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Abstract

Method optimization is crucial for successful mass spectrometry (MS) analysis. However, 

extensive method assessments, altering various parameters individually, are rarely performed 

due to practical limitations regarding time and sample quantity. To maximize sample space for 

optimization while maintaining reasonable instrumentation requirements, a definitive screening 

design (DSD) is leveraged for systematic optimization of data-independent acquisition (DIA) 

parameters to maximize crustacean neuropeptide identifications. While DSDs require several 

injections, a library-free methodology enables surrogate sample usage for comprehensive 
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optimization of MS parameters to assess biomolecules from limited samples. We identified 

several parameters contributing significant first- or second-order effects to method performance, 

and the DSD model predicted ideal values to implement. These increased reproducibility and 

detection capabilities enabled the identification of 461 peptides, compared to 375 and 262 peptides 

identified through data-dependent acquisition (DDA) and a published DIA method for crustacean 

neuropeptides, respectively. Herein, we demonstrate a DSD optimization workflow, using standard 

material, not reliant on spectral libraries for the analysis of any low abundance molecules from 

previous samples of limited availability. This extends the DIA method to low abundance isoforms 

dysregulated or only detectable in disease samples, thus improving characterization of previously 

inaccessible biomolecules, such as neuropeptides. Data are available via ProteomeXchange with 

identifier PXD038520.

Graphical Abstract.
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INTRODUCTION

Significant evidence has demonstrated that data-independent acquisition (DIA) mass 

spectrometry (MS) methods provide greater reproducibility than data-dependent acquisition 

(DDA) methods. As ion selection in DDA methods is stochastic, replicate injections can 

have low overlap in peptide and protein identifications, obscuring real biological changes. 

In contrast, DIA methods define m/z windows within a selected precursor range and 

fragment all precursors within each window simultaneously to ensure that all parent ions 

are fragmented.1–4 The incorporation of DIA methods into traditional MS workflows has 

enabled the discovery and identification of more biomolecules in a single MS acquisition run 

than with traditional DDA experiments. DIA has been shown to be beneficial for proteomics 

and peptidomics.5,6
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One challenge in DIA experiments is that the complex fragmentation spectra of DIA require 

intensive downstream processing using either library or library-free approaches. Spectral 

libraries make identifications using a peptide’s fragmentation pattern observed in a high 

resolution DDA experiment to identify the same fragments from a DIA experiment.1,7 

Spectral library identifications are limited to only previously observed peptides, making 

them incompatible with discovery of new peptides.8,9 The extra instrument time and large 

sample amount required to generate a high-quality spectral library can prohibit the analysis 

of precious samples that are not abundantly available. Library-free software, in contrast, 

transforms DIA spectra into DDA pseudospectra, compatible with existing DDA search 

engines.4

To perform DIA successfully, acquisition parameters must be carefully selected based 

on sample type and complexity. These decisions can directly impact the library-free 

software deconvolution ability. For example, if a selected isolation window width is too 

large, the resulting MS/MS (MS2) spectra can display overlapping fragmentation patterns 

from multiple peptides. When the selected isolation window width is too small, the 

collected points corresponding to a particular peptide decrease. The design of an effective, 

comprehensive DIA experiment requires careful planning of acquisition parameters for more 

effective use of deconvolution algorithms, including maximum ion injection time (IT), target 

automatic gain control (AGC), collision energy (CE), m/z range, and others.8 Optimizing n 
parameters comprehensively requires n! experiments when considering synergistic response 

between any two parameters, requiring extremely large amounts of sample and instrument 

operation time.10–13 An alternative approach is the use of design of experiments (DoEs), 

which leverages statistical power to optimize multiple parameters in tandem using minimal 

experimental trials.14,15 DoEs are widely used in engineering16 but are less commonly 

applied to liquid chromatography-mass spectrometry (LC-MS) experiments, although usage 

of different DoEs has increased over the years.11,13,17–27

Combining DoE and library-free DIA methods can significantly decrease the sample and 

instrument time requirements to fully optimize a DIA method. To demonstrate this, we 

applied DoE and library-free DIA to the analysis of neuropeptides. Neuropeptides are 

signaling molecules crucial for neuronal communication. The subfemtomolar concentrations 

of neuropeptides observed in vivo, along with limited sample quantities gained from 

animal models, makes them poor candidates for a spectral-library-based DIA approach. 

Additionally, neuropeptide identification is not well-suited for DDA’s top n selection 

criteria, as neuropeptides tend to coelute with several higher abundance competing matrix 

components.5,28 To minimize sample requirements and maximize identifications, we applied 

a specific class of DoE, a definitive screening design (DSD), to decrease required 

experimental runs while maintaining a high level of statistical power to interpret the 

effects of each parameter. This model enables detection of both independently impactful 

parameters, classified as main effects, and parameters that complement one another to 

achieve a particular response, classified as two-factor interactions, in addition to predicting 

optimal parameter values to be used, all from a single round of data acquisition.10,29,30 

DSDs are versatile and compatible with both continuous and categorical, or discrete, 

parameters. Following the split-plot design of specific combinations of parameter values 

for experimentation, DSDs prescribe a set of strategically varied parameter combinations 
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to ensure enough statistical power to impute the optimal combinations while limiting the 

number of required experiments.29,31

Using a DSD, we evaluated seven parameters, m/z range, isolation window width, MS1 

maximum IT, CE, MS2 maximum IT, MS2 target AGC, and the number of MS1 scans 

collected per cycle, for the increased identification of neuropeptides through library-free 

DIA methodology. We demonstrate a workflow for optimizing DIA MS acquisition of 

precious samples using a DSD and a surrogate sample of similar complexity, amenable to 

a wild type or control sample. The optimized method can then be applied to limited mutant 

or experimental samples precious in nature. We also demonstrate the ability for label-free 

quantitation (LFQ) of the identified neuropeptides and compare the resultant method with a 

previously established DIA method for neuropeptides.

EXPERIMENTAL SECTION

Sample Preparation

Several sinus gland pairs were obtained from Callinectes sapidus. Neuropeptide samples 

were prepared according to previous protocols.32 Briefly, sinus glands were homogenized 

via ultrasonication probe in ice cold acidified methanol (90% methanol/9% water/1% acetic 

acid). The neuropeptide containing the supernatant was dried using a vacuum concentrator 

prior to desalting with a C18 solid phase extraction material. The subsequent samples were 

pooled into one vial which was used for MS acquisitions for the DSD and quantitative data. 

Throughout this article, peptides or neuropeptides will be considered to refer to all peptides 

identified through PEAKS contained in the neuropeptide database, including peptides that 

are truncated and/or modified by post-translational modifications (PTMs).

HPLC-MS/MS Analysis

All experiments were carried out using a Thermo Scientific Q Exactive orbitrap mass 

spectrometer coupled to a Waters nanoAcquity Ultra Performance LC system. Separation 

was performed on a 15 cm homemade column, packed with 1.7 μm particle size C18 

ethylene bridged hybrid material, at a flow rate of 200 nL/min. HPLC methods were kept 

constant for all data acquisition. Using solutions of mobile phase A (0.1% formic acid (FA) 

in water) and B (0.1% FA in acetonitrile (ACN)), the gradient was ramped as follows: 

starting at 97% A, ramped to 90% A over 0.5 min; 85% A over 19.5 min; 83% A over 20 

min; 80% over 15 min; 67% over 55 min; 25% over 10 min. Unaltered MS settings between 

all methods include MS1 resolution of 70,000, MS1 AGC target of 3e6, and MS2 resolution 

of 17,500. The default precursor charge state for all methods was set to +2. DDA acquisition 

was performed with a MS2 AGC target of 2e5, MS2 max IT of 200 ms, loop count of 

10, isolation window width of 2, normalized CE of 30, and dynamic exclusion window 

of 40 s. DIA acquisitions were executed with parameter values (Table 1) as prescribed 

by the DSD (Figure 1A). For DIA method comparison, a previously published method28 

for crustacean neuropeptide analysis was performed with slight modifications to decrease 

variability between parameters. Parameters that differ from the other DIA methods used 

herein are as follows: MS1 AGC target of 1e6, MS1 max IT of 250 ms, MS2 AGC target 

of 2e5, auto MS2 max IT, 20 m/z isolation window width, CE of 30 V, and loop count of 
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10. The parameters used in the final DIA method post-DSD evaluation were 16 m/z isolation 

window width from 400 to 1034 m/z, CE of 25 V, MS2 max IT of 100 ms, MS2 AGC target 

of 1e6, MS1 max IT of 30 ms, and 4 MS1 spectra per cycle.

Neuropeptides and related peptides were identified through PEAKSxPro software.33 PEAKS 

parameters were set to parent mass error tolerance of 20.0 ppm, fragment mass error 

tolerance of 0.02 Da, unspecific enzyme digestion, variable modifications: amidation (−0.98 

Da), oxidation (M) (+15.99 Da), pyro-glu from E (−18.01 Da), pyro-glu from Q (−17.03 

Da), acetylation (N-term), and max variable PTM per peptide of 3. Peptides were filtered 

using a −logP cutoff of 37.6, corresponding to a 5% false-discovery rate (FDR) for the DDA 

data. While a 1% FDR cutoff is considered standard within the proteomics community, this 

is not always the case in the field of peptidomics due to the unique considerations of the 

field. Routinely only a few hundred IDs (100–400) are expected. In this case, a mere two 

to five false positives from poor quality spectra will cause the FDR to quickly surpass a 1% 

threshold. For example, Han et al. credited their inability to identify 19 known neuropeptides 

to the use of a “strict” FDR threshold of 1%.34 As a result, it is not an uncommon practice 

by the peptidomics community to use a larger FDR cutoff, such as 5%, and/or substitute 

FDR with a quality score combined with manual inspection for identification fidelity.35–38

Deconvolution of DIA spectra was performed using DIA-Umpire,4 according to default 

parameters, and the resulting pseudo-DDA MS2 spectra were consolidated with their 

corresponding MS1 scans using a home-built C# console line application (https://

github.com/avcarr2/DIAConverter-New) to achieve compatibility with our downstream 

processing workflow. While powerful, the library-free method DIA-Umpire creates pseudo-

DDA spectra unsuitable for LFQ by third-party software due to the dissociation and 

omission of MS1 spectra information. This leads to unintended consequences which include 

incompatibility with identification software that uses MS1 spectra data to compute various 

metrics used to describe peptide spectrum match (PSM)/identification quality, such as with 

newer PEAKS algorithms.

To demonstrate quantitative ability of the optimized method, peptides were diluted 2-, 

5-, and 10-fold in 3% ACN/0.1% FA prior to LC-MS/MS injection. The resulting 

peptide identifications were quantified by analyzing PEAKS database search outputs 

through another console application (https://github.com/avcarr2/InjectionTimeGetterApp) 

and FlashLFQ39 operating with match between runs selected, a parent mass tolerance of 

5 ppm, and a 5 min retention time window. A −logP cutoff of 33.1, corresponding to a 

5% FDR, was used to filter the DDA data for improved quantitative accuracy. Quality 

and quantitative assessments of the optimized method were compared against samples of 

different concentrations using the previously published DIA method described above.28 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE40 partner repository with the data set identifier PXD038520.

Design of Definitive Screening Design

A DSD was created, and the results were interpreted using JMP Pro 15.0.0.41 Selection of 

the proper factors to include when designing a DSD is crucial to minimize the introduction 

of aliasing and confounding factors. Therefore, the parameters and values shown in Table 1 
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were chosen carefully for this model after much discussion with colleagues and experienced 

experts in the field.8,42,43 Per specification of DSDs, the majority of included factors are 

evaluated as continuous factors for effects on improving DIA MS identification: isolation 

window width, m/z range spanning from 400 m/z, CE, MS1 max IT, and MS2 max IT. 

The number of MS1 per DIA duty cycle (through loop count) was a categorical factor, as 

noninteger values are not possible. MS2 automatic gain control (AGC) was also evaluated 

as a categorical factor due to selection restraints within the Q Exactive software preventing 

three evenly distributed values from being selected, a key requirement of DSDs. The design 

involved 4 extra runs to estimate quadratic interactions and run order was randomized in two 

blocks to minimize bias. Peptide identification numbers were used as a response variable 

to assess the methods. The “maximize desirability function” in JMP was used to predict 

optimal parameter values to increase IDs.

RESULTS AND DISCUSSION

Identification and Reproducibility

Some proteomics optimization schemes prioritize maintaining a constant duty cycle between 

MS1 scans;43,44 however, our experiments were designed with varying duty cycles, while 

still limiting the maximum loop time (time between MS1 scans) to collect at least 8 points 

across the peak for quantitation to assess the effects of specific parameters, as shown in 

Figure 1A. This is especially important for label-free quantitative (LFQ) analysis where 

MS1 peak area is used, such as in this study. Although three experiments had a loop cycle 

time of 3–5 s, all others were well below this with a mean of 1.54 s, 1.13 s standard 

deviation, and median of 1.26 s. Instead, the impact of duty cycle was evaluated indirectly 

based on the effects of window size, range to scan over, and how many MS1 spectra were 

acquired per full DIA duty cycle.

When performing library-free DIA analysis, consideration of spectral complexity is 

particularly important for successful deconvolution, thus the parameters that directly affect 

spectral complexity were prioritized over maintaining a constant duty cycle time. The 

number of neuropeptide identifications (IDs) using the DSD-prescribed DIA methods ranged 

from 182 to 434 neuropeptides. The over 2-fold range demonstrates the dependence of 

identifications on DIA method parameters. Through qualitative analysis, we see that higher 

number of IDs were largely associated with overall lower duty cycles; however, this was not 

always the case.

While each DDA replicate produced comparable quantities of IDs to the midperforming 

DIA methods, poor reproducibility of neuropeptide populations was observed, a hallmark of 

DDA (Figure 1B). Only 155 peptides were observed across all triplicate injections, while 

331 peptides were observed in at least 2 injections. DIA enabled the observation of 153 

common peptides across spectra collected from 21 different DIA methods and 331 peptides 

across 9 different DIA methods, indicated by the asterisks in Figure 1C, demonstrating 

decreased variability between DIA experiments. This is additionally beneficial in the case 

of LFQ, where irreproducibility greatly decreases the number of quantifiable peptides 

across conditions. While DIA already generally outperforms DDA in terms of number of 
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peptide identifications, performance can be further improved by evaluating the responses 

and optimizing acquisition methods through the DSD.

DSD Model Creation and Validation

Combined model parameter estimates created during fit definitive screening, shown in SI 

Table S1, determined the factors to consider when designing models through main and 

even-order effect estimates. The response residuals are shown in Figure 2A. These effects 

were considered when building a generalized regression model, where model selection 

was performed through minimizing the corrected Akaike information criterion (AICc), 

an estimator of model quality, to 243.4 through forward selection and the assumption of 

normal data distribution (Figure 2B). The resulting model chosen includes several main and 

even-order effects shown in Figure 2C. Main effects were thus limited to those including 

CE, window width, MS2 max IT, and MS2 AGC. Significant even-order effects included 

window width and MS2 AGC, CE and MS2 max IT, and last, m/z range as a quadratic 

effect. No other quadratic effects were observed as statistically significant through the model 

evaluation, although in principle they are likely to be present. It is important to note, while 

other effects on peptide IDs may be present, DSDs can only observe those with large effects. 

This limitation means that variables may be considered to have isolated effects, or a linear fit 

associated in exchange for decreasing the number of experiments required to be performed.

We also want to bring attention to blocking being removed as a main effect, indicating any 

drift or bias associated with running the mass spectrometer for days, did not contribute to the 

variation in peptide IDs between methods.

The selected model was then statistically validated and shown to have a R-squared value 

of 0.96 and root-mean-square error of 16.6 (Figure 3A) and considered to be statistically 

significant in describing the actual observed data (Figure 3B). Externally studentized 

residuals, shown in Figure 3C, have an even, normal distribution, indicating no left 

or right skewing of the model. Residuals are within the 95% Bonferroni simultaneous 

confidence intervals and individual limits demonstrating good model fit. Table 2 describes 

the parameters used to build the final model. The probability predictor feature was then used 

to maximize desirability of the model response, in the form of neuropeptide IDs (Figure 

3D). It is thus predicted that acquiring MS2 spectra from collecting ions with an AGC target 

of 1e6 and max MS2 of 100 ms, where precursor ions are fragmented with a static CE of 25 

V across a window width of 16 m/z over a range of 400 m/z to 1034 m/z, should yield a high 

number of neuropeptide IDs.

DSD Results for Optimal Method Creation

The resultant model identifies the presence of main, secondary, and quadratic effects. The 

m/z range was identified as both a main effect and a quadratic effect, meaning there is an 

optimal value at a local maximum, in this case, spanning 634 m/z values from 400 m/z. This 

is consistent with the principle that a larger range will encapsulate more peptides. However, 

due to a nonconstant distribution where fewer precursor ions are identified at larger m/z 
values, the range needs to be curtailed at the upper end.8,44 Precursor m/z value distributions 

are shown in Figure S1. Overall, DIA methods are less biased toward higher m/z values 
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that tend to be lower in intensity with decreased ionization efficiency. Probing samples 

across a wide m/z range with DIA methods allows for the characterization of lesser observed 

neuropeptides, enabling the expansion of gathered information able to be used in the future.

Window width can directly impact identification capabilities in many ways, but most 

significantly through increasing fragmentation spectra complexity observed with larger 

window widths, therefore complicating data deconvolution. Here, we find that fragmenting 

smaller windows (16 m/z) of ions lead to increased neuropeptide identification. While 

carrying out a similarly designed DSD with smaller isolation window widths, we found 

that 4 m/z windows lead to drastically fewer IDs (data not shown). While it has been 

observed that narrow windows are optimal for the analysis of several analytes,8,45,46 

the associated increase in duty cycle negatively impacted identifications in crustacean 

neuropeptide samples. Though wider windows, such as 26 and 36 m/z, lead to even shorter 

duty cycles, the increased quantity of peptide precursors available for fragmentation results 

in more complex spectra and deconvolution is limited by current library-free DIA software.

MS2 max IT was identified as a main effect, which was logical as it directly impacts the 

duty cycle. When MS2 max IT is set too long, windows with sparse ions occupy the full 

allotment of time instead of moving to the next isolation window. Actual IT can be seen in 

Figure S2, demonstrating the necessity of limiting max IT to 100 ms, minimizing extraneous 

time spent collecting uninformative spectra where the low signal present would either never 

reach the selected AGC target, or no large benefit is gained. While a larger proportion of 

acquired MS2 scans reached its AGC target, there was no significant increase in associated 

identifications (p = 0.83).

Additionally, MS2 AGC target was identified as a main effect with a desired value of 

1e6, likely to produce higher quality fragmentation spectra where fragment ion intensity 

is higher. AGC target and max IT work similarly to limit the duty cycle of MS2 spectra, 

although this even-order effect on peptide IDs was not large enough to be discerned through 

statistical analysis. While this 1e6 can be considered a large target for collecting MS2 

spectra, the time required is limited by a lower max IT. Optimal MS2 AGC is also dependent 

on m/z isolation window width, identified together to produce a secondary effect. Window 

size impacts the range of ions measured when estimating AGC, with larger windows 

enabling more ions to be sampled from the same precursor packet. Increased sampling 

is not always desirable, however, as determined through the predictor tool that indicated the 

smallest window of 16 m/z and largest AGC target of 1e6 be chosen. The presence of several 

large ion clouds from different ion populations in an Orbitrap leads to coalescence and error 

in the resultant calculated m/z. Here, peptide identification benefits through the sampling of 

more ions to increase the intensity of individual ion populations, rather than vast ranges of 

ion populations.

Normalized collision energy (NCE) is ubiquitously used in the field of proteomics as 

CE required for adequate fragmentation efficiency is dependent on precursor ion m/z. 

In traditional DDA methods, NCE is calculated in real time to fragment a selected 

precursor; however, with DIA fragmentation, several precursors of various m/z values are 

cofragmented. As such, a fixed CE must be chosen to fragment all ions in the isolation 
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window, regardless of m/z value. Through the DSD, 25 V was identified as optimal over 

the wide range of m/z ion values in the neuropeptide sample analyzed. While decreasing 

CE positively impacts identifications, there is likely to be a lower limit with a steep drop 

off in IDs outside of our sampling range, when there is not enough energy to cause any 

fragmentation. Considerations need to be made when interpreting these results. Many of 

these parameters likely reach a limit, demonstrating the dangers in exceeding the statistical 

power with a given sample space.

The other detected secondary effect was between CE and MS2 max IT. As with many 

secondary effects, their correlation may not be clear initially and there may be confounding 

factors involved. A low CE yields inefficient parent ion fragmentation, while a low MS2 

max IT means less fragment ions are collected before detection. Combining a low CE 

and a low MS2 max IT implies that unfragmented parent ions will have a higher signal-

to-noise ratio (SNR) than in a traditional DDA experiment. The higher SNR may assist 

the correlation-based DIA data deconvolution methods that identify correlated parent and 

fragment ions through unfragmented precursors observed in MS2 spectra.

Two factors evaluated in this design were not determined to significantly affect neuropeptide 

identification, both related to the acquisition of MS1 spectra. The collection of both 3 and 

4 MS1 spectra per cycle provided sufficient precursor information for deconvolution of 

fragment ion features. It is likely that effect would be seen if a larger range was sampled 

such as collecting 1 compared to 6 spectra. However, the impact of 3 versus 4 MS1 spectra 

was not large enough to discern. Similarly, MS1 max IT was also determined to not be 

significant in affected observed peptide IDs, further supporting the low impact of MS1 scans 

on overall duty cycle. Again, this observation is limited to this study, where the tested 

values ranged from 10 to 30 ms. Larger sampling space may lead to different conclusions, 

further emphasizing the importance of thoughtful experimental design. As neither of these 

parameters had significant effects indicated by the DSD, and thus the two factors were not 

considered in the model, we rely on our prior knowledge of mass spectrometry to decide 

which values to use for each parameter. Moving forward with developing an optimized DIA 

method for crustacean neuropeptides, 4 MS1 spectra will be collected per duty cycle to 

increase collected points across the peak for quantitation. Additionally, MS1 IT will have 

the longer 30 ms limit to increase signal intensity during points where less peptides elute. 

This will also improve the ability for low abundance precursor ion detection for spectral 

deconvolution.

DIA Method Assessment

The pooled neuropeptide samples were reinjected into the mass spectrometer using four 

different data acquisition methods. The optimal method informed by the DSD (fDSD) 

was assessed against the DSD method providing the highest number of IDs (oDSD), as 

well as the DDA method, and a DIA method previously optimized without leveraging a 

DOE for crustacean neuropeptides (KD).28 As expected, all DIA methods outperformed 

the DDA method in terms of both peptide identification and reproducibility (Figure 4). 

The highest percentage of peptides identified in all triplicate injections was achieved using 

the KD method; however, the absolute number of peptide identification is relatively lower. 
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This indicates that the n = 3 neuropeptides are likely to be higher abundant or appear 

in less complex spectra, leading to higher reliability for fragmentation and detection by 

software. Figure 5A supports this, with KD showing a larger distribution of neuropeptides 

with a higher area under the curve (AUC) than the other DIA methods. Conversely, fDSD 

and oDSD methods identified more neuropeptides with lower AUCs, suggesting some 

improvement in sensitivity by these methods. fDSD and oDSD methods generated many 

reproducible IDs, as well as many neuropeptides unique to a fraction of the replicates. 

Overall, these DSD methods lead to a larger variety of peptide identifications.

While DSD usage led to the creation of a DIA method for crustacean neuropeptides capable 

of outperforming different MS methods, it was comparable to the empirically highest 

performing DIA method, oDSD. This highlights an important aspect of implementing 

applied statistics such as DOEs; they are not infallible and not to be implemented 

without interpretation using expertise in the particular field of application. Empirically 

determined methods can be used for subsequent analysis; however, one of the prescribed 

methods cannot be guaranteed to outperform the model predicted method in every DSD 

implementation. As the model accounts for variability between runs, we will consider the 

predicted DIA method, fDIA, as the finalized optimal method.

We would like to note that several parameters differed in these methods, limiting the 

ability for direct comparison; however, we will comment on observed trends. All methods 

have similar mass accuracy, with KD and DDA methods having mass error distributions 

closer to 0 ppm (Figure 5B). This can again be attributed to the bias in these methods to 

identify neuropeptides with higher peak intensities and AUC values. KD also has a lower 

AGC target, decreasing trapped ions per scan and leading to higher mass accuracy. The 

DDA method skewed toward fragmenting precursor ions in the low m/z range (Figure 5C), 

unsurprising as higher m/z ranges more commonly contain lower charge state and lower 

signal intensity ions. A wider distribution of precursor m/z values are seen for the DIA 

methods, enabled by the unbiased fragmentation selection scheme. A visible difference in 

fragmentation patterns of representative neuropeptide precursors can be seen in Figures S3–

S5, owing to the different collision energies applied.

MS1 injection times for the four methods fall around 5 to 30 ms, although different upper 

quartile trends are observed in Figure 5D. Approximately 50% or more of all MS1 scans 

from fDSD and oDSD reach the max IT, unlike DDA and KD methods, likely because of 

the 3× larger AGC target in these DIA methods compared to KD. Additionally, the DDA 

method included trapping lower m/z ions, which commonly comprise +1 ions of high signal 

intensity, reaching the target AGC more quickly. The frequency of MS1 scans directly 

affects the precursor profile for each neuropeptide, leading to differences in precursor based 

MS1 quantitative accuracy. Precursor profiles of representative neuropeptides can be found 

in Figures S3–5. MS2 IT distributions are similar for all methods, with the exception of 

method KD, which used an automatic max IT setting (Figure 5E). The use of automatic max 

IT was not considered during our design; however, future experiments may benefit from its 

inclusion as a level for a categorical parameter. Most scans reached their max IT, showing 

the importance of balancing trap time with AGC target. Spectra from all four methods were 

acquired with similar overall MS1 and MS2 injection time distributions, however, different 
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loop times between MS1 spectra acquisitions are shown in Figure 5F. Most notably, the 

DDA method varied widely from all DIA methods with the time between MS1 scans. This 

is attributed to the dynamic exclusion setting; when no candidate for fragmentation is found, 

MS1 spectra are acquired. This may also contribute to the neuropeptide spectral count 

distribution observed (Figure S6), as the majority of peptides identified through DDA were 

identified through a single PSM.

Quantitation Comparison

The presence of a neuropeptide can provide valuable information, although quantitative 

information is required for correlating biomarkers to diseases and measuring changes due to 

certain conditions. The quantitative capabilities of the optimized DIA method were assessed 

using solvent dilution and compared to the previously published DIA method for a metric of 

comparison. We note that assessing quantitative accuracy through solvent dilutions and not 

matrix-matched dilutions can produce aberrant abundance ratios. However, herein, we are 

comparing relative quantitative performance between two methods using the same samples 

that are affected similarly using solvent dilution. Future absolute quantitative analysis of any 

biological samples should follow more customary dilution approaches.

LFQ MS analysis does not require a large abundance of samples, nor does it involve 

multistep labeling procedures where loss of valuable samples can occur, although the 

method suffers from high variation and missing values between replicate injections. The 

higher number of unique peptides per injection (Figure 4) leads to a higher number of 

total identified peptides which is useful for quantitation where software can perform match 

between runs to integrate peak areas in several chromatograms, given that a PSM was 

observed in at least one run.39 We can also see a larger percentage of peptides where only 

one or two PSMs were detected per peptide using fDSD over KD (Figure S6), indicating 

that a greater number of scans contributed to increased peptide coverage. An increase in 

quantified peptides and the number of replicates where integrated area values were obtained 

can be seen in Figure S7A when match between runs was applied, decreasing missing values 

across triplicate injections or conditions.

To minimize quantitative inaccuracy observed through LFQ and improve quantitative 

accuracy and precision of LFQ of limited samples, peptides with a CV above 50%, and 

observed in all triplicate measurements, were rescued by omitting the peak area contributed 

by the highest deviation replicate from the median (Figure S7B). While this did not 

significantly impact the original Log2 ratio distribution (Figure S8A), a shift can be seen 

in the peptide CVs mean to lower values of 25% and 27% (Figure S7C) from the original 

33 and 35% (Figure S8B) for the diluted samples using fDSD and KD DIA methods, 

respectively. Standard deviations of CV similarly improved, narrowing from 30% to 22% 

and 37% to 24%, respectively. This indicates increased accuracy in quantitation of individual 

peptides, compared to the overall sample distribution due to the removal of outlying 

replicate information. When adjusting for poor quantitative performance by removing 1:10 

fold concentration information, an average error of 10% from the theoretical ratio is seen 

compared to 21% for KD. Overall, KD underperforms, only able to quantify roughly half 
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the number of neuropeptides as fDSD, having higher mean density distributions of CVs and 

more outlier CVs.

CONCLUSIONS

We demonstrate the utility of DSDs to create optimized DIA methods for the improved 

detection and quantitation of neuropeptides. Combining higher identification rates and 

match-between-runs assisted quantitation improves the number of quantified peptides 

across sample conditions. The increased total peptide identifications can enable more 

stringent quality filtering while still leaving many quantifiable PSMs for accurate 

quantitation. For the samples analyzed in this study, we found that the performance 

of the optimized method decreases as the fold-change difference increases. Therefore, 

neuropeptides with large observed changes should be regarded as a qualitative change rather 

than a quantitative change. Further gains in LFQ accuracy could be achieved by using 

intrasample normalization or an internal standard. Additional DOE could be performed on 

the parameters of DIA data processing workflows; such an approach could yield significant 

improvements in the number of identifications.

While significant sample amounts are required to perform a DSD, surrogate samples such 

as healthy or control samples can be used. The fDSD DIA-MS method can then be applied 

to precious or limited samples without requiring a spectral library that may not capture 

disease/experimental specific peptide isoforms and PTMs.
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Figure 1. 
A) Peptide identifications resulting from 26 DIA acquisitions outlined by the DSD. 

B) Overlapping peptide identifications from triplicate DDA acquisitions are shown. C) 

Bar chart describing the number of overlapping peptides in different numbers of DIA 

acquisitions. Red asterisk indicates where comparable peptide overlaps in DIA data to two 

(**) or three (*) of the triplicate DDA measurements is observed.
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Figure 2. 
Fit definitive screening to identify parameter effects. A) Main effects residual plots of the 

tested parameters are shown. B) Solution path for the generalized regression models were 

evaluated using AICc where C) the minimum AICc value resulted from this table of main 

and even-order effects.
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Figure 3. 
A) Model validation was performed by comparing the predicted IDs to the observed 

IDs. B) Analysis of variance was calculated to determine the model as significant. C) 

Externally studentized residuals are shown with 95% simultaneous limits calculated through 

the Bonferroni method (red lines) and individual limits (green lines). D) Optimal parameter 

values were predicted through maximizing the desirability of the model, with confidence 

limits shown.

Phetsanthad et al. Page 18

J Proteome Res. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Reproducibility of four different MS acquisition methods (fDSD, KD, oDSD, DDA) is 

visualized via upset plots demonstrating the intersection of peptide identifications from 

triplicate injections.
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Figure 5. 
Comparison of figures of merit between methods and detected neuropeptides. A) Log10 

transformed neuropeptide AUC distributions. B) Distributions of identification mass error. 

C) Precursor m/z distributions. D) MS1 and E) MS2 injection times. F) Loop time between 

MS1 scans.
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Table 1.

Parameters Selected as Factors to Evaluate for Optimization
a

DSD Value −1 0 1

Continuous Factors

m/z Range from 400 m/z 400 600 800

Isolation Window Width (m/z) 16 26 36

MS1 max IT (ms) 10 20 30

MS2 max IT (ms) 100 200 300

Collision Energy (V) 25 30 35

Categorical Factors

MS2 AGC Target 5e5 1e6

MS1 per Cycle 3 4

a
Values are used as factor levels to test the effects on response.
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Table 2.

Parameter Estimates for Factors Used in Final Model

Term Estimate Std Error t Ratio Prob>ltl

Intercept 340.04 8.58 39.62 <.0001*

Range (400,800) 13.69 3.55 3.86 0.0013*

Window (16,36) −10.15 3.55 −2.86 0.0108*

CE (25,35) −61.40 3.55 −17.30 <.0001*

MS2 IT (100,300) −9.24 3.55 −2.60 0.0185*

MS2 AGC [5e5] −8.37 3.30 −2.54 0.0213*

Window*MS2 AGC [5e5] 20.54 4.11 5.00 0.0001*

CE*MS2 IT 21.96 4.26 5.15 <.0001*

Range* Range −47.60 9.44 −5.04 0.0001*
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