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 Abstract: Radiation for medical use is a well-established therapeutic method with an excellent 
prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes 
with its own share of side effects, causing radiation-induced non-specific cellular toxicity; conse-
quently, a large percentage of treated patients suffer from chronic effects during the treatment and 
even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can 
alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients be-
cause of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological 
studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the pro-
gression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is al-
so renowned for its neuroprotective activity and could manage radiation-induced side effects as it 
regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like 
molecules or modulators, including phytoestrogens, might be a potential approach capable of neuro-
protection in radiation-induced brain degeneration. This review summarized the molecular mecha-
nisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and 
highlighted the current evidence on the phytoestrogen mediated protective effect against radiation-
induced brain injury. This existing knowledge points towards a new area to expand to identify the 
possible alternative therapy that can be taken with radiation therapy as adjuvants to improve pa-
tients' quality of life with compromised cognitive function. 
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1. INTRODUCTION 

During aging, a progressive decline in brain function is 
associated with many neurodegenerative disorders (NDDs) 
where both genetic and environmental stressors, such as ra-
diation, play an essential role [1-4]. Radiation has a great 
impact on human life [5-8]. Humans are confronted with 
radiation daily, albeit in low doses, from natural or artificial 
sources [9]. Radiation from natural sources may include 
cosmic, terrestrial, radioactive molecules, and exposure from 
inhalation or intake of radiation-contaminated materials. In 
comparison, medical imaging is one of the essential and rap-
idly rising artificial sources of radiation [10, 11], such as  
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X-ray for imaging [12], computed tomography [13], radi-
ation therapy (RT) for cancer treatment [14-16], nuclear 
medicine [17, 18] etc [19]. Accumulating evidence showed 
that diagnostic medical and contributed to 20% of the global 
yearly per capita actual radiation acquaintance from 1997 to 
2007 [20]. RT prolongs the lifespan of many patients diag-
nosed with brain tumors with primary and metastatic stages; 
however, it leaves many survivors with long-term degenera-
tion in the brain and cognitive impairments. Every year, 
more than 100,000 patients with primary and metastatic 
brain tumors encounter radiation-induced brain injury and 
survive for more than six months. Radiation at 2 to 45 Gy 
doses can inhibit neurogenesis in the brain in a dose-
dependent manner [21], where a single dose higher than 30 
Gy can induce acute central nervous system (CNS) syn-
drome, and fractionated doses greater than 60 Gy produce 
necrosis in white matter [22]. Growing evidence suggests 
that radiation induces multifactorial pathogenicity in the 
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brain, and one of these is neurodegeneration caused by long-
term oxidative stress, rearrangement in cell-cell junctional 
complex, lipid bilayer oxidation, and alternation in micro-
vascular permeability [23-25]. Furthermore, radiation either 
in low or high doses can alter the function of the protein 
clearance system, leading to senescence or apoptotic cell 
death and thus causing neurodegeneration [26]. Yet, the mo-
lecular events that changed during RT need further verifica-
tion, as many studies have shown little success in clinical 
attempts to end the radiation-induced neurodegeneration [27, 
28] to unveil a potential target for better therapy. 

In line with the survivability rate in patients with brain 
tumors, several studies highlighted those female patients 
with gliomas have a high survival advantage over the fe-
males of reproductive age, where males confront glioma 
development more than females [29]. It is noteworthy to 
mention that many physiological and pathological states, 
such as brain development, neurodegeneration, and aging, 
are critically modulated by sex hormones, especially estro-
gen receptor (ER) signaling. Estrogen, also known as estra-
diol or 17β-estradiol (E2), confers a protective role in glio-
mas progression, reduces tumor progression, and increases 
chemotherapy response [30-34]. Moreover, E2 confers neu-
roprotective effects by increasing various growth factor ex-
pressions, reducing oxidative stress and inflammation, acti-
vating the protein clearance system, and promoting cell sur-
vival [35-38]. Furthermore, supplementation of ER agonists 
promotes neurogenesis, particularly axonal growth and den-
dritic spines, and improves cognitive and memory perfor-
mance by increasing synaptic transmission and plasticity [39, 
40]. 

In this context, the targeting of ERs can be an adjuvant in 
traditional RT to reduce radiation-induced brain injury. 
Therefore, in this appraisal, an effort was deployed to accu-
mulate the current information regarding the therapeutic 
benefits of E2 or ER modulators on radiation-induced neuro-
degeneration and neuronal survival and propose an alterna-
tive strategy for better therapeutic outcomes in the manage-
ment of radiation-induced cognitive impairment.  

2. IMPACT OF RADIATION ON COGNITIVE FUNC-
TION AND AGING 

The scenario of the brain’s response to radiation has 
changed substantially over the last few decades as accumu-
lating evidence from various clinical and preclinical studies 
showed that radiation causes deflected cognitive function 
and promotes aging, where onset is more than 6 months after 
irradiation with or without noticeable functional abnormali-
ties [41, 42]. Two major regions of the brain are mainly af-
fected by radiation, namely the subgranular zone (SGZ) and 
the subventricular zone (SVZ) of the dentate gyrus (DG) of 
the hippocampus, where radiation alters neurogenesis partic-
ularly. RT can cause cognitive dysfunction and memory im-
pairment in younger and elderly patients [43]. Different clin-
ical studies have shown that RT for cancer treatment, espe-
cially for brain tumors and cancer, can induce brain injury 
leading to cognitive and motor dysfunction. Investigating 81 
patients with brain metastasis who received RT [44], a 2018 
study observed a significant increase in cognitive impairment 
following RT. Patients with low-grade glioma have also suf-

fered from cognitive dysfunction after RT. The study com-
paratively assessed a case of glioblastoma patients receiving 
RT from 1 to 22 years prior with hematological patients 
(low-grade) and healthy subjects and identified a connection 
between RT and poor cognitive function. Precisely, patients 
who received RT at doses of more than 2 Gy encountered 
cognitive impairment predominantly in the memory domain 
[45]. In a case study of brain tumor patients, who received 
postoperative RT, Asai et al. found that patients receiving 
whole-brain RT encountered a higher rate of radiation-
induced dementia and brain atrophy than those who received 
focal RT [46]. A study conducted in 2001 investigated the 
effect of whole-brain irradiation on cognitive function [47], 
where 25 Gy/single dose of RT to the adult rat induced cog-
nitive dysfunction and memory loss following whole-brain 
irradiation for a year, along with a higher body weight gain. 
In 2011, an in vivo study reported fractionated radiation of 
20 and 40 Gy (5 Gy/day, five days/week) caused cognitive 
impairment four weeks post-irradiation in the rat [48]. The 
study also reported that radiation treatment significantly in-
creased the water content of the brain, which was probably 
due to an increase in the permeability of the blood-brain bar-
rier by irradiation. It also concluded that fractionated irradia-
tion could cause early memory and learning deficits. The 
effect of radiation on neurodegeneration is not limited to 
brain cancer patients. Patients with other cancers who re-
ceived RT also had neuronal dysfunction and memory defi-
cit. A 2008 human study [49] that included therapeutic cra-
nial irradiation (TCI) group comprised 11 lung cancer pa-
tients, three breast cancer patients, and two gastrointestinal 
cancer patients with a control group of 15 breast cancer pa-
tients reported that whole-brain irradiation caused cognitive 
dysfunction, including verbal memory impairments in pa-
tients. Another study conducted in 2011 revealed a substan-
tial level of cognitive impairment and neuropsychiatric 
symptoms in patients with cerebral radionecrosis when RT 
was delivered for nasopharyngeal carcinoma in a fractionat-
ed manner [50]. From these pieces of evidence, it can be 
concluded that RT plays a significant role in developing neu-
rodegenerative symptoms in patients in later phases of life. 

3. POSSIBLE ROLE OF RADIATION IN THE HALL-
MARKS OF NEURODEGENERATION  

Multiple factors are associated with the etiology of differ-
ent NDDs; nevertheless, one significant phenomenon that all 
NDDs share is the rise of brain oxidative stress [51]. Oxidative 
stress, characterized by an imbalance between reactive oxygen 
species (ROS) production and cellular antioxidant capacity, 
can be attained during aging [52, 53], dysfunctional mito-
chondria [54, 55], damage to mitochondrial DNA [56], or dys-
function of other ROS sources [3, 57]. Among other environ-
mental factors, radiation, especially ionizing form, is also a 
principal source of ROS production [58], and this is accom-
plished by energy absorption. When radiation, such as infrared 
(IR) passes through water, water absorbs radiation energy, 
causing hydrolysis and resulting in a load of reactive species. 
Quantitatively, radiolysis of pure deaerated water is responsi-
ble for generating reactive species like e-aq, H•, H2, •OH, and 
H2O2 [59]. Besides, IR stimulates the overproduction of intra-
cellular inducible nitric oxide synthase (iNOS) [60] and ac-
cordingly produces nitric oxide (•NO) in a higher amount in 
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the cell. Excessive •NO produces peroxynitrite anion 
(ONOO−) following a direct reaction with O2•−, which is a 
higher rate constant than superoxide dismutase (SOD)-
catalyzed dismutation of O2•− [61]. Therefore, under ambient 
oxygen, water radiolysis and early NOS activation act as sig-
nificant ROS sources in irradiated cells. However, different 
types of radiation modulate ROS production, and the mode of 
cellular damage they cause also differs in terms of their con-
centration [62].  

Numerous reports suggested that excessive oxidative 
stress can be induced either by environmental factors or oth-
er types of sources, leading to misfolded protein aggregation 
[63-65], which can also be a major pathogenic consequence 
of infrared irradiation [66]. IR decreases the protein stability 
by generating ROS, which ceases the protein’s static func-
tion by upregulating the breakage of the polypeptide chain 
[67-70]. Furthermore, IR-induced ROS can initiate protein 
misfolding by targeting the thiol moieties of protein that are 
primarily oxidized by the ROS pathway, which is a primary 
target of radiation-induced protein oxidation. Upregulated 
ROS promotes glycoxidation or lipid peroxidation reactions, 
and the end products of these reactions and ROS also cause 
protein oxidation by direct interaction with native protein. 
Protein carbonylation, where aldehyde and ketone groups are 
added to the protein side chains, is the most shared protein 
modification. All residues are subtle to ROS-derived oxida-
tion; yet, cysteine and methionine are significantly more 
sensitive to oxidation [71].  

The cellular proteostasis network repairs or removes 
modified or misfolded protein; nevertheless, the proteins 
with methionine oxidation cannot be repaired but are subject 
to degrade selectively by clearance systems [57, 72]. The 
clearance systems in the proteostasis network, including the 
ubiquitin-proteasome system (UPS) and autophagy [73-76], 
play an essential role in suppressing non-functional and 
damaged protein aggregates, but the excess production of 
ROS markedly impairs function. The misfolded and aggre-
gated proteins are recognized by a specific pathway when 
accumulated in mitochondria and endoplasmic reticulum 
(EnR), which recruits proteostasis functions, such as protein 
synthesis and degradation, known as unfolded protein re-
sponse (UPR) [77, 78]. The UPR is activated by the influx of 
misfolded polypeptides and other factors, such as ROS, 
which are responsible for producing EnR stress when it rises 
at a higher level in EnR. The activation of UPR is perceived 
by three major singling pathways, including inositol-
requiring enzyme-1(IRE1), PKR-like ER kinase (PERK), 
and activating transcription factor 6 (ATF6), which down-
stream regulates expressions of foldases, chaperones expres-
sion, and various autophagy-related genes [79]. During EnR 
stress, UPR promotes EnR-associated degradation (ERAD) 
and autophagy, regulates redox balance, and controls protein 
synthesis to restore protein homeostasis. However, pro-
longed UPR activation due to extended EnR stress leads to 
cell death by initiating degenerative cascades [80-82]. 

Compelling evidence suggested that IR exposure enhanc-
es cellular stress response and causes defects in DNA repair, 
impacting cell cycle progression and survival [83-85]. IR can 
disrupt mitochondrial DNA (mtDNA) by directly acting on it 
or indirectly via the generation of ROS like reactive hydrox-
yl radicals, leading to mitochondrial dysfunction [86]. IR 

also reduced total mitochondrial synthesis by inducing dam-
age to mtDNA [87]. Furthermore, IR exposure enhances the 
accumulation of Drp1 in mitochondria and accelerates mito-
chondrial fission to manage overproduced mitochondrial 
ROS [88]. In addition to cellular respiration, mitochondria 
plays an essential role in the regulation of calcium homeosta-
sis [89]. The imbalance of calcium homeostasis has been 
reported to enhance protein aggregation, autophagy deficits, 
and apoptosis, leading to a drastic alteration in proteostasis 
networks [90-93].  

Intracellular Ca2+ maintains a reciprocal relationship with 
ROS, where ROS generation is induced by Ca2+ signaling 
and vice-versa [94]. Increased intracellular Ca2+ exerts exci-
totoxic neuronal death, as reported in many NDDs [95], and 
demonstrated by overproduction and a delayed mitochondri-
al depolarization along with mitochondrial cytochrome c 
release [96]. The superoxide anion (O2-) is constantly being 
generated by the mitochondria. It has been shown that in-
creased Ca2+ uptake by the mitochondria increases the pro-
duction of reactive oxygen [97]. EnR stress is also a funda-
mental phenomenon related to the ROS production and Ca2+ 
excitotoxicity cycle [98].  

Furthermore, soluble protein aggregates, following diffu-
sion, colocalize and interact with the various membrane pro-
teins and receptors, including Ca2+ regulating channels and 
receptors at the excitatory synapse, for example, like 
NMDARs [99] and mGluR5 [100]. These misfolded proteins 
assemblies with membrane receptors around the excitatory 
synapses initiate artificially activated signaling platforms that 
promote Ca2+ elevation and enhance ROS and other deleteri-
ous effects by causing excitotoxicity [101, 102]. Excessive 
excitotoxicity further impedes the proteostasis network and 
increases the total protein aggregates by establishing a “vi-
cious cycle” [103, 104]. Oxidative stress derived from radia-
tion and subsequent protein misfolding and protein aggrega-
tion, excitotoxicity, EnR stress together trigger neuroinflam-
mation. Mounting evidence suggests that IR exposure induced 
a rapid rise in Ca2+ level, which persisted over time due to the 
higher increase of inositol triphosphate level [105-107]. Leach 
et al. proposed that IR causes mitochondrial depolarization by 
increasing Ca2+ permeability, where Ca2+ is involved in a chain 
reaction of ROS signaling propagation and amplification 
[108]. In immature dorsal root ganglion neurons, infrared irra-
diation with 24 Gy induced a high elevation of Ca2+ and pro-
moted cell death in a dose-dependent manner [109]. Interest-
ingly, nimodipine, a calcium antagonist, protected hippocam-
pal neurons from the radiation-induced cognitive deficit and 
apoptosis in the rat model [110]. Thus, radiation-induced oxi-
dative stress is closely related to the initiation of neurodegen-
eration, leading to NDDs.  

4. ESTROGEN SIGNALING REGULATES THE HALL- 
MARKS OF NEURODEGENERATION 

E2 is one of the primary sex hormones and has a key role 
in maintaining diverse signaling systems, leading to neuro-
protection [111]. Although ovaries are the primary source of 
E2, this hormone is also available in adipose tissue and ad-
renal glands [112]. The typical functions of ER signaling are 
regulated by binding E2 as a ligand of mainly two classical 
nuclear receptors, estrogen receptor-alpha (ERα) and estro-
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gen receptor-beta (ERβ). Besides, ER signaling is also 
modulated by GPR30, an additional category of membrane G 
protein-coupled receptor, called GPER [113]. However, both 
receptors, ERα and ERβ, primarily initiate cellular signaling 
mediated by E2, and both of these receptors show variations 
in the cellular distribution and regulations [114-116]. 

Structurally, both the ERs, ERα and ERβ, shared high 
homology and are composed of different functional and 
structural domains, including the N-terminal domain (NTD) 
bearing the first activation function domain (AF1), ligand-
binding domain (LBD), including the second activation func-
tion domain (AF2), DNA binding domain (DBD) and hinge 
region. A study based on the sequence homology represented 
that the LBD of both isomers has a sequence identity of 
around ~55%, DBD shows more than 95% of sequence iden-
tity, while NTD bears a low sequence identity (around 
~15%), as this portion in ERβ is comparatively not longer 
than that of ERα [116, 117]. Both AF-1 and AF-2 are in-
volved in regulating the transcriptional activities of ERs, 
where hormones and steroids regulate AF2 actions, but the 
hormone-independent function is only represented by AF1 
[118, 119]. Interestingly, ERs regulate gene transcriptions in 
nuclear signaling, known via classical and non-nuclear sig-
naling approaches, dependent on ligand-induced activation 
[120, 121].  

Accumulating evidence represented that non-nuclear ER 
signaling maintains a critical role in modulating the brain's 
proteostasis network and functional integrity [122]. In the 
human brain, both ERα and ERβ are present and modulate a 
broad range of brain functions, such as neuronal defense, 
neurogenesis, synaptic plasticity, reproductive processes, 
learning, memory, mood, and behavior [123]. E2 protects 
neurons by modulating the following pathways; axonal 
sprouting, synaptic transmission, regenerative responses, 
neurotransmitter receptor function, phosphorylation cas-
cades, kinase signaling pathways, etc [124, 125]. E2 controls 
cell proliferation, differentiation, and apoptosis occurring in 
the normal mammary gland at lactation/involution cycles 
[126]. ER signaling protects mammary cells from EnR stress 
by modulating the UPR, where the modulators are exerted 
during milk protein synthesis and secretion [127]. The mech-
anistic premise of ER in modulating diverse signalings of 
degeneration cascades is discussed in the subsequent sec-
tions. 

4.1. In the Attenuation of Ca2+ Mediated Excitotoxicity 

Calcium appears to have a major role in brain aging that 
contributes to Alzheimer's disease (AD), and dementia has 
been established by several lines of evidence [128, 129]. 
Although physiological activities are required for intracellu-
lar Ca2+, neuronal dysfunction and cell death can be caused 
when the amount is excessive. There are a variety of en-
zymes, including proteases, endonucleases, phospholipases, 
and nitric oxide synthase (NOS), which can cause the eleva-
tion of Ca2+ level in the neuronal cell, thus there upregulated 
activity can be linked to neuronal cell death [130, 131]. In 
many neuronal signal transduction pathways, excessive in-
tracellular calcium accumulation plays an essential role, 
where changes in the intracellular calcium homeostasis are 
crucial in brain aging, memory, and cell death. In such a 
case, one of the most common receptors, N-methyl-D-

aspartic acid (NMDA), which regulates Ca2+ influx through 
glutamate-derived activation, triggers a broad range of cellu-
lar processes in the postsynaptic neuron, ranging from synap-
tic plasticity to cell death. Continuous activation of a high 
number of NMDA receptors causes a rise in intracellular 
calcium loading and catabolic enzyme activities, which can 
set off a chain of events that finally leads to apoptosis or 
necrosis. Excess glutamate levels in the CNS can produce an 
increase in intracellular Ca2+ levels, which causes an increase 
in Ca2+ concentration in sensitive organelles, such as mito-
chondria and the EnR [132]. Furthermore, increased Ca2+ 
entrance into the cytosol induced by NMDA activates cal-
cineurin and causes death in rat hippocampus neurons and 
stable cell lines, such as HeLa cells [133, 134]. 

Accumulating studies evidenced that ER signaling regu-
lates the expression of NMDA receptors, especially in the 
memory process. It was found that E2 enhances NR2B ex-
pression, a subunit of NMDAR, and accordingly enhances 
long-term potentiation (LTP) in the learning and memory 
process [135, 136]. Liu et al., 2008 found that LTP en-
hancement was directly mediated through ERβ activation 
[137], and ERβ lacking mice (ERβ-/-) failed to show E2 me-
diated neuroprotection against NMDA-induced excitotoxici-
ty [138]. The evidence further suggests that E2-mediated 
neuroprotection reduces ischemia-induced excitotoxicity 
through interaction with the NMDA receptor [139, 140]. 
Weiss et al. showed that treatment of E2 in ovariectomized 
Wistar female rats decreased the NMDA mediated cerebral 
oxygen consumption, and the effect deviated from a reduced 
number of NMDA receptors [141]. As cortical neurons in the 
female brain have more immunoreactive ER than males, as 
shown by in vitro in Bryant et al., an ER-specific ligand 
propylpyrazoletriol (PPT) protected cortical neurons against 
glutamate-induced damage in females, while this effect was 
absent in males [142].  

In ovariectomized rats, SERMs, such as tamoxifen, ra-
loxifene, and bazedoxifene, protected neurons against kainic 
acid-induced hippocampus neuronal injury [143]. In ischem-
ic rat brains, tamoxifen promoted neuroprotection against 
AMPA/NMDA receptor-mediated excitotoxicity caused by 
oxygen/glucose deprivation [144] and also against gluta-
mate-induced excitotoxicity [145]. In the rat cerebral cortex, 
raloxifene, which acts as an ER agonist in the brain but an 
antagonist for the reproductive system [146], promoted neu-
roprotection against kainic acid-induced excitotoxicity as 
well as oxidative stress [147]. 

In addition to NMDA receptor modulation, ER can re-
duce calcium influx through L-type channels [148, 149]. As 
suggested by Zhao and Brinton [150], glutamate-mediated 
intracellular Ca2+ accumulation can be reduced by ER sub-
type-selective agonists PPT and diarylpropionitrile (DPN) 
through ERK/MAP kinase pathway, which was differentially 
regulated ERα and β in hippocampal neurons. Studies also 
suggested that ERα can interact with mGluR1 at the postsyn-
aptic membrane of a hippocampal neuron when activated by 
E2 [151], and this interaction facilitates higher phosphoryla-
tion of the cAMP response element-binding protein (CREB) 
[152]. A similar phenomenon was also observed in the case 
of striatal neurons; however, the effect was mediated by the 
direct interaction of ERα to mGluR3 but not mGluR5 [153]. 
Both ERα and ERβ enhance mGluR2/3 activation and the 
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Gi/0 pathway, which lowers L-Ca2+ channel function by in-
hibiting PKA phosphorylation of CREB. 

4.2. In the Regulation of Oxidative Stress 

ERs play essential roles in maintaining redox balance and 
protecting cells from oxidative damage [111]. Studies evi-
denced that ER modulators, such as E2, can initiate a chemi-
cal antioxidant system and regulate ROS signaling [154-158] 
by regulating expressions of antioxidant enzymes. Evidence 
derived from in vivo studies dealing with rat brains lacking 
estrogen revealed that estrogen deficiency downregulates the 
expression of SOD, CAT, NADH, and GSH/GSSG ratio 
[159], thus elevating oxidative stress along with anxiety, 
memory loss, and learning disability [160]. While in a simi-
lar experimental model, treatment of E2 showed a withdraw-
al effect of brain oxidative stress [161]. A detailed analysis 
by Rao et al. [162] represented that E2 treatment upregulates 
SOD1 in cortical neurons, which is negatively associated 
with the progression of oxidative stress induced brain dam-
age. Yang et al. reported that knockdown of ERβ from HT-
22 cells showed resting mitochondrial membrane potential 
becoming resistant to oxidative stress, leading to increased 
ROS production [163], suggesting that ERβ is associated 
with regulation of ROS in mitochondria. Siriphorn et al. 
stated that Schwann cells expressed ERα and ERβ and treat-
ment with E2 had a protective effect and survival mechanism 
against H2O2 exposure, which was validated by ICI182780, 
an ER antagonist [164]. E2 consists of hydroxyl group which 
usually acts as a chemical shield during the protection from 
free radical [165]. In the case of mitochondrial ROS, Stirone 
et al. reported that E2 reduced the formation of hydrogen 
peroxide (H2O2] in female cerebral blood vessels [166]. E2 
decreased bain mitochondrial ROS generation in Fischer 344 
rats, by increasing aconitase and manganese superoxide dis-
mutase (MnSOD), where enzymes break superoxide radicals 
in the male and female rat [167] to reduce mitochondrial 
ROS production. 

In nongenomic pathways, overexpression of ERα and 
ERβ activates some cytosolic signaling molecules, including 
ERK and MAPK, leading to attenuating amyloid β-related 
ROS in the HT22 hippocampus-derived cell line [168]. Tsi-
altas et al. reported that mitochondrial ERβ was involved in 
reducing H2O2 mediated apoptosis via suppressing caspase 
-9 and -3 activation in the N2A cells line [169]. Razmara et 
al. reported that the E2-mediated protective effect decreases 
ROS-related mRNA in human cerebral endothelium cells 
through ERα [170]. Furthermore, investigations found that 
E2 offered neuroprotection in the brain tissue of male mice 
following permanent blockage of the middle cerebral artery, 
as well as in primary neurons exposed to ROS via an ER-
independent anti-oxidant mechanism [171]. 

4.3. In the Modulation of Neuroinflammation  

Neuroinflammation is a response to specific CNS injuries 
[172], mediated by collaborative approaches of activated 
astrocytes and microglial cells that elevate pro-inflammatory 
mediators, such as ROS, chemokines, and pro-inflammatory 
cytokines, a vicious cycle that eventually causes neuro-
degeneration [173]. In such cases, ER signaling offers neu-
roprotection through the interactions with tissue and cell-
specific co-regulators [2]. The neuromodulator causes the 

conformational change of ER and eventually causes receptor 
activations, and reduces neuroinflammation [2]. Interesting-
ly, it is proved that all three ERs, ERα, ERβ, and GPR30, are 
involved in neuroprotection [174]. It is now evidenced that 
E2 inhibits the activation of NF-κB signaling [175]. NF-κB 
provokes the expression of several chemokines and cytokine-
producing genes, including pro-inflammatory mediators 
[176]. The NF-κB family members (e.g. NF-κB1, NF-κB2, 
RelA, RelB, and c-Rel) facilitate around five hundred gene 
expressions, including iNOS, IL-1, IL-6, IL-8, TNF-α, which 
are responsible for inflammation [177]. The activated NF-κB 
signaling cascade is associated with many neurological dis-
orders [176-178]. It is also found that ERK/MAP kinase ac-
tivation is vital for E2-mediated neuroprotection [179]. Choi 
et al. showed that E2 activates PI3K/Akt signaling in cortical 
neurons [174, 180]. Xing et al. found that E2 activates ERβ, 
upregulates IκBα expression, and inhibits RelA (p65) bind-
ing to the inflammatory gene, which might reduce inflamma-
tion [181]. Tiwari-Woodruff showed that activation of ERα 
decreased the level of pro-inflammatory mediators TNF-α, 
IFN-γ, and IL-6 and upregulated the expression of anti-
inflammatory cytokine IL-5 in EAE model animals [182]. 
Treatment with E2 led to reduced dendritic cell activation in 
the CNS of EAE mice and reduced the expression of IFN-γ, 
TNF-α, and IL-12 mRNA [183]. Remarkably, E2 also pro-
vides a neuroprotective effect through the activation of the 
GPR30 receptor [184]. The GPR30 agonist G-1 treatment 
also reduced CNS inflammation, axonal damage, and demye-
lination [185]. G-1 also reduced the number of macrophages 
in the CNS [186]. Blasko et al. showed that G-1 reduces the 
expression of chemokine and cytokine, including CCL2, 
CCL4, CCL5, TNF-α, IFN-γ, IL-17, and IL-23, [186]. Re-
cently, Spence et al. have found that activation of ERα also 
declines the expression of chemokine CCL2 and CCL7 in 
EAE astrocytes [187].  

4.4. In the Activation of Protein Clearance Systems  

ER-mediated signaling is a complex process, and numer-
ous anonymities need to be resolved. It is evidenced that 
ERα controls HSF1 signaling, the mediators which increase 
the expression of HSP70, HSP90, and HSP110 in stress con-
ditions [188, 189]. Recently, Riar et al. have shown that ac-
tivated ERα induces UPRmt activation, raises NRF1, and 
increases cellular proteasome systems in the ALS model 
[190]. The first outcome of UPR is the activation of BiP 
(GRP78) with a subsequent reduction of protein production, 
ultimately reducing EnR stress [191]. On the other hand, 
mitochondrial UPR upregulates CHOP [192], and CHOP 
influences the expression of HSP10, HSP60, and proteases 
[190].  

Chung et al. found that E2 treatment activates autophagy, 
resulting in a higher level of Atg12, LC3B-II/LC3B-I, 
HSP70, and HO-1 expression in ovariectomized rats [193]. 
Activated ERα was also shown to increase p62 and reduce 
Bcl-2 expression, provoking autophagy [194, 195]. Besides, 
activated ERβ influences autophagy by controlling the ex-
pression of autophagy-associated markers, including p62 and 
LC3-I/II activating AMPK signaling, modulating P13K/ 
AKT/mTOR signaling [196], and detachment of BECN1-
BCL2 complex [197, 198]. The mitochondrial ERα mediates 
autophagy by modulating p38 MAPK and ERK signaling 
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[199]. It is now clear that ERs regulate several autophagy-
related transcription factors. Li et al. showed that E2 stimu-
lates Nrf2-ARE signaling and the expression of autophagy 
proteins in the brain [200].  

5. ESTROGEN REPLACEMENT THERAPY IN NEU-
RODEGENERATION 

Many etiological studies established a relationship be-
tween sex preference of AD development. They found that 
women during the age of eighty are more likely to have a 
higher incidence of AD development, which is double that of 
men, though having a protective measures, including educa-
tion. This finding also suggests that E2 deprivation is linked 
to AD. Many studies have been conducted so far to ensure 
the benefits or risks of hormone replacement therapy (HRT) 
in patients with various NDDs, where therapy includes either 
only several categories of E2 or in combination with exoge-
nous or synthetic or progestogen. However, the implication 
of estrogen replacement therapy (ERT) for neurological dis-
orders is not beyond question, as some studies also suggested 
that this treatment method may not be beneficial [201].  

As E2 is predominately synthesized from the ovary and 
involved in many endocrine-related mechanisms of women, 
in the case of menopausal women, ERT has been applied and 
studied more extensively [202-204]. ERT could be beneficial 
in avoiding NDDs by boosting neuronal defense and 
memory systems based on E2-mediated neuroprotection 
[205]. Again, ERT can improve cognitive function perfor-
mance in the aging brain [206]. A double-blind placebo-
controlled clinical trial concluded that ERT would be an in-
effective strategy for reversing the pathology of AD if it had 
already been initiated [207]. Another 12-week clinical trial 
investigation on 50 participants found that the E2 treatment 
group exhibited no significant improvement over the placebo 
group, indicating that ERT has limitations in treating AD 
[208]. In 2000, a clinical trial was conducted among mild to 
moderate AD patients. The study showed neither deteriora-
tion nor improvement in ERT patients [209]. It can, howev-
er, lessen the risk of AD or delay its development [210]. 
Numerous studies reported that ERT in older women showed 
improved cognitive function and memory. An early study 
conducted in 1952 showed ERT improved the verbal 
memory of old women patients compared to the placebo 
group [211]. In 1997, an investigation involving 472 peri-
menopausal women showed that ERT provided a protective 
action against AD progression compared to non-user of ERT 
[212]. Another clinical trial study conducted among 278 
post-menopausal women patients (aged 55 to 93) showed an 
improved memory function after ERT. 

The study showed significant improvement in proper 
name recall in the treatment group patients [213]. A clinical 
investigation with 46 postmenopausal women was done to 
examine how E2 affected brain activity patterns during a 
working memory task. The study discovered that E2 increas-
es activity in the inferior parietal lobule during the storage of 
verbal information and decreases activation during the stor-
age of nonverbal information [214]. A recent meta-analysis 
study summarized the existing research and clinical data and 
illustrated a dramatically lower risk of AD and PD by ERT 
compared to the control group [215]. In 1994, one clinical 

trial study reported that dementia with AD is significantly 
reduced by ERT [216]. Also, ERT may help to improve the 
efficacy of other clinical therapy for AD. In 1996 a 30-week-
long clinical trial study was conducted with 318 subjects, 
which concluded that ERT enhanced the efficacy of Tracine, 
an AD medicine [217]. 

PD is a progressive movement disorder developed by 
the degeneration of the dopaminergic neurons. The risk of 
PD begins to develop in pre-menopausal women, reducing 
the effectiveness of their medications. Furthermore, post-
menopausal women have a higher risk of developing PD, 
suggesting ERT might play a crucial role against PD symp-
toms. Additionally, E2 has a modulatory role in lessening the 
degradation of dopaminergic neurons [218].  

Several studies have reported the beneficial effect of ERT 
on PD during the menstrual cycle. Recently, song et al. 
showed that HRT reduced the risk of PD significantly in 
postmenopausal women compared to the control by using a 
random-effects meta-analysis where the odds ratio value was 
0.470; 95% CI: 0.368-0.600 [215]. Along with this, some 
clinical studies have reported the more significant impact of 
ERT on PD. In a double-blind, parallel-group study, admin-
istration of conjugated E2 (Premarin; 0.625 mg/day) over 
eight weeks showed the reduction of motor fluctuation and 
improvement “on” and “off” times in postmenopausal wom-
en patients of PD (n=20) compared to placebo-treated pa-
tients. However, a double-blind, placebo-controlled study 
reported a short-term anti-Parkinsonian effect with mild-to-
moderate PD in 8 postmenopausal women without altering 
dyskinesia scores [219]. In another placebo-controlled, ran-
domized, double-blind trial with postmenopausal patients (12 
females), the dopaminergic effect of E2 was not significant 
[220]. Thus, the null findings concluded the attenuation of 
PD symptoms in the menopause stage of women by ERT.  

Multiple sclerosis (MS) is a persistent demyelinating dis-
ease of the central nervous system (CNS), affecting eyesight 
and causing a significant decrease in relapses [221]. Pregnant 
women with MS have the beneficial effect of the pregnancy 
hormone estriol in reducing lesions. Therefore, one clinical 
study was conducted to observe the role of estrogen treat-
ment in MS. Non-pregnant patients with MS were (aged 
from 18 to 50 years) examined after the oral administration 
of estriol (8mg/day) for six months, where a significant de-
crease in lesion numbers was found compared to the control 
group [222]. Soldan and the team reported that the levels of 
CD4+, CD8+ T cells, and CD4+ CD45Ro+ (memory T cells) 
were decreased significantly while the levels of IL-5 and IL-
10 increased during estriol (8 mg/day, for six months) treat-
ment in ten female patients with MS, suggesting the correla-
tion with depletion of lesions improvement [223]. 

Huntington's disease (HD) is a well-known inherited 
NDDs that causes the deterioration of nerve cells. Several 
studies revealed both enhancement and blocking of dopa-
minergic activity by E2 in animal models, but the study of 
ERT on HD patients was minimal. However, one clinical 
study reported the improvement in lower than one-third of 
patients with chorea in HD patients together with tardive 
dyskinesia [224]. 
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Amyotrophic lateral sclerosis (ALS) is a fatal nervous 
system disease with various phenotypes. A case-control 
study in Ireland, Italy, and the Netherlands was performed to 
observe the effect of HRT in 653 patients and 1,217 controls 
over four years. The exogenous E2s combined with proges-
togens were found to reduce ALS risk in women [225]. An-
other study on HRT failed to demonstrate the beneficial ef-
fect of E2 in ALS patients. There was no significant differ-
ence in neuroprotection between postmenopausal women 
with ALS treated and those not taking ERT [226].  

In brief, ERT is a newly established treatment that dimin-
ishes menopausal symptoms and the risk of postmenopausal 
diseases. The risk of NDDs, such as AD, PD, MS, HD, and 
ALS, might be lessened during the menopausal stages 
through ERT. Although several clinical studies were as-
sessed, further studies are required with similar approaches 
to expand ERT-induced neuroprotection. 

6. ROLE OF SELECTIVE ESTROGEN RECEPTOR 
MODULATORS IN RADIATION-INDUCED BRAIN 
INJURY 

Several selective ER modulators (SERMs) are currently 
available and are being used to manage postmenopausal 
symptoms, osteoporosis, and cancers like breast cancer, 
which because of their tissue selective behavior, act as both 
agonists and antagonists of ERs. The binding and activation 
mode of these modulators are briefly described elsewhere 
[227-230]. Among these SERMs, tamoxifen has been widely 
used and prescribed for many diseases for several decades as 
adjuvant endocrine therapy. In the case of radiation-induced 
brain injury, Liu et al. summarized that tamoxifen at a con-
centration of 1 μM reduces the radiation-induced microglial 
inflammatory response through the negative effect of irradia-
tion in a murine microglial cell line, BV-2 cells. When radia-
tion was applied to 10 Gy, the expression of TNF-α and IL-
1β increased and promoted inflammatory responses, which 
were significantly reduced by tamoxifen. Notably, tamoxifen 
administration at a dose of 5 mg/kg decreased the tissue 
edema formation and blood brain barrier (BBB) breakdown, 
glial activation, and neuronal death, caused by total brain 
irradiation in the adult male Sprague–Dawley rats [231]. 
Another ER signaling modulator [232], lithium, is also re-
ported to reverse radiation-induced cognitive impairment, as 
Zanni et al. [223] reported. It has been found that lithium 
treatment promoted hippocampal neurogenesis in C57BL/6J 
mice, even four weeks after whole-brain radiation (a single 
dose of 4�Gy). Earlier mechanistic analysis showed that pre-
treatment lithium could increase the proliferation of hippo-
campal neural progenitor cells and rescues radiation-induced 
(3.5 Gy) G1 and G2/M phases of cell cycle arrest without 
causing apoptosis [233]. 

In addition to synthetic SERMs, many naturally occur-
ring SERM, known as phytoestrogen, are also reported to 
ameliorate radiation-induced brain injury (Table 1). One of 
the popular phytoestrogens, quercetin, is a potential phytoes-
trogen that can protect against radiation-induced brain injury. 
Kale et al. found that quercetin treatment at 50 mg/kg can 
mitigate radiation-induced brain injury by altering antioxi-
dant status, more explicitly regulating plasma total antioxi-

dant status (TAS) and malondialdehyde (MDA) in male, 
Wistar-Albino rats [234]. Another experimental research, 
later on, revealed that quercetin (5-100 μM, 24 hrs) protected 
neurons against radiation (γ-ray, 2 Gy)-mediated EnR stress 
and inflammatory response through downregulating binding 
immunoglobulin protein (BiP) and C/EBP-homologous pro-
tein (CHOP), TNF-α, JNK, some EnR stress marker gene 
and upregulating Tuj1, a cytoskeletal protein with neurotro-
phin brain-derived neurotrophic factor, conducted by Chat-
terjee et al. [235]. Data obtained from a histopathological 
investigation of male Wister rats' brain tissues study, con-
ducted by Mansour et al., stated that 5, 7-Dihydroxyflavone 
(DHF) or chrysin (50 mg/kg, 21 days) could reverse acryla-
mide (ACR) or γ-irradiation-induced neurotoxicity attrib-
uting increased catecholamine level and brain-derived neu-
rotrophic factor (BDNF), leading to increased serum activity 
of creatinine kinase-BB but decreased acetylcholinesterase 
and caspase-3 activities and MDA and β-amyloid level 
[236]. Furthermore, chrysin upregulates glutathione (GSH) 
with downregulating MDA and TNF-α levels in ACR-treated 
Male albino rats (140-160g) [237]. Flaxseed oil (FSO), 
which contains a high level of phytoestrogenic lignans, was 
found to have neuroprotective effects against 7 Gy γ-
irradiation and CCl4-induced brain injury in the irradiated 
Swiss albino (6-8 weeks, 25±2 gm) mice model through im-
proving the antioxidant status, suppressing the inflammatory 
responses, and regulating the trace elements at a dose of 100 
µl/mice/day for 21 days [238, 239]. Learning and memory 
improvement against 4Gy radiation-induced cerebral injury 
of curcumin (200 mg/kg) was mediated via improving anti-
oxidant status through the underlying mechanism of increas-
ing antioxidant transcription factor, i.e. nuclear erythroid 2 
related factor 2 (Nrf2) and its downstream gene i.e. NADPH 
quinine oxidoreductase 1 (NQQ1], heme oxygenase-1 (HO-
1), and γ-glutamyl cysteine synthetase (γ-GCS) with a con-
comitant significant increase in superoxide dismutase (SOD) 
and cerebral malonaldehyde (MDA) activity in 6–7 weeks 
Kunming mice [240]. In addition to the brain, curcumin (150 
mg/kg, seven days) reduced radiation-induced heart injury 
by increasing IL-4 along with its receptor IL4Ra1, infiltrat-
ing some immune cells, i.e., lymphocytes and macrophages, 
and decreasing dual oxidase (Duox1 and Duox2) in γ-
radiation (15 Gy) induced rat [241]. Resveratrol (5 and 10 
mg/kg, 21 days) inhibits apoptosis induced by radiation and 
increases Sirt1 mRNA expression and activity with antago-
nizing oxidation and cellular ROS-scavenging effect in male 
Sprague-Dawley rats (200–220 g) [242]. Oral administration 
of epigallocatechin gallate (EGCG), with a dose of 2.5 and 5 
mg/kg/d, significantly decreased amino acid homocysteine, 
immune molecules TNF-α and IL-6, and β amyloid with the 
simultaneous increase in the neurotransmitter dopamine, 
serotonin, and antioxidant status, including glutathione level, 
and the activities of glutathione peroxidase and glutathione 
reductase. They also found that EGCG prevents radiation-
induced DNA damage to provide genomic stability and 
apoptosis via downregulating cyto-c, Bax, caspase-3, caspa-
se-9, whereas upregulation of Bcl2 in the hippocampus 
[243]. Subsequently, silymarin (140 mg/kg/d) suppressed 
irradiation mediated damage that increased nucleic and 
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Table 1.  Phytoestrogens conferring neuroprotection against radiation-induced neuronal injury in vivo and in vitro. 

Compound Structure 
Treatment  
(Dose and 
Duration) 

Experimental 
Model 

Radiation  
(Type, 
Dose) 

Major  
Outcomes 

Mechanism References 

Quercetin 

 

50 mg/kg 
Male Wistar-
Albino rats, 
300–350 g 

20 Gy 

↑ Neuroprotec-
tion 

↑ Antioxidant 
activity 

↑Regulate plasma MDA, 
TAS  [234] 

5-100 μM, 
24 hrs 

Dorsal root 
ganglion 

(DRG) neu-
rons 

γ-ray, 2 
Gy 

↓ Inflammatory 
responses, ER 

stress, 

↓ BiP and C/EBP 
↓ TNF-α, JNK 
↑Tuj1, BDNF 

 [235] 

Chrysin 

 

- Male albino 
rats, 140-160 g 5 Gy ↓Oxidative 

damage 
↑ GSH,BDNF 

↓MDA, TNF-Α, GABA 
 [237] 

50 mg/kg 
21days 

Male Wister 
rats, 120–150 

g 

γ-ray,5 
Gy 

↓Oxidative 
damage 

↑Catecholamine con-
tent’ 

creatinine kinase-BB 
↓ MDA, β-amyloid, 

acetylcholinesterase and 
caspase-3 

 [236] 

Curcumin 
 

200 mg/kg 
Kunming 
mice, 6–7 

weeks 

Heavy-ion 
radiation, 

4 Gy. 

↑ Cognitive 
functions 

↑SOD, MDA 
↓ NAD(P)H, NQO1, 

HO-1, γ-GCS 
 [240] 

150 mg/kg, 
7 days - γ-ray,  

15 Gy ↓ Heart injury 
↑IL-4 

↓ Duox1 and Duox2 
 [246] 

Flaxseed oil -- 
100 

µl/mice/day 
(21days) 

Swiss albino 
6-8 weeks, 
25±2 gm 

7 Gy ↓ Oxidative 
damage 

↓ Lipid peroxidation 
(LPO), 

↑ Glutathione (GSH) 
 [238] 

Resveratrol 

 

5 -10 
mg/kg,  
21 days 

Male Sprague 
Dawley rats, 
200-220 g 

γ-ray,  
4-Gy 

↑ Apoptosis 
↑ Oxidative 

damage 

↑ Sirt1 mRNA 
↑ ROS-scavenging 

 [242] 

Epigallocatechin 
gallate 

(EGCG) 

 

2.5-5 
mg/kg/d 

Male Wister 
rats 

γ-ray,  
4 Gy 

↓DNA damage 
and apoptosis 

↓ Homocysteine, 
↓ Amyloid β, TNF-α, 

IL-6 levels 
↑ Dopamine and  

serotonin 
↓ Cytochrome-c, Bax, 
and caspase-3 and 9 

↑ Bcl-2 

 [243] 

Silymarin 

 

140 
mg/kg/d Rat model 

γ-ray,  
0.2-0.6 

Gy 

↑ Repair DNA 
damage 

↑Nucleic acids, histone 
proteins stability 

↓Free radical generation 
↓Lipid peroxidation 

 [244] 

Baicalein 

 

10 mg/kg/d C57BL/6 mice γ-ray, 
5 Gy 

↑ Neurogenesis 
regulation ↑BDNF-pCREB  [245] 

 
histone protein stability and inhibited radiation-induced free 
radical production with lipid peroxidation against γ-ray (0.2 
and 0.6 Gy/d) induced brain damage in the rat [244]. Bai-
calein protected neural progenitor cells in male C57BL/6 

mice against γ-ray (5 Gy) -induced necrotic cell death. The 
author found that baicalein (10 mg/kg/d) alters neurogenesis 
by modulating oxidative stress and elevating BDNF-pCREB 
signaling, improving learning and memory capacity [245]. 
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Table 2.  Neuroprotective activities of phytoestrogens against neurodegenerative hallmarks. 

Compound 
Estrogen Receptor 

Preference 

Effect on Neurodegeneration 

References 
Dose 

Experimental 
Model 

Cellular Mechanism 
Molecular  

Mechanism 

Quercetin 

 
ERβ-selective ago-

nist 

0-150 μM P19 neurons ↓Oxidative injury 
↓ROS production 

↑Caspase-3/7 
 [265] 

 
RSC96 and rat 
Schwann cells 

↓Autophagy 
↑Beclin-1 

↑LC3 
 [266] 

0-25 μM HT22 cell ↓Ca2+ excitotoxicity 
↓Glutamate-mediated Ca2+ 

influx 

↓Bid and Bax, and Cyt-c release 
 [267] 

Chrysin 

 
ERα, ERβ-selective 

agonist [268] 

100 
mg/kg, 

p.o. 
Male Wistar rats ↓Neuroinflammation 

↓Pro-inflammatory 

markers, i.e, TNF-α, IL-1β,  
IL-6, NF-κB, 

iNOS and COX-2 

 [269] 

5 and 10 
µg/ml 

Wistar rats ↓Oxidative stress 
↑NRF2/HO-1 pathway activa-

tion 
 [270] 

Resveratrol 
ERα, ERβ-selective 

agonist [271] 

10 and 50 
μg/ml 

NMDA induced 
neuronal injury 

↓Neuronal death 
↑Intracellular calcium  

↑ROS generation 
 [272] 

20 μM SH-SY5Y cells ↓Autophagic flux 
↑LC3-II 

↑HO-1 expression. 
 [273] 

Epigallocatechin 
gallate  

(EGCG) 

ERα-selective ago-
nist [274] 

1.5 or 3 
mg/kg 

PS2 transgenic 
mice model 

↓Protein aggregation 

↑Memory function 

↑α-secretase activity 

↓β- and γ-secretase 

activities 

 [275] 

25-100 
μM 

GO induced 

neurotoxicity in H 
19-7 cells 

↓Oxidative stress ↑Nrf2 activation  [276] 

 
CONCLUDING REMARKS AND FUTURE PERSPEC-
TIVES 

Alongside regulating sexual behavior and reproductive 
functions, ER signaling has been renowned for its diverse 
functions in the CNS, including neurogenesis, synaptic plas-
ticity, and neuroprotection, and eventually affecting motor 
activities, learning, cognition, and behavior [247-249]. Con-
sidering the substantial evidence highlighted in this review, it 
is inevitable that E2 or ER targeting modulators might hold 
the potential to delay the development and progression of 
various NDDs. Interestingly, it is evidenced that E2 or ER 
targeting modulators could successfully revert the expected 
pathological consequences in radiation-induced brain injury, 
including BBB breakdown, pro-inflammatory responses, and 
loss of hippocampal neurogenesis, where tamoxifen could be 
an example. Studies other than on radiation-induced injury 
revealed that the treatment of tamoxifen is effective in the 
brain and spinal cord injuries [250-252], promoting neuronal 
differentiation, preventing demyelination in the cerebral cor-
tex [253], and providing neuroprotection against MS [254], 

stroke [255], PD [256], and dementia [257]. Nevertheless, 
other studies established that the use of tamoxifen failed to 
induce cognitive function when used as hormonal adjuvant 
therapy in breast cancer patients [258-260] and concluded 
that this drug could act like E2 only in the ovariectomized 
animals [261]. In the case of radiation-induced brain injury, 
Liu et al. observed a neuroprotective effect in the regular 
mice model [231], suggesting the importance of additional 
studies in different animal models to confirm the effective-
ness and safety of radiation-induced neurodegeneration. 

As both tumor radiosensitization and reduced toxicities in 
non-cancer cells are equally important goals in RT, ER sig-
naling modulating agents from natural sources could be an 
attractive option to have the dual ability to enhance radiation 
damage in the malignancy, simultaneously protecting the 
normal cell from radiation injury [262, 263]. As highlighted 
in Table 1, several studies reported the potential of phytoes-
trogens in the neuroprotection against the radiation-induced 
brain or neuronal injury, where most of them are reported to 
increase radiosensitivity in conventional RT. For example, 
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quercetin is reported to potentiate radiosensitivity against 
tumor cells in vivo and in vitro by regulating ATM-mediated 
pathways and acting as a radioprotective agent when used 
systemically [253]. A similar impression is also applied to 
curcumin, which also proved to increase radiosensitizing in 
various in vitro and in vivo cancer models [254, 255], while 
other studies suggested curcumin as a radioprotector [256-
261]. 

Interestingly, all of the natural modulators listed in this 
study provide cumulative neuronal protection, acting on the 
multiple pathways of NDDs, including antioxidant defense 
systems, calcium excitotoxicity, proteostasis modulation, and 
neuroinflammation, as highlighted in Table 2. Since radia-
tion exposure caused multi-path derived changes in brain 
signaling and function, the pharmacological modulation by 
these pleiotropic natural ER modulators compounds could 
open avenues to develop strategies for protecting brains 
against radiation-related incidents [264]. 

As their effects have only been recorded in pre-clinical 
investigations, the pharmacological potentials of the natural 
ER modulators remain somewhat imperceptible. In reality, 
no clinical trial has yet been carried out to assess their impact 
on radiation-derived brain injury; therefore, implementation 
of high-quality trials is essential to confirm these preventive 
effects in the various aspect of brain injury following RT. 
Unfortunately, the efficacy data highlighted in the present 
review only emphasized the single preclinical model focus-
ing on specific signaling pathways. Thus, more mechanistic-
based studies focusing on multiple pathways are needed to 
reveal the unknown mechanism of these modulators by em-
phasizing radiation-induced side effects.  

In addition to regulating oxidative imbalance, ER signal-
ing can also be targeted for mitochondrial stress adaption. 
Mitochondrial dysfunction has long been known to play a 
critical role in tumor growth and has been linked to the ex-
pression of hormone receptors in several kinds of malignan-
cies [277]. Studies showed that higher intracellular ROS and 
Ca2+ caused by mitochondrial stress adaptation are linked to 
AREG expression and secretion, where upregulated AREG 
further activates ERα through PI3K/Akt/mTOR and ERK 
pathways [278]. As a result, mitochondrial stress adaption 
through ER signaling could be a potential therapeutic target 
for the treatment of drug resistance [279]. 

Given the therapeutic benefits of HRT in neuroprotection 
[180, 280-283], various animal studies and a randomized 
controlled trial by the Women's Health Initiative (WHI) evi-
denced increased ischemic lesions in HRT [284-287], albeit 
the E2 on stroke have been mainly remaining contradictory. 
Other studies have described this effect of E2 on stroke as 
hormesis [288], a biphasic dose-response relationship, in 
which cellular exposure to a particular toxin at low concen-
trations develops resistance to future interactions with more 
significant concentrations, which might be described as an 
adaptive response to ongoing cellular stressors [289-292]. It 
is evident that ER signaling has hormetic phenomena, as a 
single receptor regulates multiple complex pathways [293], 
and thus studies evidenced the detrimental effect of E2 be-
cause of prolonged and higher concentrations on stroke 
models, while physiological concentrations are protective 
[284-287]. While describing the hormesis regulation by E2, 

other studies implied that higher concentrations of the female 
hormone are anti-inflammatory; on the contrary, low concen-
trations showed pro-inflammatory action [283, 294-296].  

Again, hormetic pathways activation is regulated by 
vitagene brain axis activation that encodes several protein 
systems, including molecular chaperons (HSPs), sirtuin, and 
thioredoxin, which are essential redox-dependent regulators 
of ROS that exert effects ranging from physiological signal-
ing to physiopathological consequences [283, 297, 298]. As 
described earlier, both E2 and natural antioxidants, including 
phytoestrogens, have been neuroprotective by activating 
hormetic pathways regulated by the vitagene protein network 
[299]. Unless used as dietary supplements, phytoestrogens 
are generally present in the food in chemical combinations. 
While large amounts of phytoestrogens may have no delete-
rious impact on an adult, they may negatively affect infant 
growth [299]. As both E2 and phytoestrogens exhibit non-
monotonic and hormetic dosage responses, the design of pre-
clinical and clinical trials, as well as approaches for optimum 
patient dosing in the treatment of neurodegeneration, are 
more challenging [300]. These conflicting findings of 
whether concentration ranges of E2s are neurotoxic or neu-
roprotective may be due to organ variations or inconsisten-
cies in the measured end-points. Thus bearing hormesis in 
mind, experiments aimed to reveal the appropriate biological 
and therapeutic effects of E2 should thus be designed and 
conducted with a broad range of dosages. The biological 
relevance of these doses should be evaluated by blood hor-
mone readings and subsequent comparison with the desired 
biological/clinical scenario [301]. 

A subsequent question still remains regarding the bioa-
vailability of natural products when the compounds are tar-
geted for CNS diseases. Collecting evidence suggested that 
natural products generally fail to acquire adequate levels in 
the brain due to the poor bioavailability and BBB crossing 
ability. As poor bioavailabilities share the reason for clinical 
failure, more care should be taken when considering the nat-
ural products in clinical settings, emphasizing tolerances, 
safety, effectiveness, bioavailabilities, and biodistributions. 
Treatment with curcumin, for example, is challenging due to 
its instability, poor bioavailability, and instant body clear-
ance [302]. In a clinical trial setting with Alzheimer's pa-
tients, curcumin was unsuccessful in reversing cognitive 
impairment and discontinued due to gastrointestinal issues 
[303]. Nevertheless, many efforts have improved curcumin 
bioavailability by applying different drug delivery approach-
es [304-307]. Hu et al. found that curcumin has minor im-
pacts on cognition and mood in aged people and changes 
plasma biomarkers in a population of middle-aged people 
when administrated at 400 mg per day as a solid nanoparti-
cle-based preparation, which ensured adequate plasma cur-
cumin levels [308]. Chen et al. confirmed that mesoporous 
polydopamine nanoparticles loaded with curcumin enhance 
radioprotection in BEAS-2B cells and radiation pneumonitis 
rat model by increasing the anti-oxidant system, downregu-
lating proinflammatory cytokines, and reducing apoptosis 
and tissue damages [309]. This novel observation calls for an 
extensive study to design a new delivery approach for natural 
ER modulators to prevent age-related diseases induced by 
radiation.  
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Table 3.  List of phytoestrogens and their biological functions in numerous study models. 

Compound Chemical Structure 
ER 

 Pharmacology 
Treatment 

(dose) 
Experimental 

Model Cellular Functions References 

Isoliquiritigenin 
 

 

ERα 25-50 mM 
In vitro 

(MDA-MB-
231, MCF-7) 

↓MMP-2 and MMP-9, 
PI3K expression 

↑p38 phosphorylation 
↓NF-κB DNA binding and 

Akt kinase activity 

 [321, 322] 
 

Daidzein 

 

ERα  0- 100 µM 
In vitro 

(MCF-7) 

↑ ROS generation, 
↑ Bax, cyt-c. 

↑ Caspase-9 and caspase-7, 
↓ Bcl-2 protein level 

 [323, 324] 

Formononetin 

 

ERβ 30–100 μM 
In vitro and in 

vivo 
(MCF-7) 

↓p-IGF-1 R, p-Akt, cyclin 
D1 protein and cyclin D1 

mRNA expression 
↑G0/G1 phase arrest 

↓IGF1/IGF1R-PI3K/Akt 
pathways 

 [325, 326] 

Luteolin 

 

ERα  40 µmol/L 
In vitro 

(MCF-7) 
↓pIGF-1 and PI3K-Akt 

pathway.  [327, 328] 

Kaempferol 

 

ERα  
In vitro 

(MDA-MB-
231and BT474) 

↑ DNA damage 
↑ Arrest at G1, G2 and G2/M 

phase 
↑ Expression of γH2AX, 

↓ Caspase 3 and 9 

 [329, 330] 

Apigenin 

 

ERα 5–20 μM 
In vitro and in 

vivo 
(MDA-MB231) 

↓Pro-intravasation trigger 
factors and MMP1  

expression 
↓ CYP1A1 activity 

 [329, 331] 

Glycitein 

 

ERα 10-100 
mg/ml 

In vitro SKBR-
3 cells 

↑ Membrane permeability 
↓ DNA synthesis 

 [323, 332] 
 

Gallocatechin-3-
gallate 

 

ERα  20 μg/ml in vitro and in 
vivo 

↓ miR-25 expression 
↑Pro-caspase-3 and pro-

caspase-9 and PARP. 
↑ Arrest G2/M phase 

 [274, 333] 

Isorhapontigenin 
(ISO) 

 

 

ERα 

 
 
 
 
 
 
 

In vitro 
(MCF7, T47D) 

↑ SPHK/tubulin destabili-
zation 

↑ ROS Production 
↑ Cleaved PARP, cyto-
plasmic  Cytochrome-C, 
cleaved caspase-3, and 

cleaved caspase-9 

 [334, 335] 
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Compound Chemical Structure 
ER 

 Pharmacology 
Treatment 

(dose) 
Experimental 

Model Cellular Functions References 

Pterostilbene 

 

ERα  50-75 
μmol/L 

In vitro 
(MCF-7 and 

MDA-MB-231) 

↑Cytosolic Smac/DIABLO 
expression 

↑MnSOD activity 
↑Cytosolic calcium  

concentrations 

 [336, 337] 
 
 
 
 

Enterodiol 

 

ERα, ERβ 25- 75 μM 
In vitro 

(MDA-MB-
231) 

↓ MAPK-p38 
↓ERK-1/2, NF-Κb 

↓ Snail (mRNA & protein) 

 [338, 339] 
 
 
 

Sesamin 

 

ERα 12.5-100 μM 
In vitro 

(MCF-7) 

↑ Phosphorylation of RB 
and ↑Degradation of cyclin 

D1 

 [340, 341] 
 
 
 

Coumestrol 

 

ERα, ERβ 50 µM 
In vitro 

(MCF-7) 

↑ ROS production 
↑ p53 and p21Cip1/WAF1 

activity 
 [342, 343] 

Wedelolactone 

 

ERα, ERβ 12.78- 27.8 
μM 

In vitro 
(MDA-MB-
231, MDA-
MB-468 and 

T47D) 

↑ Chymotrypsin-like activi-
ty  [344, 345] 

Psoralen 
  

ERα  0–65��
μg/ml 

In vitro and in 
vivo 

(MCF-7 & 
MDA-MB-231) 

↑ G0/G1 & G2/M phase 
arrest 

↓ Fra-1 & β-catenin expres-
sion 

↑ Axin2 & phospho-(Y142) 
β-catenin expression 

 [346, 347] 

Anthocyanin 
 

 

ERα  
In vitro and 

vivoN202/1A 
and N202/1E 

↑Oxidative stress 
↑AMPK signalling pathway 

 [348, 349] 

Delphinidin 
 

 

ERα 25–1000 
µg/ml 

In vitro 
(MDA-MB-

453) 

↑ Cell cycle arrests the G1 
phase.  [350, 351] 

Ursolic acid 
 

 

ERα ≥10 μM 
In vitro 

(MDA-MB-
231) 

↓ Nrf2 expression 
↓ Keap1/Nrf2 pathway and 

EGFR/Nrf2 pathway 
 [352, 353] 

Sauchinone 

 

ERα 

50 g/ml 
 
 
 

 

In vitro 
(MCF-7) 

↓VEGF, cyclin D1, and 
Bcl-2 gene products 
↑Activate caspase 

↑ ERK signalling pathway 

 [354, 355] 
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Compound Chemical Structure 
ER 

 Pharmacology 
Treatment 

(dose) 
Experimental 

Model Cellular Functions References 

Lycopene 
  ERα, ERβ 50 μM 

In vitro 
(MDA-MB-

468 c) 

↑G0/G1 phase arrest 
↑Activation of the ERK1/2 
↑p21 upregulation and Bax 
↑Akt and mTOR activation 

 [356, 357] 

Phloridzin 

 

ERs 10-150 μM 
In vitro 

(MDA-MB-
231) 

↓Paxillin/FAK, Src, and α-
Sma expression. 

↑p53, p21, and E-cadherin 
↓Type 2 glucose trans-

porter. 

 [358] 

Oleuropein 

 

ERα 100- 
200 μg/ml 

In vitro 
(MCF-7) 

↑Blocks G1 to S 
↑G0/G1 phase stability 

 [359, 360] 

Calycosin 

 

ERα, ERβ  0-150 μM 
In vitro 

(MDA-MB-
231) 

↓Rab27B-dependent  
signaling 

↑β-catenin and VEGF 
modulation 

 [361, 362] 
 

α-Mangostin 

 

ERα  10 µM 
In vitro 

(MCF-7) 

↑Activate-7, -8 and -9, 
Bax, p53, cytosolic cyto-

chrome c and induced 
PARP  

cleavage 
↓Bid and Bcl-2 

 [363] 
 

Liquiritigenin 

 

ERβ 50 μM 
In vitro 

(HT22 cell) 

↓Ca2+ influx, 
↓ROS production 

↓Lipid peroxidation 
↓Mitochondrial stress 

↓MAPKs, ERK, c-JNK 
signaling pathways 

 [364, 365] 

Naringenin 

 

Partial ER ago-
nist 

25-100 
mg/kg/b.wt, 

In vivo 
C57BL/6J mice 

↓Lipid peroxidation 
↑Glutathione reductase and 

catalase 
↓iNOS expression 

 [366, 367] 

Genistein 
 

 

SERM 0.01-1 uM 
In vivo 

Sprague–
Dawley rat 
embryos 

↓Bcl-2/Bax 
↓Caspase-9 and caspase-3 

activities 
↓NF-κB/p65, phosphoryla-

tion of p65 and IκB, 
↓MAPK JNK and ERK 

signaling 

 [368, 369] 

Arctigenin 

 

ERβ agonist  
In vitro 

(H89, SH-
SY5Y cell) 

↓Aβdeposition, p-CREB. 
↓Presenilin 1(PS1] 

 [370], 
[312] 

Caffeic acid 
 

ERα  10 µmol/kg 
(7 days) 

Male Sprague-
Dawley rats,  
9–10 weeks, 

110–120 

↓ MDA, XO and ADA 
↑ NO(x) and SOD 

 [371, 372] 

Cyanidin 

 

ERβ 50-200, 
mg/kg/d Kunming mice Not mentioned  [348, 373] 
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The therapeutic benefits of phytoestrogenic substances 
and the molecular processes underpinning their positive ef-
fects in reducing inflammation, oxidative stress, and neu-
ronal loss after menopause are well documented [307]. These 
advantages might also explain why they influence cognitive 
deficiencies in animal models of different NDDs. Remarka-
bly, a combination of herbal supplements (a mixture of es-
trogenic substances) in a recent clinical study is found to be 
beneficial and safe to reduce menopausal symptoms [310]. 
As phytoestrogens and their derivatives can replicate the 
therapeutic consequence of natural E2, targeting ER signal-
ing with phytoestrogen is seen as a viable way to avoid the 
onset and progression of NDDs [307]. There has also been a 
growing interest in phytoestrogens as a radioprotective agent 
in other organ-specific damages. For instance, genistein is an 
isoflavone phytoestrogen [311], and is considered a potent 
SERM due to having a binding affinity with ERα [312], ERβ 
[313], and GPR30 [314]. This phytoestrogen was trialed 
clinically and could attenuate the adverse effects of chemo-
therapy and RT [315, 316]. Moreover, genistein provides 
protection against radiation-induced bone marrow [317, 
318], lung damage [319], and DNA damage in several types 
of cells [320]. However, the therapeutic activities of 
genistein against radiation-induced brain damage are still 
unknown. Similarly, many potential phytoestrogens are al-
ready identified to modulate ER signaling (Table 3); some of 
them might provide cytoprotection against radiation-induced 
injury, while detailed information regarding the mechanism 
is scarce. As a result, this review recommends a high-
throughput screening for the radiation-induced NDDs, along 
with pre-clinical and clinical studies to disclose the novel 
mechanisms of these phytoestrogens, which may yield prom-
ising pharmacological leads for the treatment of various 
NDDs. 
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