.99%
Totally dependent 17 0.13%

Table 2. Univariate Analysis of Risk Factors for Venous
Thromboembolism.

Venous thromboembolism

Category N % P-valuea

Total 128 - -
Elderly (age > 65 years) 63 1.17% 0.032
Obesity (grade II or above) 44 1.33% 0.009
Coronary Artery Disease 5 10.53% <0.001
Dependent Functional Status 8 2.35% 0.007
Prolonged Operative Time 34 2.53% <0.001

aComparing the number of patients in each category with and without VTE.
Bolded values indicate significance at P < 0.05.

Table 3. Multivariable Logistic Regression to Determine Predictive
Factors in Training Set.

OR 95% CI P-valuea

Elderly (Age > 65) 1.52 1.07—2.17 0.019
Obesity (BMI > 35) 1.56 1.07—2.26 0.019
Coronary artery disease 10.52 2.33—47.6 0.002
Dependent functional status 2.43 1.16—4.97 0.019
Operative time (>304 minutes) 3.27 2.19—4.87 <0.001

aBolded values indicate significance at P < 0.05.
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Compared to patients with a score 0, patients with a score 1 had

1.9x-odds of VTE development, and those with a score of 7 had

99.6x-odds of VTE (P < 0.05 for all; Table 4).

Patients had a 0.50% risk of a VTE with a baseline score of

0, 0.94% risk with a score of 1, 0.95% with a score of 2, 1.39%
with a score of 3, 2.37%with a score of 4, 2.52%with a score of

5, 5.22% with a score of 6, and 33.33% with a score of

7 (Table 5). The AUC of the predictive model was 0.709

(95% CI [0.694, 0.724]), which was significantly higher than

the AUC of 0.469 (95% CI [0.443, 0.495]) for ASA and the

AUC of 0.515 (95% CI [0.496 0.534]) for CCI (all, P< 0.001).

The empirical optimal cut-off for our scoring system was deter-

mined to be 3 (J ¼ 0.378) using Youden’s analysis. This cutoff

point had a corresponding positive likelihood ratio (LRþ) of

1.58 (Table 6). In other words, patients with score of 0, 1, or 2

are considered to be at low risk for VTE based on our model,

and those with scores 3 and above were considered to be high

risk for VTE.

XGBoost Parameters

For construction of the machine learning model, we initially

tested 17 variables for inclusion into the XGBoost model: elderly

(age over 65-years-old), sex, smoking status, functional status,

diabetes, COPD, CHF, CAD, dyspnea, renal failure, steroid use,

transfusion history, bleeding disorder, hypoalbuminemia

(albumin below 3.5 g/dl), anemia (hematocrit below 30%),

hyper-bilirubinemia (total bilirubin above 2.5), abnormal INR

(INR above 1), and prolonged operative time (over 304minutes).

To prevent overfitting, the 10most predictive variableswere used

tobuild theXGBoost algorithm:BMI, operative time, hematocrit,

age, albumin, CAD, gender, smoking status, COPD, and func-

tional status. A feature importance plot demonstrating the relative

scaled importance of each continuous and categorical variable

used in the XGBoost algorithm is displayed in Figure 1.

XGBoost Validation

The XGBoost model had an AUC of 0.716 (95% CI [0.701,

0.731]), which was significantly greater than the AUCs of ASA

and CCI (P < 0.001 for all). There was no statistically signif-

icant difference between the AUCs of the XGBoost model and

the predictive model (0.716 vs. 0.709 respectively, P > 0.05).

Discussion

Standardized risk-stratification tools can aid surgeons and peri-

operative teams in identifying patients who are at risk of post-

operative complications. The aim of our study was to leverage

predictive analytics and machine learning in developing novel

tools for predicting postoperative VTE following single-level

PLF.

To this end, we developed and internally validated 2 novel

tools for predicting VTE. First, we present a simple and pre-

dictive 5-variable clinical score using age, BMI, history of

coronary artery disease, functional status, and operative time

to identify patients at risk of VTE following single-level PLF.

Then, we developed an XGBoost machine learning algorithm

incorporating 10 preoperative variables into a computationally

complex, tree-based model. Both the simple scoring tool and

complex XGBoost algorithm are significantly more predictive

than benchmark ASA and CCI metrics for predicting post-

operative VTE. Interestingly, the predictive ability between the

2 models are comparable, with no significant difference in

terms of AUC.

With the utilization rate of PLF increasing annually in the

United States, there is growing concern surrounding the poor

Table 4. Odds Ratio for Increased Risk of VTE for Each Score Using
the Validation Set.

Score OR 95% CI P-Value

1 1.89 1.14—3.12 0.013
2 1.91 1.05—3.45 0.033
3 2.81 1.58—5.01 <0.001
4 4.85 2.25—10.42 <0.001
5 5.14 2.31—11.45 <0.001
6 10.98 4.68—25.77 <0.001
7 99.63 8.76—1133.08 <0.001
8* - - -

All odds ratios are in reference to a score of 0.
Bolded values indicate significance at P < 0.05.
*There were no patients with a score of 8.

Table 5. Risk of VTE for Each Score.

Score Risk (%)

0 0.50%
1 0.94%
2 0.95%
3 1.39%
4 2.37%
5 2.52%
6 5.22%
7 33.33%
8* -

*There were no patients with a score of 8.

Table 6. Sensitivity, Specificity, and Positive Likelihood Ratios for
Each Score.

Score Sensitivity (%) Specificity (%) LRþ
0 100.00% 0.00% 1.00
1 79.69% 38.75% 1.30
2 50.78% 67.95% 1.58
3 35.94% 82.81% 2.09
4 19.53% 93.95% 3.23
5 12.50% 96.72% 3.81
6 6.25% 99.04% 6.48
7 0.78% 99.99% 52.24
8* - - -

*Metrics unable to be calculated since there were no patients with a score of 8.
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outcomes and excess healthcare costs associated with post-

operative VTE.4 A 2018 review recognized postoperative VTE

as the second most common cause of extended length of stay as

well as the third most common cause of increased mortality and

healthcare costs in hospitalized surgical patients.27 In terms of

quality improvement, VTE prevention has been a continued area

of focus for enhancing safety measures and quality of surgical

care for the past 2 decades.28 Despite numerous reviews and

practice guidelines supporting the efficacy of primary thrombo-

prophylaxis in patient cohorts at elevated risk of postoperative

VTE, several recent studies cite the underutilization of prophy-

lactic measures.27,29,30 Consequently, the rates of postoperative

VTE has remained relatively constant over time, while the inci-

dence of other postoperative complications have decreased.9,31-33

These data suggest a notable gap between evidence-based recom-

mendations and implementation into clinical practice.

A recent meta-analysis of 26 studies found advanced age,

female sex, diabetes, chronic kidney disease, non-ambulatory

activity status, highD-dimer level, long operative time, and blood

transfusion to be factors associated with VTE development fol-

lowing spinal surgery.9 These factors are congruent with those

found in our predictive model. Additional studies have reported

similar risk factors.32-34As spine surgery also carries theopposing

risk of bleeding complications such as epidural hematoma and

associated neurologic injury, surgeons must weigh the risk of

over-anticoagulation against the benefits of pharmacologic pro-

phylaxis.31,34 In the absence of a standardized stratification sys-

tem for identifying patients at risk of postoperative VTE, clinical

decision-making regarding patients in whom additional chemo-

prophylaxis is necessary can be challenging.

On AUC analysis, our scoring system proved to be more

predictive than benchmark risk-stratification assessments like

ASA and CCI for identifying patients at risk of VTE following

PLF. In the present study, the AUCs for both ASA and CCI

were around 0.5, suggesting that the predictive ability of these

metrics for VTE was not higher than random chance. The

proposed predictive model scoring tool is able to build on these

legacy metrics, and is directly tailored toward predicting post-

operative VTE while retaining the simplicity of commonly

used legacy metrics.

Machine learning algorithms such as gradient tree boosting

have been increasingly leveraged to aid in clinical and surgical

decision-making.35,36 Given enormous quantities of data,

machine learning offers distinct advantages over traditional

analytic methods in terms of increased speed, processing

power, and ability to identify complex associations amid sub-

stantial statistical noise.23 The “ensemble” technique of the

XGBoost algorithm allows it to build upon iterative tree-

based models to converge into a final, highly predictive model,

which was demonstrated in its ability to predict VTE in the

present study.

XGBoost models have also been successfully applied in

other healthcare domains. Within the field of orthopedics, Lu

et al and Kumar et al demonstrated the efficacy of XGBoost in

preoperative screening and risk stratification of patients likely

to have poor clinical outcomes following ACL reconstruction

and shoulder arthroplasty, respectively.37,38 In the present

study, our XGBoost model was also highly predictive of VTE,

but it did not outperform our simpler, 5-factor predictive tool

despite incorporating twice the amount of user input. Ulti-

mately, our predictive tool is as effective as the XGBoost algo-

rithm, but its simplicity makes it practical in a clinical setting.

Contrary to our initial hypothesis, the computationally com-

plex XGBoost model and the relatively simpler scoring tool

Figure 1. Feature importance plot for XGBoost machine learning model.
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were comparable in terms of predictive ability when applied to

our validation dataset. This may suggest that, at present,

machine learning models may not necessarily be more predic-

tive than simpler models which are more convenient to utilize

in clinical practice. Machine learning models likely require

implementation into an existing electronic medical record sys-

tem with automatic input of the variables through the electronic

medical record system to be practically used real-time in a

clinical setting. It is important to note, however, that machine

learning models may prove to be more predictive than simpler

models when incorporating more data points, in terms of both

quantity and granularity, than those which are provided in the

NSQIP database.

This study has several limitations. First, there are variables

associated with a patient’s risk of VTE that are not captured in

NSQIP data. For instance, we did not have access to pharma-

cologic data, so we are unable to assess the impact of agents

such as preoperative oral contraceptives or perioperative tra-

nexamic acid on VTE. Similarly, we are unable to identify

which patients in our cohort received thromboprophylaxis dur-

ing the perioperative period, which may substantially alter a

patient’s risk of VTE. A prior study by McLynn et al found that

pharmacologic prophylaxis, primarily with unfractionated

heparin, after elective spine surgery was not associated with

a significant reduction in VTE.34 Second, we are unable to

assess a patient’s level of postoperative activity, which maybe

a risk-factor for VTE. Third, because only 1 dataset was used

for model derivation and internal validation, we may have

inadvertently overfitted the models. Future studies should seek

to externally validate our predictive tools. Finally, we only

focused on 1-level fusions, and fusion levels maybe a risk

factor for VTE development. Future investigations should

examine the potential cost savings provided by predictive ana-

lytics models which can accurately identify patients at risk of

VTE following spine surgery.

Conclusion

We present a simple, 5-variable predictive model (patient age

> 65, obesity grade II or above, coronary artery disease, func-

tional status, and prolonged operative time) to predict patients

at risk of VTE following single-level PLF surgery. The pre-

dictive model achieved similar accuracy in VTE prediction as a

sophisticated machine learning model. Surgeons and periopera-

tive teams may find these tools useful to augment clinical

decision-making and perioperative management.
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