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ABSTRACT

Contiguous assemblies are fundamental to deciphering the composition of extant genomes. In
molluscs, this is considerably challenging owing to the large size of their genomes, heterozygosity,
and widespread repetitive content. Consequently, long-read sequencing technologies are
fundamental for high contiguity and quality. The first genome assembly of Margaritifera
margaritifera (Linnaeus, 1758) (Mollusca: Bivalvia: Unionida), a culturally relevant, widespread,
and highly threatened species of freshwater mussels, was recently generated. However, the
resulting genome is highly fragmented since the assembly relied on short-read approaches. Here,
an improved reference genome assembly was generated using a combination of PacBio CLR long
reads and Illumina paired-end short reads. This genome assembly is 2.4 Gb long, organized into
1,700 scaffolds with a contig N50 length of 3.4 Mbp. The ab initio gene prediction resulted in
48,314 protein-coding genes. Our new assembly is a substantial improvement and an essential
resource for studying this species’ unique biological and evolutionary features, helping promote
its conservation.

Subjects Genetics and Genomics, Animal Genetics, Freshwater Science

DATA DESCRIPTION

Background and context
Initial efforts to sequence molluscan genomes relied primarily on short-read approaches,
which, despite their unarguable value, frequently result in highly fragmented

1/14

GIGA)™
[_r CIENCE u


mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:andrepousa64@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
mailto:elsafroufe@gmail.com
https://doi.org/10.1101/2023.02.11.528107
https://doi.org/10.1101/2023.02.11.528107
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.46471/gigabyte.81

(GIGA)bYte

A. Gomes-dos-Santos et al.

Gigabyte, 2023, DOI: 10.46471/gigabyte.81

assemblies [1-4]. Consequently, long-read sequencing approaches, such as Pacific
Bioscience (PacBio) or Oxford Nanopore Technology, are becoming the common ground of
emerging studies of molluscan genome assemblies [1-4]. This is further facilitated by the
decreasing cost trend, coupled with the increasing sequencing accuracy of these
approaches [5]. Additionally, the structural information provided by long-reads is crucial to
span large indels or inform about long structural variants [6-8], which is particularly
relevant for molluscans that have large, heterozygous, and highly repetitive genomes
(reviewed in [4]). Consequently, long-read-based reference assemblies have reduced
fragmentation levels, fewer missing and truncated genes, and reduced chances of
chimerically assembled regions [6, 7].

Bivalves from the order Unionida, commonly known as freshwater mussels, are the most
diverse group of strictly freshwater bivalves, with over 1,000 species distributed across all
continents except Antarctica [9, 10]. The freshwater pearl mussel Margaritifera
margaritifera (Linnaeus, 1758) (NCBI:txid2505931) is perhaps the most emblematic,
culturally significant, and known species of freshwater mussels. The freshwater pearl
mussel is also the only species of the group that inhabits both European and North
American freshwater systems [11, 12] (Figure 1), mainly cool oligotrophic waters. Moreover,
this species holds a series of distinctive biological features, such as the ability to produce
pearls (with an ancient history of pearl harvesting [13, 14]), a long lifespan (reaching over
200 years [15]) with negligible signs of cellular senescence [16], and, as all other freshwater
mussels, an obligatory parasitic life stage on salmonid fish species [12, 17]. In the past, the
freshwater pearl mussel was highly abundant across its Holarctic distribution [12].
However, during the last century, the species has suffered massive declines due to the many
human-mediated threats impacting the freshwater ecosystems [11, 12]. As a result, the
species is listed as critically endangered in Europe and included in the European Habitats
Directive under Annexes II and V, and the Appendix III of the Bern Convention [11].

Despite the cultural significance and poor conservation status of the freshwater pearl
mussel, the availability of genomic resources to study this species is still limited [13, 18-22].
Also, almost nothing is known about the molecular mechanism governing the regulation
and functioning of its many relevant biological features. Genomic resources provide
benchmarking tools to monitor, identify, and classify conservation units as well as classify
genetic elements with conservation relevance and adaptive potential [23, 24]. Hence,
genomics provides invaluable tools to improve the success of conservation efforts. The
sequencing of the first genome for the freshwater pearl mussel represented a fundamental
resource for the study of its biology and evolution and, ultimately, promoted its
conservation [13]. However, although the quality of this first assembly is good (validated
with several statistics), it was produced using solely short-read sequencing (i.e., [llumina
paired-end and mate-pair sequencing), thus hampering its overall contiguity [13]. The
subsequent release of the highly contiguous genome assembly of the freshwater mussel
Potamilus streckersoni [25], which relied on PacBio long-read sequencing, demonstrated
how using longer reads is critical to ensure improved contiguity of genome assemblies to
study freshwater mussels [26].

In this study, we aimed to improve the genome assembly of the freshwater pearl mussel
M. margaritifera. Therefore, the genome of a new individual from this species was
sequenced using PacBio CLR and Illumina paired-end short reads. As a result, we generated
the most contiguous genome assembly of freshwater mussels available to date, significantly
improving its contiguity and completeness [13].
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Figure 1. Top left: The M. margaritifera specimen used for the whole genome assembly of this study. Top
right: A specimen of M. margaritifera in its natural habitat (Photos by André Gomes-dos-Santos). Bottom: Map
of the potential distribution of the freshwater pearl mussel, produced by overlapping points of recent presence
records [11] with Hydrobasins level 5 polygons [27]. The potential distribution for Europe was retrieved from [11]
and for North America from [28].

METHODS

Animal sampling

One individual of M. margaritifera was collected from the Tuela River in Portugal (Table 1)
and transported alive to the laboratory, where tissues were separated, flash-frozen, and
stored at —80 °C. The shell and tissues are deposited in the CIIMAR tissue and mussels’
collection.

DNA extraction and sequencing

For the PacBio sequencing, the mantle tissue was sent to Brigham Young University (BYU,
USA). High-molecular-weight DNA extraction was performed, and PacBio library
construction was achieved following the single-molecule real-time (SMRT) bell construction
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Table 1. Sample details for the freshwater pearl mussel M. margaritifera specimen used for our whole genome
sequencing (WGS).

Investigation_type Eukaryote

Geo_loc_name Portugal

Env_package Water

Sex Undetermined

Table 2. General statistics of the raw sequencing reads used for the M. margaritifera genome assembly.

PacBio CLR WGS Long reads PacBio Sequel I 14,339 7,892,056 Genome assembly,

system Genome polishing

protocol [29]. The library was sequenced using an SMRT cell of a PacBio Sequel II system
v.9.0. The genomic DNA for short-read sequencing was extracted from the muscle tissue
using the Qiagen MagAttract HMW DNA Kit, following the manufacturer’s instructions. The
extracted DNA was sent to Macrogen Inc. for standard Illumina Truseq Nano DNA library
preparation, and the WGS of 150 bp paired-end reads on the Illumina Novaseq 6,000
machine (Table 2).

Genome assembly and annotation
The overall pipeline used to obtain the genome assembly and annotation is provided in
Figure 2.

Genome size and heterozygosity estimation

Before the assembly, the characteristics of the genome were accessed with a k-mer
frequency spectrum using the paired-end reads. First, the quality of the reads was evaluated
using FastQC (v.0.11.8; RRID:SCR_014583) [30]. The reads were then quality trimmed with
Trimmomatic (v.0.38; RRID:SCR_011848) [31], specifying the parameters “LEADING: 5
TRAILING: 5 SLIDINGWINDOW: 5:20 MINLEN: 36”. Finally, the quality of the clean reads
was validated using FastQC and then used for the genome size estimation with Jellyfish
(v2.2.10; RRID:SCR_005491) and GenomeScope2 [32], specifying the k-mer length of 21.

Genome assembly

The primary genome assembly was constructed using the raw PacBio reads with
NextDenovo v2.4.0 [33], with default parameters and specifying an estimated genome size
of 2.4 Gbp. Polishing of the resulting assembly was performed in two steps. First, we used
the PacBio reads with three iterations of GCpp v2.0.2 [34], and then we used the clean
paired-end reads with two iterations of NextPolish v1.2.3 [35]. Specifically, the PacBio read
alignments were performed with ppmm2 v1.4.0 [36], and the paired-end read alignments
were performed with Burrows-Wheeler Aligner (BWA; v0.7.17; RRID:SCR_010910) [37], both
with default parameters.
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Figure 2. Bioinformatics pipeline used for the genome assembly and annotation.
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Table 3. List of the proteomes used for the BRAKER2 gene prediction pipeline.

Mollusca Bivalvia

Crassostrea virginica GCF_002022765.2

Pecten maximus GCF_902652985.1

Mercenaria mercenaria GCF_014805675.1

Megalonaias nervosa GCA_016617855.1

Pomacea canaliculata GCF_003073045.1

Cephalopod Octopus bimaculoides GCF_001194135.1

Polyplacophora Acanthopleura granulata GCA_016165875.1

Chordata Ciona intestinalis GCF_000224145.3

The general statistics and completeness of the final genome assembly were estimated
with QUAST (v5.0.2; RRID:SCR_001228) [38], BUSCO (v5.2.2; RRID:SCR_015008) [39], and
using the paired-end reads for read-back mapping with BWA, and a k-mer frequency
distribution analysis with the K-mer Analysis Toolkit (KAT) [40].

Masking of repetitive elements, gene models’ predictions, and

annotation

To mask repetitive elements, a de novo library of repeats was created for final genome
assembly with RepeatModeler (v2.0.133; RRID:SCR_015027) [41]. Next, the genome was soft
masked with RepeatMasker (v4.0.734; RRID:SCR_012954) [42], combining the de novo library
with the ‘Bivalvia’ libraries from Dfam [43] (Dfam_consensus-20170127) and RepBase [44]
(RepBaseRepeatMaskerEdition-20181026).

Gene prediction was performed on the soft-masked genome assembly using the
BRAKER?2 pipeline v2.1.6 [45]. First, all the available RNA-seq data of M. margaritifera from
GenBank [22, 46] and Gomes-dos-Santos et al. [18] (the latter used the same M. margaritifera
individual used for the genome assembly of this study) was retrieved and quality trimmed
with Trimmomatic v.0.38 (parameters described above). Next, the clean reads were aligned
to the masked genome using Hisat2 (v.2.2.0; RRID:SCR_015530) with the default
parameters [47]. Furthermore, the complete proteomes of 14 mollusc species and three
reference Metazoan species (Homo sapiens, Ciona intestinalis, Strongylocentrotus
purpuratus), downloaded from public databases (Table 3), were used as additional evidence
for gene prediction. The BRAKER?2 pipeline was then applied, specifying the parameters
“—etpmode; —softmasking;”. Gene predictions were renamed (Mma), cleaned, and filtered
using AGAT v.0.8.0 [48], correcting overlapping predictions and removing incomplete gene
predictions (i.e., without start and/or stop codons). Finally, proteins were extracted from the
genome using AGAT, and a functional annotation was performed using InterProScan
(v.5.44.80; RRID:SCR_005829) [49] and BLASTP (RRID:SCR_001010) searches against the
RefSeq database [50]. Homology searches were performed using DIAMOND (v.2.0.11.149;
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Figure 3. (a) GenomeScope2 k-mer () distribution displaying the estimation of the genome size (len), the
homozygosity (aa), the heterozygosity (ab), the mean coverage of k-mer for heterozygous bases (kcov), the read
error rate (err), the average rate of read duplications (dup), the size of the k-mer used on the run (k), the ploidy
(p), and percentage of the genome that is unique (not repetitive) (uniq). (b) M. margaritifera genome assembly
assessment using the KAT comp tool to compare the Illumina paired-end k-mer content within the genome
assembly. Different colours represent the read k-mer frequency in the assembly.

RRID:SCR_016071) [51], specifying the parameters “-k 1, -b 20, —e 1e-5, —sensitive, —outfmt
6”. Finally, BUSCO scores were estimated for the predicted proteins [39].

DATA VALIDATION

Sequencing results and genome assembly

The raw sequencing outputs resulted in 103 Gbp of raw PacBio and 203 Gbp of raw
paired-end reads. A total of 201 Gbp of paired-end reads were maintained after trimming
and quality filtering. Similarly to the results of Gomes-dos-Santos et al. [13], the
GenomeScope2 estimated genome size was ~2.36 Gb, and the heterozygosity levels were
low, i.e., ~0.163% (Figure 3a).

The final genome assembly (hereafter referred to as Genome V2) has a total size of
2.45 Gbp, similar to the genome size reported in a previous assembly [13] (hereafter
referred to as Genome V1). Regarding the contiguity, Genome V2 shows a contig N50 of
3.42 Mbp (Table 4), representing a ~202-fold increase in contig N50 and ~11-fold increase in
scaffold N50 relative to Genome V1 (Table 4). Additionally, Genome V2 represents the most
contiguous freshwater mussel genome assembly currently available [13, 26, 52, 53].
Genome V2 shows a ~1.66-fold increase in N50 length compared to the other PacBio-based
genome assembly, i.e., from P. streckersoni [26]. This observation is striking considering that
the Genome V2 is larger (nearly 4 Mbp longer), has more repetitive elements (nearly 7%
more) (Tables 4 and 5) and similar heterozygosity (nearly 0.43% less) (Figure 3).

Genome V2 also shows a considerable increase in the BUSCO scores, with nearly no
fragmented nor missing hits for both the eukaryotic and metazoan curated lists of
near-universal single-copy orthologous genes (Table 4). Short-read back-mapping
percentages resulted in an almost complete read mapping and a 99.69% alignment rate
(Table 4). The KAT k-mer distribution spectrum revealed that almost all read information
was included in the final assembly (Figure 3b). Overall, these general statistics validate the
high completeness, low redundancy, and quality of the Genome V2.
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Table 4. General statistics of the two M. margaritifera genome assemblies, including read alignment, gene prediction, and annotation.

Genome V2 Genome Genome V1 Megalonaias Potamilus Venustaconcha
contig* V1 contig scaffold nervosa streckersoni ellipsiformis

Total number of sequences > 10,000 bp 1,700 66,019 15,384 54,764 2,162 26,952

Total number of sequences > 50,000 bp 1,570 4,284 9,265 12,699 1,641 1,456

Total length > 10,000 bp 2.45 Gb 1.52 Gb 2.29 Gb 2.19 Gb 1.77 Gb 0.54 Gb

Total length > 50,000 bp 2.44 Gb 299 Mb 2.15 Gb 1.19 Gb 1.76 Gb 0.10 Gb

L50 207 34,910 2,393 12,463 245 58,531

GC content, % 35.3 35.42 35.42 35.82 33.79 34.19

Percentage of Mapped RNA-seq PE (%) Average 96.94 - 97.75 - -

Total BUSCO for the genome assembly (%)

#Met database - (:96.9% [S:95.5%, = C:84.9% [S:83.8%, C:71.5% [S:70.1%, C:95.0% [S:93.6%, C:53.7% [S:52.8%,
D:1.4%], F:2.0% D:1.1%], F:4.9%  D:1.4%], F:14.5%  D:1.4%], F:2.3%  D:0.9%], F:29.7%

Percentage masked bases (%) - 57.32 - 59.07 25.00 51.03 36.29

Protein coding genes (CDS) 48,314 35,119 49,149 41,065 -

Total gene length (bp) 1.13 Gb 902 Mb - - -
+ Euk database - C:97.6% [S:83.9%, C:90.6% (S:81.2%, - - -
D:13.7%], F:2.0% D:9.4%), F:3.9%

*Genome V2 refers to the new assembly here produced and is solely at the contig level, i.e., has no scaffolds; Genome V1 refers to the first M. margaritifera
genome [13]; #Euk: From a total of 303 genes of Eukaryota library profile; #Met: From a total of 978 genes of Metazoa library profile; + Euk: From a total of 255
genes of Eukaryota library profile; + Met: From a total of 954 genes of Metazoa library profile; #,+ C: Complete; S: Single; D: Duplicated; F: Fragmented.

Repeat masking, gene models prediction, and annotation
RepeatModeler/RepeatMasker masked 57.32% of Genome V2, 1.75% less than the values
reported for Genome V1. This result was likely a consequence of the new assembly being
able to resolve repetitive regions more accurately (Table 5). Furthermore, this value was
considerably higher than the estimated duplications of GenomeScope, i.e., 36.2% (Figure 3a,
Table 5). These differences have been observed in other assemblies of freshwater mussel
genomes [4, 26, 52] and are likely due to the inaccurate estimation of repeat content when
applying k-mer frequency spectrum analysis in highly repetitive genomes using short reads.
Similarly to Genome V1, most repeats in Genome V2 were unclassified (27.26%, ~668 Mgp),
followed by DNA elements (17.18%, ~421 Mgp), long terminal repeats (5.95%, ~145 Mgp),
long interspersed nuclear elements (5.86%, ~143 Mgp), and short interspersed nuclear
elements (0.75%, ~18 Mgp) (Table 5). BRAKER? gene prediction identified 48,314 CDS, an
increase compared with Genome V1 and closer to the predictions of the other two
freshwater mussel assemblies (Tables 4 and 6). This result probably reflects the higher
contiguity and completeness of Genome V2, as evidenced by the high BUSCO scores for
protein predictions, with almost no missing hits for either of the near-universal single-copy
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Table 5. RepeatMasker report of the content of repetitive elements in the new M. margaritifera genome
assembly.

Number of Length occupies Percentage of
elements sequence

ALUs 0 0bp 0.00%

LINEs:

345,367 143,734,167 bp 5.86%

100,340 30,227,268 bp 1.23%

LTR elements: 211,377 145,957,516 bp 5.95%

ERVL-MaLRs 0 0bp 0.00%

ERV_classII 5,672 1,603,072 bp 0.07%

hAT-Charlie 32,085 3,719,809 bp 0.15%

Unclassified: 2,158,454 668,949,483 bp 27.26%

Small RNA: 52,314 10,622,911 bp 0.43%

Simple repeats: 40,358 10,377,834 bp 0.42%

orthologous databases used (Table 3). The number of functionally annotated genes was also
higher than those of Genome V1, with 4,065 additional genes annotated (Tables 4, 6 and 7).
Overall, the numbers of both predicted and annotated genes are within the expected range
for bivalves (reviewed in [4]), as well as within the records of other freshwater mussel
assemblies [26, 53].

CONCLUSION

In this report, a new and highly improved genome assembly for the freshwater pearl
mussel is presented. This genome assembly, produced using PacBio long-read sequencing,
significantly improves contiguity without scaffolding. Unlike other freshwater mussels’
enomes, the one presented here has not been scaffolded (i.e., it has no gaps of
undetermined size), thus representing an ideal framework to employ chromosome
anchoring approaches, such as Hi-C sequencing. This new genome represents a key
resource to start exploring the many biological, ecological, and evolutionary features of this
highly threatened group of organisms, for which the availability of genomic resources still
falls far behind other molluscs.

0Q

DATA AVAILABILITY
All software with respective versions and parameters used for producing the resources
presented here (i.e., transcriptome assembly, pre- and post-assembly processing stages, and
transcriptome annotation) are listed in the methods section. Software programs with no
parameters associated were used with the default settings.

The raw sequencing reads were deposited at the National Center for Biotechnology
Information (NCBI) Sequence Read Archive with the accession numbers SRR23176563
(Illumina PE) and SRR23176561 (PacBio CLR). The new genome assembly is also available
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Table 6. Structural annotation report of the new M. margaritifera genome assembly.

Structural annotation Number

Number of mRNAs 48,314

Number of exons 328,489

Number of start_codons 48,314

Number of exons in CDSs 328,489

Number of introns in exon 280,175

Number gene overlapping 440

Number of single exon mRNAs 8,402

Mean CDSs per mRNA 1.0

Mean introns per mRNA 5.8

Mean introns in CDSs per mRNA 5.8

Mean introns in introns per mRNA 5.0

Total mRNA length 1,399,972,668

Total exon length 65,168,232

Total start_codon length 144,942

Total intron length per CDS 1,334,804,436

Total intron length per intron 38,816,274

Mean mRNA length 28,976

Mean exon length 198

Mean CDS piece length 198

Mean intron in exon length 4,764

Longest gene 492,278

Longest CDS 50,892

Longest intron 270,677

Longest intron into CDS part 270,677

Longest intron into intron part 14,931

Shortest mRNA 123

Shortest exon 3
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Table 7. Functional annotation report of M. margaritifera genome assembly.

Functional annotation Number

CDD 11,151

GO 18,024

Hamap 383

KEGG 1,495

MobiDBLite 12,555

PRINTS 5,250

ProSitePatterns 6,471

Reactome 5,837

SMART 12,494

TIGRFAM 1,148

on NCBI under the accession number JAQPZY000000000. The BioSample accession number
is SAMN32798282, and the BioProject one is PRINA925505. All the remaining data has been
uploaded to figshare [54], including the final unmasked and masked genome assemblies
(Mma.fa and Mma_SM.fa), the annotation file (Mma_annotation_v1.gff3), the predicted
genes (Mma_genes_vl.fasta), the predicted messenger RNA (Mma_mrna_v1.fasta), the
predicted open reading frames (Mma_cds_v1.fasta), the predicted proteins
(Mma_proteins_v1.fasta), as well as the full table reports for the Braker gene predictions,
the InterProScan functional annotations (Mma_annotation_v1_InterPro_report.txt), and the
RepeatMasker predictions (Mma_annotation_v1_RepeatMasker.tbl). Data supporting this
work are openly available in the GigaDB repository [55].
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