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Abstract

Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool to explore cells. With an increasing

number of scRNA-seq data analysis tools that have been developed, it is challenging for users to choose
and compare their performance. Here, we present an overview of the workflow for computational
analysis of scRNA-seq data. We detail the steps of a typical scRNA-seq analysis, including experimental
design, pre-processing and quality control, feature selection, dimensionality reduction, cell clustering
and annotation, and downstream analysis including batch correction, trajectory inference and cell-cell
communication. We provide guidelines according to our best practice. This review will be helpful for
the experimentalists interested in analyzing their data, and will aid the users seeking to update their

analysis pipelines.
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INTRODUCTION

ScRNA-seq has developed as a powerful tool to
characterize complex tissue and answer the question
that cannot be addressed by bulk RNA-seq. Many new
single-cell technologies have been developed to
discover missing observations, including the methods
for measurement of the single-cell genome sequence,
chromatin accessibility, DNA methylation, histone
modification, transcription factor binding and
chromatin conformation (Cao et al. 2018; Hainer et al.
2019; Stuart and Satija 2019; Wang et al. 2019). ScCRNA-
seq is the most commonly used technique in the
community that has significantly advanced our
knowledge of the biological process. However, due to
the sparse and high dimensional nature of scRNA-seq
data, scRNA-seq data analysis is still challenging. The
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scRNA-seq technology, its application and analysis
methods have been previously reviewed (Andrews et
al. 2021; Bacher and Kendziorski 2016; Luecken and
Theis 2019; Paik et al. 2020; Papalexi and Satija 2018;
Potter 2018). In this review, we focus particularly on
the bioinformatics analysis pipeline (Fig.1) and
spotlight the “best” pipelines according to our practice.

EXPERIMENTAL DESIGN FOR SCRNA-SEQ

In the past decades, a variety of single-cell approaches
have been developed for cell capture and RNA
amplification, each has its unique advantages and
disadvantages (Lafzi et al 2018; Paik et al. 2020;
Papalexi and Satija 2018). According to the single-cell
isolation and capture strategy, currently, scRNA-seq
techniques can be categorized into two main
approaches, the plate- or microfluidic-based methods
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Fig. 1 Overview of scRNA-seq data analysis workflow. Typically, the researchers must first consider which platform of single-cell are
needed as each has its benefits and limitations. After sequencing, the expression matrices can be obtained by quantification tools. Some-
times, researchers need to combine expression matrices using batch correction methods. Next, the data are visualized by dimensional-
ity reduction, and clustered and annotated for biological interpretation, or ordered the cells along a predicted trajectory in pseudotime,
or inferring for cell-cell communication. Suggested tools are listed in the colored box

and droplet-based methods. Plate-based protocols use
the fluorescence-activated cell sorting (FACS) to isolate
the individual cells. Automated microfluidic-based
platforms, such as the Fluidigm C1, isolate and capture
the single cells with parallel microfluidic channels. The
plate- and microfluidic-based methods are similar, and
are often limited in the throughput with ~50 to ~500
cells per analysis. The key potential benefit of those
platforms is that they generally have high sensitivity
with reliably quantifying up to ~10,000 genes per cell.
Droplet-based methods barcoded single cells and
tagged each transcript with unique molecular
identifiers (UMI) in individual oil droplets, thus
substantially reducing the time and cost needed per
analysis, and massively increasing the throughput to up
to ~10,000 cells per run. However, owing to technical
limitations, typically detect only 1000-3000 genes per
cell, which is just a small part of genes actually
expressed. The genes that are expressed but the
transcripts are not detected due to the technical issues
termed dropouts.

The experimental for

design considerations
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scRNA-seq have been previously reviewed (Baran-Gale
et al. 2018; Lafzi et al. 2018). Several factors need to be
considered before choosing a scRNA-seq method. First,
is the number of cells that need to be sequenced per
experiment. This is highly dependent on the
heterogeneity of all cells in the sample, and dependent
on the proportion of a particular cell type you expected
within the sample, according to the previous
knowledge. The satija lab provides an online tool
(https://satijalab.org/howmanycells/) for estimating
how many cells need to sample according to the cell
diversity. In case no prior knowledge is available about
the heterogeneity of the cell population, a practical
solution is to perform the study with a high cell number
and lower sequencing depth, and then perform pre-
purification of the interested cells by FACS with in-
depth sequencing. Another factor that needs to be
considered is the cell size. Each platform has its
limitation. Upon technical demands, cell size is one
factor. Smaller cells (less than 25 pm in diameter) are
generally easier to be processed with minimal damage
compared to the larger or irregular-shaped cells, eg.,
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adult cardiomyocytes and neurons (Paik et al. 2020).
Thus, single nuclei RNA-seq (snRNA-seq) arises as an
alternative approach (Grindberg et al. 2013; Lacar et al.
2016; Litvinukova et al. 2020). Third, avoiding technical
biases, even though increasing methods are developed
to remove the technical biases for data analysis, it is
still challenging to distinguish the technical noise from
the real biological variance. It is important to design a
balanced experiment that limits confounding factors.

PRE-PROCESSING AND QUANTIFICATION

Once the sequencing reads are obtained, quality control
(QC) should be performed for the raw reads the same
as bulk RNA-seq. FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) is one of the popular
tools for checking read quality within an individual
sample, which inspects several quality metrics and
provides reports with informative visualizations.
FastQC reports and visualizes information on base
quality, GC content, adapter content and also the
presence of ambiguous bases, and over-represented
sequences, the FastQC website discusses these and
other issues in detail. Trimming is useful to remove
adapters and cut reads in different ways based on
quality, which may improve the reads mapping.
Trimmomatic (Bolger et al 2014), Trim Galore
(https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) and cutadapt (Martin 2011) are all
popular tools for cutting the reads based on quality
score or adapter sequence.

With the quality reads in hand, the expression of
each gene in individual cells needs to be estimated. For
non-UMI and non-barcode datasets, expression can be
obtained with traditional bulk RNA-seq quantification
tools such as RSEM (Li and Dewey 2011), STAR (Dobin
et al. 2013) and HTSeq (Anders et al. 2015), and the
downstream analysis have also successfully adopted
from bulk RNA-seq pipelines. If UMI- and barcode-
tagged data are available, counts can be obtained by
CellRanger (Zheng et al. 2017) or STARsolo (Kaminow
et al. 2021). In our practices, STARsolo is 10 times
faster than the CellRanger and outputs nearly identical
results (He et al. 2021; Kaminow et al. 2021). These
approaches map sequencing reads to a reference
genome or transcriptome index, and typically report
gene expression as raw counts. Nearly all quantification
tools are typically gene-centric. Recently, we developed
a single-cell transposable elements (TEs) expression
processing pipeline, scTE (He et al 2021), which
quantifies the expression of genes and TEs in the same
single-cell, and demonstrated TEs are useful addenda to
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the gene information, and in some cases are the major
source of information of their own in a variety of
systems and human disease.

QUALITY CONTROL

scRNA-seq data quality control can be split into cell QC
and gene QC. For cell QC, the first step is to exclude all
the cell barcodes that are unlikely to represent intact
individual cells, those are generally dead cell debris and
free-floating RNAs. The most straightforward approach
for assessing the quality of a cell is to calculate the
number of molecule counts (UMIs), the number of
expressed genes, the total detected counts, and the
proportion of RNA from mitochondrial genes. Cells with
high proportions of mitochondrial derived reads, a low
proportion of nuclear RNAs are often damaged or dying
cells, but it should be noted that a high fraction of
mitochondrial RNAs can also be biological signals that
indicate elevated respiration, such as in the
cardiomyocytes. In our practice, cells with less than
1000 UMlIs and less than 500 genes detected were
filtered out. Cells with more than 20% fractions of
mitochondrial counts were also discarded.

In contrast, cells with unexpectedly high counts and a
too large number of expressed genes may represent
doublets (or multiplets), that cell barcodes might
correspond to more than one cell. Removing doublets is
important for the high throughput scRNA-seq method,
of which often ~5% of cell barcodes are tagging
multiple cells (Wolock et al. 2019), and recent results
suggest that up to ~20% in the droplet-based 10x
Chromium scATAC-seq assay (Lareau et al 2020).
Unfortunately, neither of these approaches can
effectively distinguish real single-cell from doublets.
Doublets often harbor “hybrid” expression features,
special tools such as scrublet (Wolock et al. 2019),
DoubletFinder (McGinnis et al. 2019) and scds (Bais
and Kostka 2020) are developed to infer potential
doublets from the dataset itself.

In addition to QC of the cells, QC steps can also be
performed at the gene level. Raw counts often include
over 20,000 to 50,000 genes, which depends on the
reference index. This number can be dramatically
reduced by filtering out the genes that is not expressed
or only expressed in extremely few cells, which are not
informative of cell identity and cellular heterogeneity.
This is helpful to reduce the computational time and
memory cost for the downstream analysis. It is
important to choose a proper threshold for filtration, a
guideline for this is to use the minimum cell cluster size
of interest with consideration of dropouts. For example,
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filtering out the genes that are expressed in less than 20
cells may make it difficult to detect the cell clusters
with fewer than 20 cells. If the datasets have high
dropout rates, this threshold may even difficult to find
larger clusters. In short, this threshold depends on the
cell number of interest and should be scaled with the
total cell number of the datasets. Nevertheless, in our
practices, we did not recommend QC for genes unless
the datasets are too big out of the limitation of
computational resources of the computing server. First,
as discussed above, it should be careful for setting the
threshold. Besides, filtering genes makes it difficult to
perform comparable analysis for the datasets from
different studies, as the genes that have been filtered
out in this study may be informative for another one.

NORMALIZATION

Most quantification tools generally output the raw
counts’ matrix, counts are representative of the
molecules that are successfully captured, reverse
transcribed and sequenced in the scRNA-seq
experiment. While the number of useful reads obtained
from a scRNA-seq experiment varies between cells, and
this effect is pronounced for scRNA-seq experiment
owing to the biological and technical factors, this
difference must be corrected. The most commonly used
normalization method accounts for depth scaling. As
not all RNA molecules in a cell are not captured, some
scRNA-seq experiments use spike-ins, the synthetic
exogenous molecules at known content, to improve the
global scaling factors, but the use of spike-ins in scRNA-
seq is not routine yet due to the changes in generating
high-quality and representative spike-ins. An
increasing number of normalization methods have
developed, and the scran package (Lun et al. 2016) has
been shown to perform better than other tested
normalization methods for the downstream analysis
(Buttner et al. 2019), while another study argues that
different normalization method performs optimally for
different datasets and claim that their scone tool can be
used to evaluate the impact of the statistical design and
select an appropriate normalization for a given study
(Cole et al 2019). After normalization, the data
matrices are typically log(x+1)-transformed for the
downstream analysis.

FEATURE SELECTION

scRNA-seq faces the challenge of dropout, data only
captures a small fraction of the transcriptome of each
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cell. The gene expression could vary across all cells due
to the technique noise, especially for the genes with a
low amount of RNA (Brennecke et al. 2013). The
variance accounting for technical noise will disturb the
downstream analysis, such as dimensional reduction
and clustering. It is necessary to select the genes with
biological variance over technical variance, namely
highly variable genes (HVGs). HVGs can be identified by
fitting the variance-mean of each gene by a generalized
linear model (GLM) (Brennecke et al. 2013; Stuart et al.
2019). A high level of variance (exceeding the specified
threshold) will indicate genes important in explaining
heterogeneity within the cell population under study.
Standard deviation (std) or squared coefficient of
variance (CV2) are commonly used to estimate gene
variance, however, such an index prefers the genes with
larger mean expression value. The genes only
expressed in rare cells may be missed by such
strategies. GiniClust (Jiang et al. 2016) first note that
cell clustering is dependent on the selection of genes.
GiniClust introduces Fano factor and Gini index to
identify rare cell type expressed genes. Users should
select the best feature selection strategy according to
their research purpose.

DIMENSIONALITY REDUCTION AND VISUALIZATION

The high-dimensional nature of scRNA-seq dataset, in
which a single gene represents a single dimension. For
example, if 3,000 genes are selected as HVGs for the
downstream analysis, it has 3,000 dimensions and must
be reduced into 2 or 3 dimensions for interpretable
visualization and analysis. To date, the dimensionality
reduction techniques can be divided into linear and
non-linear algorithms. Principal component analysis
(PCA), a linear transformation approach that
perseveres Euclidean distance between cells, is the
most commonly used algorithm for bulk RNA-seq data
dimension reduction, and also have been successfully
adopted for the low throughput but in-depth scRNA-seq
data analysis (Goke et al. 2015; Mohammed et al. 2017).
While PCA cannot effectively capture cellular
relationships due to high level dropouts and other
technical noise, it often performs poorly for the direct
visualization of high throughput but low depth scRNA-
seq datasets. However, as PCA can be calculated
efficiently even for large datasets, it is the most
commonly used as a pre-processing step for non-linear
dimensionality reduction algorithms, and it is the basis
of many clustering and trajectory inference analysis
tools. Non-linear dimensionality reduction algorithms,
such as t-distributed stochastic neighbor embedding (t-
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SNE) (van der Maaten and Hinton 2008) have been
very popular in the community, but recent uniform
manifold approximation and projection (UMAP) (Becht
et al. 2018) algorithm has been shown to better
represent the topology of the data. Besides, some
publicly available tools, such as Seurat (Butler et al.
2018) and Scanpy (Wolf et al. 2018), allow projection
and visualization of both t-SNE and UMAP from custom
defined PCAs.

BATCH CORRECTION

The single-cell projects such as Human Cell Atlas
(Regev et al. 2017) aim to define all human cell types in
terms of distinctive molecular profiles (such as gene
expression profiles) and to connect this information
with classical cellular descriptions (such as location and
morphology) through an international collaborative
effort. A comprehensive reference map of the molecular
state of cells in tissues would propel the systematic
study of physiological states, developmental
trajectories, regulatory networks and interactions of
cells, and also provide a framework for understanding
cellular dysregulation in disease. However, biological
data are affected by the conditions of the measuring
experiments, such as different cell dissociation and
handling protocols, library-preparation technologies
and/or sequencing platforms (Haghverdi et al. 2018).
The term batch effect describes a situation where
batches of the data significantly differ in distribution,
due to irrelevant instrument-related factors (Leek et al.
2010). The systematic error introduced by batch effects
may obfuscate the signal of interest. The Batch effect
correction in single-cell RNA-seq data is a task to
identify and remove confounding factors between
batches. However, batch effects may be confounded
with the biological covariate of interest, such as drug-
treated condition or developmental process. It is a great
challenge to remove batch effects and retain real
biological heterogeneity at the same time.

Recently, an increasing number of algorithms are
proposed. scMerge (Lin et al. 2019) firstly identifies the
single-cell stably expressed genes (scSEGs) as “negative
controls” for estimating the unwanted factors, which
are then used to correct batch effect by fastRUVIII
algorithm (Risso et al. 2014), an RNA-seq normalization
method by factor analysis of control genes or samples.
ZINB-WaVE (Risso et al. 2018) uses a negative binomial
(ZINB) model accounting for zero inflation (dropouts),
over-dispersion, and the count nature of the data. ZINB-
WaVE is an extension of the RUV model, which includes
observed and unobserved sample-level covariates and
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enables normalization for batch effects. Although ZINB-
WaVE models sophisticated single-cell data, it fails to
handle large scale data sets with tens of thousands of
cells. Matching mutual nearest neighbors (MNN)
(Haghverdi et al 2018) identifies cells that have
mutually similar expression profiles between different
experimental batches or replicates. The authors
inferred that any differences between these cells in the
high-dimensional gene expression space are driven by
batch effects and do not represent the underlying
biology of interest. The systemic difference between
these cells is extracted by the algorithm and used to
correct the batch effects. The idea of MNN has a great
impact on the latter algorithms. MNN was originally
designed to batch correction for pairwise datasets, if
there are more than one datasets to be integrated, all
the datasets will be projected to one user selected
dataset sequentially. The result is inconsequent if there
are no common cell states for some pair of datasets.
Scanorama (Hie et al 2019) integrates data from
heterogeneous scRNA-seq experiments by finding
common cell types among all pairs of datasets. The
mutually linked cells between two datasets are kept.
This procedure excludes spurious links from the
neighbor searching. Conos (Barkas et al. 2019) also
apply MNN to integrate multiple datasets in low-
dimensional space. Instead of correction of gene
expression, Conos aims to construct a joint graph of
cells. Since the MNNs were detected using L2
normalized gene expression, significant differences
between batches may obscure the identification of
MNNSs. To overcome this, Seurat v2 (Butler et al. 2018)
uses canonical correlation analysis (CCA) to integrate
datasets, which projects the cells into the most
correlated components between two data sets. The rare
cells that cannot be explained by CCA are flagged for
further analysis. A nonlinear “warping” algorithm is
then used to align the data sets into a conserved low-
dimensional space. Although CCA can identify shared
biological markers and conserved gene correlation
patterns, the different cell types should not be aligned
together. Therefore, Seurat v3 integrates CCA and MNN
and introduces “anchors”, cell pairs that encode the
cellular relationships across datasets. The anchors are
important to determine the correction vector, which is
used to correct the gene expression profile. LIGER (Liu
et al. 2020a) takes as input multiple datasets of batches
and learns a low-dimensional space using integrative
non-negative matrix factorization. LIGER enables the
identification of shared cell types across batches, as
well as dataset-specific features, offering a unified
analysis of heterogeneous single-cell datasets. Besides
learning a low dimensional space, Harmony (Korsunsky
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et al. 2019) introduced an iterative procedure to soft
cluster and correct clusters center of cells. After
clustering, each dataset has cluster-specific centroids
that are used to compute -cluster-specific linear
correction factors. Based on the linear nature of the
clustering and correction algorithm, Harmony scales
with large datasets. Although the batch effects can be
successfully corrected for some particular scenarios,
most methods presume that datasets share the same
cell type. The uncorrected anchors identified by some
algorithms between two datasets will lead to erroneous
correction.

Unfortunately, these algorithms may not be able to
correctly adjust the batch effects for non-shared cell
groups due to the non-linear transformation. Recently,
Reference Principal Component Integration (RPCI) (Liu
etal 2021) was proposed to integrate multiple datasets
without the presumption of inter-sample similarity and
does not rely on shared cell types. RPCI uses a global
reference gene eigenvector to decompose all datasets
and project all cells into RPCI space. Note that the linear
RPCI space captures the information of gene expression
differences among datasets, which retained the
dissimilarities in cell groups. The batch effect removal
algorithms are becoming powerful tools for single cell
atlas, which make it possible to integrate and compare
data from different laboratories, conditions, and cells in
vitro and in vivo. The algorithms need to be optimized
to accommodate more complex scenes and reduce
computing consumption as more and more cells can be
sequencing in the future. Notably, this step is optional if
did not observe the obvious batch effect.

CLUSTER ANALYSIS AND ANNOTATION

The key advantage of scRNA-seq over traditional bulk
RNA-seq is the characterization of the heterogeneity of
cell populations at the single-cell level. In biological
terms, cell populations in a given sample may represent
many different cell types, such as the heart contain
cardiomyocytes, fibroblasts, endothelial cells and
immune cells. But they may also represent a different
state of the same cell type, such as the stress response
and immune response to infection, or the cell in the
normal and diseased state. Cell cluster is central for
most scRNA-seq data analysis, as it unbiased identifies
groups of cells based on expression profiles. Cells with
similar expression patterns are considered as the same
cell types or states, while other cells are classified as
distinct cell types. However, due to the sparse and high
dimensional nature of scRNA-seq data, identifying cell
groups based on their transcriptome is a challenging

© The Author(s) 2022

task.

Cell clustering generally after feature selection and
dimensionality reduction. A number of clustering
strategies for scRNA-seq data analysis have been
established. Supervised clustering refers to approaches
that classify cells based on prior known paradigm, such
as cell type specific marker genes. Such as
MetaNeighbor (Crow et al. 2018) allow users to assess
how well cell-type-specific transcriptional profiles
replicate across datasets, CellAssign (Zhang et al. 2019)
and Garnett (Pliner et al 2019) leverage prior
knowledge of cell-type marker genes to annotate
single-cell RNA sequencing data into predefined or de
novo cell types. Conversely, unsupervised clustering
refers to approaches that classify cell with the data
itself without any intervention from prior knowledge or
other datasets. One example is the widely used k-means
algorithm, which iteratively tests the closest k-cluster
center to which each cell is assigned. In addition to the
basic k-means algorithm, SC3 (Kiselev et al 2017)
package utilizes a parallelization approach whereby a
significant subset of the parameter space is evaluated
simultaneously to obtain optimized clustering
outcomes. In our practice, SC3 works well for low
throughput scRNA-seq data and does not require heavy
computing power, while unfit for the large scRNA-seq
dataset. The main disadvantage of k-means algorithm-
based approaches is that they are heavily dependent on
the predetermined number of k, which often results in
failure to detect the cell types of rare cell populations.

Graph clustering is an unsupervised clustering
approach that involves a community detection-based
algorithm. The Louvain (Blondel et al 2008), a
community detection-based algorithm, is currently one
of the most popular methods used for single-cell data
clustering. The Louvain method identifies distinct
communities based on a nearest-neighbor network for
the cells. The recently developed Leiden algorithm
(Traag et al. 2019), which yields communities that are
guaranteed to be connected, and is shown faster than
the Louvain algorithm and uncovers better partitions.
Both Louvain and Leiden algorithms were successfully
adopted by Seurat and Scanpy, and been extensively
used. The strength of these approaches is their speed,
even for large datasets.

All these clustering approaches have a set of their
own parameters that significantly affect the output and
the corresponding biological interpretations. For k-
means based methods, the pre-defined k value directly
determined the cluster number. Similarly, when
applying Louvain and Leiden to a K-Nearest Neighbour
approach (KNN graph), the number of nearest
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neighbors also influences the clustering results, for
example, if the nearest neighbors are set to 20, it is
difficult to detect the cell groups with less than 20 cells.
Besides, the Louvain and Leiden algorithm also has a
resolution parameter that affects the size of clusters,
with smaller resolutions detecting more clusters, and
the clusters with smaller cell size. Unfortunately, there
is no perfect rule for determining the optional
parameters, the users must typically make their
decisions based on their biological interpretations of
the results with different parameter combinations. It is
important that take into consideration of both
computational and biological aspects of the datasets,
for instance, one might calculate the rationality of the
clusters by examining the cell types that are already
known to exist in the given samples, and provides new
biological clues for the de novo detected new cell
types.

The most time-consuming step of scRNA-seq data
analysis is biological interpretation and annotation of
the cell clusters, and this step is tightly corelated to cell
clusters. Generally, cell types are annotated by hand
with well-known cell type specific marker genes,
however, defining cell types based on only a few
marker genes sometimes are arbitrary, and often it is
inappropriate to draw comparison conclusions from
different studies’ results directly, as they may use the
different set of marker genes to define the “same” type
of cells. For example, both CD14 and CD16 are
monocytes markers, but they represent different
subtypes of monocytes. Similarly, there are many
different subtypes of endothelial cells while
“endothelial cells” may be roughly labeled. Thanks to
recent and ongoing efforts of the large single-cell
database, such as the Human Cell Atlas or the mouse
brain atlas, identifying and annotating cell types with
the aid of external reference databases was applied, this
greatly facilitated cell type annotation and was helpful
to unify the definition across different studies.

There are two ways to annotate cell types with the
aid of external reference datasets: using the data
derived marker genes or using the full transcriptome
profile. Differential expression testing is often an
effective way to collect the marker genes: comparing
the cells in one cluster to all other cells in the dataset.
Typically, the marker genes have strong differential
expression effects, and are easy to be detected with
simple statistic tests such as t-test and Wilcoxon test,
and the top-ranked genes are often considered as
marker genes. Marker genes can be further loosely
verified via visual inspection for their specificity.
Clusters can be then annotated with the enrichment
analysis by comparing the marker genes from the
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dataset and marker genes from the reference datasets.
Recently, automated annotation tools, such as scmap
(Kiselev et al. 2018) and Garnett (Pliner et al. 2019), are
available for projecting cells from a scRNA-seq data set
onto cell types or individual cells from other
experiments by directly comparing the gene expression
profile. These methods are easy to use and offer a vast
increase in speed. However, if the reference datasets do
not contain exactly the same cell type as the cells at the
dataset under the survey, it is difficult for the methods
to output reliable results. Thus, as discussed above,
each has its own advantages and limitations for both
manual and automated approaches, it is difficult to
recommend which one is better than another. A
combination of both may be the current best practice,
to speed up this process, coarsely cell labels can be
obtained by automated annotation first, and then
manual annotation should be performed for verification.
Remarkably, cell annotation has been detailing
discussed in a recent study (Clarke et al. 2021).

TRAJECTORY ANALYSIS

The heterogeneity of cell populations we observed from
scRNA-seq data is often continues biological process
during development in vivo. Thus, in order to capture
transitions between cell identities in biological
function, cell-trajectory analysis tools enable the
temporal ordering of cell lineage in the notion of
“pseudotime”. Currently, many cell-trajectory analysis
tools have been developed based on dimension
reduction, the nearest neighbor graph, cluster networks
or RNA velocity algorithm in a supervised or
unsupervised manner. A recent comprehensive
comparison study benchmarked 45 trajectory analysis
tools on a different dataset for cellular ordering, and
highlight that the choice of method should depend
mostly on the dataset dimensions and trajectory
topology, and claim their guidelines (https://
benchmark.dynverse.org) are helpful for users to select
the best method for their dataset (Saelens et al. 2019).
Our lab has tried Monocle (Trapnell et al 2014),
Harmony (Nowotschin et al. 2019), Palantir (Setty et al.
2019), PAGA (Wolf et al. 2019), Wishbone (Setty et al.
2016) and RNA velocity (La Manno et al. 2018), and
they performed well on trajectory analysis, but often
are dataset dependent (Guo et al. 2019; He et al. 2020;
Yu et al. 2022). It is worth noting that, any inferred
trajectory should be validated by an alternative method
to avoid method bias.

© The Author(s) 2022


https://benchmark.dynverse.org
https://benchmark.dynverse.org
https://benchmark.dynverse.org
https://benchmark.dynverse.org

Guidelines of single-cell RNA-seq data analysis

REVIEW

CELL-CELL COMMUNICATION

Deciphering cell-cell communication (CCC) from single-
cell gene expression has been previously reviewed
(Armingol et al. 2021). In brief, the signaling mediated
by ligand-receptor, receptor-receptor and extracellular
matrix-receptor interactions can be used to infer
intercellular communication from the coordinated
expression of their paired genes. CellPhoneDB
(Efremova et al. 2020) is one of the earliest tools to
infer CCC from the combined expression of multi-
submit ligand-receptor complexes, which includes
~1400 known interactions from ~1000 proteins.
CellChat (Jin et al 2021) increases the interaction
database to ~2000 ligand-receptor pairs, and
incorporates signaling molecule interaction
information from the KEGG Pathway database into
their analysis. NichNet (Browaeys et al. 2020) predicts
ligand-receptor links between cells, can predict which
ligands influence the expression in another cell, which
target genes are affected by each ligand and which
signaling mediators may be involved. Deciphering CCC
is helpful for us to understand cell development, tissue
homeostasis and immune response. We previously
uncovered interactions between different immune cell
types, such as the interaction between
monocytes/macrophages and T cells dysregulates in
COVID-19 patients (Liu et al. 2020b; Ren et al. 2021).
Although recently many new tools are developed, and
more and more interactions are curated and added, it is

Table 1 The most commonly used tools for scRNA-seq data analysis

still not a complete list of all possible ligand-receptor
interactions for most tools. And CCC assessment will be
significantly improved when combined with the spatial
location of the cells from spatial omics.

SOFTWARE

Software for scRNA-seq data analysis is rapid
development in recent years. scRNA tools database
(Zappia et al. 2018) (https://www.scrna-tools.org) and
awesome-single-cell (https://github.com/seandavi/
awesome-single-cell) collect a range of information on
each scRNA-seq analysis tool and categorize them
according to the analysis tasks they perform. Our lab
uses the R package Seurat (Butler et al. 2018) and the
python package Scanpy (Wolf et al. 2018), and found
they give excellent and comparable results. Although
the programming language of the tools is different,
their hierarchical information for scRNA-seq data
deposition is similar, and tools are developed to
perform data transformation between platforms.
SeuratDisk allows interoperability between Seurat and
Scanpy. Our lab developed scDIOR (Feng et al. 2022) for
single-cell data transformation between platforms of R
and Python rapidly and stably, which is freely
accessible at https://github.com/JiekaiLab/scDIOR.
And we list some of the most popular tools we
discussed above and their computational tasks in
Table 1.

Name Environment  URL

General purposes
Seurat R satijalab.org/seurat/get_started.html
Scanpy Python https://scanpy.readthedocs.io/en/stable/

Pre-processing and quantification
fastqc Linux https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Trimmomatic Linux http://www.usadellab.org/cms/?page=trimmomatic
Trim Galore Linux https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
cutadapt Linux https://cutadapt.readthedocs.io/en/stable/guide.html
RSEM Linux https://github.com/deweylab/RSEM
HTSeq Linux https://htseq.readthedocs.io/en/release_0.11.1/count.html
CellRanger Linux https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger

STAR Linux https://github.com/alexdobin/STAR
scTE Python https://github.com/JiekaiLab/scTE

Quality control
scrublet Python https://github.com/swolock/scrublet
DoubletFinder R https://github.com/chris-mcginnis-ucsf/DoubletFinder
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Name Environment  URL
scds R https://www.bioconductor.org/packages/release/bioc/html/scds.html
Normalization
scran R https://bioconductor.org/packages/release/bioc/html/scran.html
sctransform R https://satijalab.org/seurat/articles/sctransform_vignette.html
Data correction
fastMNN R http://bioconductor.org/packages/devel /bioc/vignettes/batchelor/inst/
doc/correction.html
Scanorama Python/R https://github.com/brianhie/scanorama
Seurat V3 R satijalab.org/seurat/get_started.html
LIGER R https://github.com/welch-lab/liger
Harmony Python/R https://github.com/immunogenomics/harmony
RPCI R https://github.com/bioinfoDZ/RISC
Feature selection
scran R https://bioconductor.org/packages/release/bioc/html/scran.html
Seurat R satijalab.org/seurat/get_started.html
GiniClust R https://github.com/lanjiangboston/GiniClust
Dimensionality reduction and
visualization
t-SNE Python/R https://scikit-
learn.org/stable/modules/generated/sklearn.manifold. TSNE.html;
https://cran.r-project.org/web/packages/Rtsne/index.html
UMAP Python/R https://umap-learn.readthedocs.io/en/latest/index.html;
https://github.com/jlmelville/uwot
Cluster analysis
Louvain Python https://github.com/taynaud/python-louvain
Leiden Python https://github.com/vtraag/leidenalg
SC3 R https://bioconductor.org/packages/release/bioc/html/SC3.html
Cell type annotation
MetaNeighbor R https://github.com/maggiecrow/MetaNeighbor
CellAssign R https://github.com/Irrationone/cellassign
Garnett R https://cole-trapnell-lab.github.io/garnett/
Trajectory analysis
Monocle R http://cole-trapnell-lab.github.io/monocle-release/
destiny R https://bioconductor.org/packages/release/bioc/html/destiny.html
PAGA Python https://scanpy.readthedocs.io/en/stable/
Palantir Python https://github.com/dpeerlab/Palantir
URD R https://github.com/farrellja/URD
Slingshot R https://www.bioconductor.org/packages/release/bioc/html/slingshot.html
scVelo Python https://scvelo.readthedocs.io/
Cell-cell communication
CellPhoneDB Python https://github.com/Teichlab/cellphonedb
CellChat R https://github.com/sqjin/CellChat
NicheNet R https://github.com/saeyslab/nichenetr
Data transformation
SeuratDisk R https://mojaveazure.github.io/seurat-disk/articles/convert-anndata.html
scDIOR Python/R https://github.com/]JiekaiLab/scDIOR
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CONCLUSION

Computational analysis of scRNA-seq data
developing rapidly, and it is foreseeable that there will
be a vastly increasing number of analyzing tools for
extracting the missing information from the data over
the coming years. Particularly, we hope that there will
be great improvements for the tools that provide
integrated workflows, such as Seurat and Scanpy,
making the analysis pipeline more comprehensive with
intergradation of other omics analysis pipelines, and
compatible with other commonly used analyzing tools.
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