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ABSTRACT Lactobacillus johnsonii strain MT4, isolated from the oral cavity of C57BL/6
mice, elicits antimicrobial activity against disease-associated microorganisms. Short-read
sequencing of the whole genome revealed a single genome of 1,883,026 bp, with a GC
content of 34.4%, and no plasmids.

L actobacillus johnsonii is associated with probiotic properties, host immunomodulation,
and mitigation of certain metabolic syndromes (1–3). MT4 displays antibacterial and

antifungal properties (4, 5).
MT4 was initially isolated by our group from C57BL/6 mice tongues and identified as

L. johnsonii, as described by Bertolini et al. (4). Pure cultures were incubated overnight in
de Man, Rogosa, and Sharpe broth under static, anaerobic conditions at 37°C. Cells were
lysed using a custom lysis buffer (6) and zirconia beads. Total DNA was extracted using the
DNeasy blood and tissue purification kit (Qiagen).

Purified genomic DNA (gDNA) was quantified using the double-stranded DNA (dsDNA)
high-sensitivity assay for Qubit 3.0 (Life Technologies, USA). gDNA fragmentation was ana-
lyzed on the Agilent 4200 TapeStation using the genomic DNA assay (Agilent Technologies).
gDNA (1 ng) was normalized to 0.2 ng/mL for whole-genome shotgun library preparation
using the Illumina Nextera XT library preparation kit (Illumina), according to the manufac-
turer’s instructions. The libraries were validated for length (average length, 450 bp; average
insert size, 315 bp) and adapter dimer removal using the high-sensitivity D5000 ScreenTape
assay (Agilent Technologies). The libraries were then quantified and normalized using the
dsDNA high-sensitivity assay for Qubit 3.0 and prepared for Illumina sequencing by denatur-
ing and dilution. The sample was run on the Illumina NovaSeq 6000 SP 300-cycle sequenc-
ing kit with v1.5 chemistry. The target read depth was achieved with paired-end (PE), 150-bp
reads. The sequencing reads were filtered based on Illumina base-calling software algo-
rithms. Quality control was assessed by analyzing forward and reverse FASTQ sequences
in the Computational Biology Core High Performance Computing (HPC) facility and phiX
reads were filtered from both paired-end FASTQ files using the “filter_phix” command with
default parameters in USEARCH v10.0.240 (7). FASTQC was used to assess the sequence
data quality and adapter content. The sequence data were high quality (.Q30 through-
out) and did not require additional quality filtering. Approximately 10% of paired-end
reads contained Nextera adapter sequences, which were trimmed using Trimmomatic
v0.39 in PE mode using the provided Nextera adapter file and keeping a minimum
trimmed read length of.36 bases (8).

In total, 3,026,429 read pairs were obtained, of which 278,192 forward and 278,217
reverse reads were trimmed to remove Nextera sequences. The trimmed reads were
assembled de novo using SPAdes v3.15.2 (9) with default parameters through Unicycler
v0.4.8 to assemble the genome from both paired-end FASTQ files. The final assembly
consisted of 68 contigs (N50, 90.96 kb) and had a total length of 1,883,026 bp, with a GC
content of 34.4%, in a single genome with no plasmids. The genome assembly averaged a
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sequencing depth of 240�. The MT4 assembled genome was annotated using Prokka v1.14.6
(10), followed by PGAP, after submission to the NCBI GenBank database. Using PGAP, 1,826
genes were predicted, including 1,740 protein-coding genes, 60 RNA genes (3 noncoding
RNAs [ncRNAs], 3 rRNAs, and 54 tRNAs), and 26 pseudogenes. The MT4 genes include anti-
microbial-associated bacillomycin D, surfactin, and MspI/p75 (5).

Genome-based taxonomy, using Kraken2 v2.0.8-beta (11), confirmed MT4 as an L. johnso-
nii strain (average nucleotide identity, 98.53%). A phylogenetic analysis on the core genes of
17 L. johnsonii strains found at NCBI (5) using Roary v3.13.0 (12) revealed that MT4 is closely
related to the probiotic strain NCC533 (La1). Roary was run with default parameters, specify-
ing core gene alignment performed using PRANK, core gene presence in 99% of included
strains, and 95% blastp protein identity.

Data availability. The assembled MT4 genome sequence and related data can be
found under GenBank accession number JAJQJG000000000, BioProject accession number
PRJNA787656, and BioSample accession number SAMN23838460. The raw FASTQ sequencing
data are available under SRA accession number SRR17309641.
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