Skip to main content
. 2023 Mar 22;17(3):154–170. doi: 10.1049/nbt2.12127

TABLE 2.

NCs compounds and their production methods for RES delivery for AD therapy and intranasal delivery of RES.

Carrier Material Coating Development phase Major findings Reference
SLN Cetyl palmitate (solid lipid) & polysorbate 80 (surfactant) ApoE In vitro RES‐ SLNs transfer via the BBB, where SLNs remarkably enhanced RES permanence (1.8‐fold better) in the BBB contrasted to free‐RES. Neves et al., 2016 [162]
Lipid‐core nanocapsules Poly (‐caprolactone), capric/caprylic triglyceride, sorbitan monostearate, polysorbate 80 No In vivo Improved bio diffusion of RES in the brain and decreased the harmful effects of Aβ on memory and learning, and reduced inflammatory factors. Frozza et al., 2013 [166]
SLN Solid lipid cetyl palmitate, polysorbate 80 DSPE‐PEG, LissRhod‐PE In vitro Enhancement of the anti‐aggregation function of RES, and the prohibition of amyloid plaques fibrillation. Loureiro et al., 2017 [14]
SLN Stearic acid, lecithin, Taurocholate No In vivo Increase of the RES bioavailability, overexpression of Nrf2/HO1, and a decrease in degenerative change. Yadav et al., 2018 [167]
Se‐NPs Na2SeO3,Milli‐Q water No In vivo Enhancing expression of Sirt1, PI3K protein, and reducing IL‐1β level, improvement in the neurocognitive ability. Abozaid et al., 2022 [168]
PNPs Methoxy‐polyethyleneglycol, caprolactone, acetone No In vivo, in vitro RES alleviates damage from γ ‐ray radiation and Aβ ‐peptide neurotoxicity in C. elegans via ROS scavenging. Yin et al., 2014 [170]
Polymeric micelles Poly‐caprolactone, PEG No In vitro RES protected PC12 cells from Aβ‐induced through decreasing oxidative and activity of caspase‐3 in a dose‐dependent manner. Lu et al., 2009 [169]
CT‐NM PEG‐PLA micelles, MPEG‐PLA, TPP‐PEG‐PLA micelles No In vivo RES scavenged mitochondrial ROS effectively to decrease oxidative damage, decreased Aβ aggregation, and up‐regulated Sirt1 expression. Yang et al., 2020 [171]
Nanostructured lipid carrier Cetyl palmitate, Capmul MCM, acrysol, poloxamer 188, tween 80 In situ hydrogel (gellan gum, xanthan gum) Intranasal delivery (in vivo) Enhanced delivery of RES to the brain through the nasal mucosa Rajput et al., 2018 [205]
Nanoemulsion Labrasol, Transcutol, tween 80 Vitamin E Intranasal delivery (in vivo) Better bioavailability of RES in the brain, effective targeting ability of nanoemulsion when given intranasally Pangeni et al., 2014 [206]
Polymeric nanoparticles Polysorbate 80, dichloromethane, polyvinyl alcohol, and polylactide N/A Intranasal delivery (in vivo) The neuroprotective action of RES‐loaded polymeric nanoparticles displayed against behavioural, cognitive, and chronic neurological changes induced by MPTP (1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine) Lindner et al., 2015 [207]
Lipidic nanoemulsion Labrafac lipophile, labarafac PG, Cremophor RH, tween 80 Hyaluronic acid Intranasal delivery (in vivo) Intranasal delivery indicated enhanced bioavailability of RES in the brain tissue Nasr et al., 2016 [208]
Nanosuspension Deacetylated gellan gum, ethanol In situ gel (deacetylated gellan gum) Intranasal delivery (in vivo Bioavailability of RES in the brain tissue showed more than 2 twice increased availability in the intranasal route than in the intravenous route Hao et al., 2016 [114]
Cubosomes Glycerol monooleate, poloxamer 407 In situ gel Intranasal delivery (in vivo Res‐loaded cubosomes illustrated further permeability and elevated bioavailability in the brain in the intranasal route. Ahirrao and Shrotriya, 2017 [209]

Abbreviations: AD, Alzheimer's disease; CT‐NM, neuronal mitochondria‐targeted micelle encapsulating; DSPE, 1,2‐Distearoyl‐sn‐Glycero‐3‐Phosphoethanolamine; MPEG‐PLA, Methoxy poly‐ethylene‐glycol‐poly‐lactide‐acid; NCs, nanocarriers; RES, resveratrol.