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Abstract

Convolutional neural networks (CNNs) can provide powerful and flexible models of neural

sensory processing. However, the utility of CNNs in studying the auditory system has been

limited by their requirement for large datasets and the complex response properties of single

auditory neurons. To address these limitations, we developed a population encoding model:

a CNN that simultaneously predicts activity of several hundred neurons recorded during pre-

sentation of a large set of natural sounds. This approach defines a shared spectro-temporal

space and pools statistical power across neurons. Population models of varying architecture

performed consistently and substantially better than traditional linear-nonlinear models on

data from primary and non-primary auditory cortex. Moreover, population models were

highly generalizable. The output layer of a model pre-trained on one population of neurons

could be fit to data from novel single units, achieving performance equivalent to that of neu-

rons in the original fit data. This ability to generalize suggests that population encoding mod-

els capture a complete representational space across neurons in an auditory cortical field.

Author summary

Sounds in the natural world are composed of complex, dynamic spectro-temporal fea-

tures. The brain’s auditory system is able to identify and extract meaningful patterns from

acoustic inputs, including in the presence of noise and other competing sounds. A better

understanding of auditory neural computation may inform algorithms for speech process-

ing and auditory prosthetics. Despite their importance, current computational models

have limited success explaining neural sound coding, particularly in auditory cortex. This

study used convolutional neural networks (CNNs) to model the functional relationship

between a large set of natural sounds and the activity of neurons in auditory cortex. The

CNNs substantially outperformed several previously proposed models of auditory coding.

Moreover, they were able to generalize. After training on data from one set of neurons,

they could be trained easily on a new set of neurons. This finding suggests that the CNN

models characterize a general space of spectro-temporal patterns encoded by the
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population of neurons in auditory cortex. A better understanding of this brain-derived

space may be useful for improved signal processing algorithms.

Introduction

A complete understanding of neural sensory processing requires computational models that

can account for brain activity evoked by arbitrary natural stimuli [1]. In the auditory cortex,

encoding models such as the widely used linear-nonlinear spectro-temporal receptive field

(LN model) can account for sound-evoked spiking activity in some neurons, but often fail to

predict time-varying responses to complex stimuli such as natural sounds [2,3]. Encoding

models are used to study auditory coding by many neurophysiological signals beyond single

neuron spikes, including calcium imaging [4], spiking ensembles [5], human LFP [6,7], MEG

[8], and fMRI BOLD [9,10]. Thus, improved encoding models are of broad value to research

on the auditory system.

Variants of the LN model have been proposed that provide a more accurate characteriza-

tion of auditory coding. Some of these variants build on traditional systems identification

methods, accounting for second- and higher order nonlinearities [11–13]. Others incorporate

nonlinear elements derived directly from biological circuits, like short-term synaptic plasticity

and gain control by local inhibitory populations [3,14,15]. Finally, another approach has been

to combine linear-nonlinear units in multi-filter LN models [16–20] or artificial neural net-

works [7,21]. This work has shown that auditory neurons encode information in a sensory

subspace and that a single linear filter is not adequate for capturing the diversity of inputs that

modulate the neural output. While theoretically appealing, multi-filter and neural network

models can be challenging to fit, especially when data set size is limited [13]. The diverse and

sometimes highly optimized methods required to fit these more sophisticated models make

comparisons between models difficult, as differences between them could reflect either their

distinct architectures or the distinct methods used for fitting. Thus, direct comparisons

between all these different models remain limited, and new models are typically compared

only with the LN model as a baseline (but see [7,21,22]).

In the current study, we explored convolutional neural networks (CNNs) as a method for

improving upon existing encoding models of neural spiking data. Advances in machine learn-

ing, in particular the development of backpropagation algorithms for CNNs, have opened up

the possibility of applying neural network analysis to neurophysiological data [23,24]. CNNs

have been adopted widely for signal processing problems, including speech recognition and

other acoustic analysis [25,26]. In the auditory system, a small number of studies have indi-

cated that CNNs can describe human BOLD fMRI data [27,28] and ECoG data [7]. CNNs

have been used more extensively in the visual system to model natural image representation in

retinal ganglion cells [29,30] and visual cortex [31–34]. It remains an open question whether

CNNs can provide a useful characterization of single-neuron activity in auditory cortex.

One particular appeal of CNNs is that they can serve as “foundation models,” pre-trained

on one task but then transferred to a wide range of new problems [35]. Such approaches are

widely used for machine learning problems, including auditory [36] and visual signal process-

ing [37]. Pre-trained CNNs have also been useful for analyzing neural data when limited data

set size prevents fitting large models directly [27,31]. Neural networks trained on responses to

natural videos and images have also demonstrated generalizability to neural data collected

from different animals [38,39]. Motivated by the success of these approaches, we argue that an

effective CNN-based encoding model should be fully generalizable. That is, a CNN that
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completely describes neural sensory processing should account for the encoding properties of

neurons that were not included in the original model fit.

In order to fit CNN models and evaluate their generalizability, we recorded the time-varying

spiking activity of a population of single neurons in auditory cortex during presentation of a

large natural sound library. To leverage statistical power for model fitting, we developed a popu-

lation encoding model, in which the activity of many neurons is predicted by a single CNN with

input layers shared across neurons. Using this approach, we compared several CNN architec-

tures, based on convolutional models widely used for visual processing [7] and based on LN

models used in the auditory system [21]. We found that population CNN models all performed

similarly and that they accounted for cortical activity substantially better than traditional LN

models and multi-filter models [19,20]. In addition, pre-trained population models successfully

generalized to novel neural data. Thus, CNN models fit with large neural populations and

diverse stimuli can provide a generalizable model of sound encoding by auditory cortex.

Results

To characterize the neural encoding of natural sounds, we recorded spiking activity from audi-

tory cortex of awake, passively listening ferrets during presentation of a diverse set of natural

sound samples. Neural data was collected with 64- or 128 channel linear silicon arrays that

recorded simultaneous activity of 10–95 neurons across multiple cortical laminae during each

experiment. Recordings were performed in primary auditory cortex (A1) and a secondary

auditory field (PEG) located anterior-ventral to A1 [40,41]. The same stimuli were presented

in all recordings (A1: 22 recording sites, 849 units; PEG: 11 sites, 398 units; 5 animals). The

input stimulus spectrogram and output time-varying spike rate were sampled at 100 Hz.

Convolutional neural networks with a shared tuning space for neural

populations

We used a convolutional neural network (CNN) to describe the functional relationship

between the natural sound spectrogram and the time-varying spiking activity (Fig 1). Machine

learning models have proven effective for studying a wide range of analytically similar prob-

lems. However, fitting these models requires large datasets, and the amount of data available

from many neurophysiological studies is limited. This limitation is compounded by the fact

that sensory-evoked neural activity is not reliable, varying substantially across repeated stimu-

lus presentations. The current study took advantage of the fact that identical stimuli were pre-

sented during multiple experiments to fit CNNs that simultaneously modeled an entire

population of neurons. In this framework, the stimulus spectrogram provides input to a series

of convolutional and dense (i.e., fully connected) layers that are shared across all neurons. A

subsequent dense layer weights the output of the final shared layer to predict the activity of

each neuron individually (Fig 1D–1F). Thus, the earlier layers comprise a shared, general

model of sound processing in auditory cortex that is mapped to individual responses only in

the final layer. This design is similar to the “core-readout” network developed to model encod-

ing of natural visual stimuli, but is purely feedforward [38].

We considered three architectures of population CNN (Fig 1D–1F). Models adapted from

LN and multi-filters models widely used in the auditory system employed “1D” filters that

were convolved in time and summed along the spectral axis (Fig 1B–1E). The 1D shorthand

refers to the fact that filters are convolved only in time, but these filters do each also integrate

over input channels by weighted summation. This design is motivated by reduced-rank LN

models which have proven to be efficient formulations of the LN architecture [42,43]. We eval-

uated two 1D CNN architectures: one with a single convolutional layer (1D-CNN, Fig 1D) and
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one with two convolutional layers in sequence (1Dx2-CNN, Fig 1E). In addition, an architec-

ture adapted from standard CNN models for visual processing employed “2D” filters that were

convolved along the temporal and spectral dimensions of the input spectrogram (Fig 1F).

CNNs used in visual processing problems typically apply multiple layers of small, two-dimen-

sional (2D) convolutional kernels to an input image [31]. This model can be transferred

directly to the auditory system. In this case, small 2D filters are convolved along the time and

frequency dimensions of the sound spectrogram (2D-CNN, Fig 1F) [7,27].

We compared performance of the population CNN models to a reduced-rank LN model,

which we previously showed to be an optimal formulation of the LN architecture (LN, Fig 1B,

[43]). We also implemented two intermediate architectures to control for differences between

population CNN models and the standard LN model. To control for increased statistical

power gained by pooling data across neurons in population models, we fit a population LN

model (pop-LN, Fig 1B), in which the simultaneous activity of the recorded neural population

Fig 1. Convolutional neural networks (CNNs) provide a natural extension of standard linear-nonlinear (LN) models of auditory encoding. A.

LN model consists of a single convolutional filter (L) followed by a static nonlinearity (N). This convolution is one-dimensional: a separate filter is

convolved in time for each frequency channel, then the results are summed across frequency. Arrows indicate passthrough between units within a

layer. B. Population LN (pop-LN) model is composed of a bank of temporal convolutional units (purple shading) followed by one dense unit (D)

and static nonlinearity per neuron, where dense refers to a linear weighting of the outputs of the previous layer. C. Single-neuron convolutional

neural network (single-CNN), or LNLN cascade [24], consists of a bank of LN units (red shading) linearly combined in a subsequent dense unit and

followed by another static nonlinearity. D-F. Population CNN models consist of one or more convolutional layers and two dense, fully connected

layers. Dense units in the final layer generate the output for each neuron. Convolutional units are either one-dimensional (“1D”, convolved in time

and summed over frequency, derived from standard spectro-temporal models for auditory processing) or two-dimensional (“2D”, convolved in

both time and frequency, derived from standard CNN models for visual processing). 1D models have either one convolutional layer (1D-CNN, D,

dark green shading) or two (1Dx2-CNN, E, blue shading), while the 2D-CNN model includes three convolutional layers in sequence (F, light green

shading).

https://doi.org/10.1371/journal.pcbi.1011110.g001
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is modeled as the linear weighted sum of a shared bank of 1D convolutional filters followed by

nonlinear rectification. To distinguish possible benefits of the population model approach

from benefits of the neural network architecture, we fit separate CNN models for each neuron

in the dataset (single-CNN, Fig 1C). This type of model is often referred to as a LNLN cascade

[24], and is an instantiation of a multi-filter model [16,19,20]. To accommodate sampling limi-

tations of single unit data, these models contained substantially fewer units, and thus fewer

total free parameters, than the larger population models. Finally, to compare CNNs to an exist-

ing alternative to the LN model, we fit a short-term plasticity (STP) model, in which nonlinear

adaptation mimicking synaptic depression or facilitation was applied to each input channel of

a reduced rank LN model [3].

All models were fit using standard back-propagation methods [44], which minimized the

mean-squared error between predicted and actual time-varying neural activity. Fitting was

carried out in two stages. First, parameters for the entire model were fit for all neurons simul-

taneously. Second, weights in the final layer were re-fit for each neuron individually (see Meth-

ods). Fitted models were then used to predict the response evoked by stimuli in a validation

dataset that was not used for fitting. Model performance was evaluated on this separate dataset

by measuring prediction correlation, the noise-corrected Pearson correlation coefficient

between predicted and actual time-varying response, for each neuron [43,45]. A prediction

correlation of 1.0 indicates that a neuron’s activity was predicted as accurately as possible

given the uncertainty in the actual response, and a value of 0 indicates chance performance.

An example of a 1Dx2-CNN fit to the A1 dataset illustrates the comprehensive nature of the

population CNN models (Fig 2). The first layer consists of 70 1D convolutional units that

resemble the filters used in standard LN model fits (Fig 2D and 2E). This layer, in conjunction

with the 80-unit convolutional layer that follows, defines a space of spectro-temporal channels

upon which the subsequent dense layers depend. Filters comprising the input layer resemble

traditional LN model fits, and they may provide insight into the general spectro-temporal fea-

tures involved in auditory coding. However, the final CNN model prediction is a complex

nonlinear combination of these inputs, and a more exhaustive analysis of transformations by

the entire model may be required to understand filter properties of individual neurons [7,32].

The positive and negative weights connecting these dense layers produce the time-varying out-

put specific to each unit (Fig 2C), which is compared to the actual neural activity (Fig 2B). Pre-

diction correlation varied across the neural population but was close to a maximum value of

1.0 for many units (Fig 2F).

The number of parameters for each layer (Fig 2D) was defined as the total number of train-

able values across all computations. For example, the first convolutional layer requires 70 cen-

ter frequencies and 70 tuning widths for the Gaussian spectral weightings and 1,050

coefficients for the temporal filter bank, making a total of 1,190 parameters. The total number

of parameters across all layers is divided by the number of neurons in the dataset to which the

model was fit to provide a measure of the model’s complexity (104,835 parameters / 849 neu-

rons = 123 parameters per neuron [43]).

CNN models consistently outperform LN models

The performance of different model architectures was compared by examining the time-vary-

ing PSTH response predicted by different models, fit to data from the same cell. Comparison

of example 1Dx2-CNN, 2D-CNN, and pop-LN model predictions suggests that both of the

CNN models are better able to capture the dynamics of A1 responses to natural sounds. This is

seen especially in their ability to predict the dynamics of transient versus sustained responses

following sound onset, which are often not captured by LN models (Fig 3).
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To quantify differences in model performance, we fit multiple variants of each model archi-

tecture by changing the number of units in one or more layers, which in turn varied the num-

ber of fit parameters. Model parameter count provides one means of varying model

complexity, as models with more free parameters have greater degrees of freedom in their fits

[43]. These manipulations of parameter count also permit exploring the boundaries between

architectures. For example, a single-CNN model with one filter in the first layer reduces to a

standard LN model. Thus, by varying layer size, we explored a continuous space of models

ranging from the LN model to much larger CNNs. For the LN and STP models, we varied the

number of fit parameters by changing the rank of the convolutional filter, which can be tuned

to optimize performance [3,43].

First, we consider the results from A1 data. We compared the performance of models with

different architectures and sizes in a Pareto plot (Fig 4A). Prediction correlation increased as

model parameter count increased, and it approached asymptotic performance at around 150–

200 free parameters per neuron for most architectures. We selected an exemplar model from

each architecture with near-asymptotic performance and similar numbers of fit parameters

(circled points, Fig 4A). Matching parameter counts provides a means of balancing the signal

to noise of model fits. Unless otherwise noted, subsequent analysis focuses on these models

and a subset of auditory-responsive neurons, defined as neurons whose activity was predicted

above chance by all three of the 1Dx2-CNN, pop-LN and single-CNN exemplar models

(p< 0.05; A1: n = 777/849, PEG: n = 339/398).

Fig 2. Example population CNN model fit for 849 A1 neurons. A. Example spectrogram of three natural sounds in

the validation set used to measure model performance. B. Heat map shows the actual time-varying spike rate of one

neuron per row, for a sample of n = 50 / 849 neurons from the A1 dataset. Spike rate is normalized for each neuron

between 0 (white) and maximum (black). C. Heat map of predicted activity for the same units, plotted as in B. D.

Schematic of model layers with fitted weights. Convolutional filters in the first layer (top) establish a shared set of

spectro-temporal channels. These filters are generated from the outer product of the temporal convolution and spectral

summation comprising each 1D convolutional unit. Line color connecting subsequent layers indicates the weight, with

positive (excitatory) weights in red and negative (inhibitory) weights in blue. Each unit in the output layer (bottom)

predicts the activity of one neuron. The total number of parameters (trainable values) in each layer is listed to the right,

with the total number for the model at the bottom left. E. Example filter from the first layer of the population CNN

model (circled in D). This filter resembles one typically observed in a standard LN model for a single neuron. F.

Prediction correlation for each unit, where unit number corresponds to row in the population raster plots in B-C.

https://doi.org/10.1371/journal.pcbi.1011110.g002
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Median prediction correlation for the LN and pop-LN models was nearly identical, indicat-

ing that pooling data across the neural population did not benefit performance of this less

complex architecture (signed-rank test between exemplar models; A1: p = 0.133, PEG:

p = 0.167). For subsequent analyses, we focused on the pop-LN model, since there are fewer

differences between its architecture and the population CNNs.

When model parameter count was matched (i.e., for exemplar models with approximately

the same number of fit parameters per neuron), prediction correlation was higher for all popu-

lation CNN models (1D-CNN, 1Dx2-CNN, 2D-CNN) than for the LN architectures (Figs 4

and 5). The greater accuracy of CNN models was consistent across the neural population: the

1Dx2-CNN model predicted responses more accurately than the pop-LN model (p< 0.05,

jackknifed t-test) for almost half of auditory-responsive A1 neurons (376/777) while the oppo-

site was true for only four neurons (Fig 5A). On average, the best 1Dx2-CNN model accounted

for 47% of the explainable variance in the A1 data, compared to 31% for the best LN model

and 39% for the best single-CNN model (median prediction correlation: 1Dx2-CNN, 0.67;

pop-L, 0.55; single-CNN, 0.60).

The explanatory power of the 1Dx2-CNN model was also greater than that of a nonlinear

model that explicitly incorporates short-term plasticity and gain control, which accounted for

37% of explainable variance (Fig 4A, [22]). To compare these models with other multi-filter

model frameworks, we fit the same data using two published multi-filter model libraries (NIM

and iSTAC, S1 Fig, [19,20]). Both libraries consistently converged on stable model fits, but pre-

diction accuracy was lower than the CNN models (median prediction correlation: NIM 3-filter

model, 0.52; iSTAC 3-filter model, 0.43; single-CNN, 0.60, n = 775 A1 units). Thus, the CNN-

based models performed best among several other previously proposed model architectures.

Fig 3. Examples comparisons of actual versus predicted PSTHs for two A1 neurons. A. Segment of the stimulus

spectrogram from the validation dataset used for testing prediction accuracy. B. Actual PSTH (gray) overlaid with the

PSTHs predicted by the 1Dx2-CNN (blue), 2D CNN (light green), and pop-LN (purple) models. The two CNN models

produced similar predictions that correlated well with the actual response (1Dx2-CNN, r = 0.812, 2D CNN: r = 0.800).

The pop-LN model failed to predict many of the temporal features in the actual PSTH (r = 0.590, arrows at 3.5, 4.0 sec).

C. Actual and predicted PSTH for a second neuron, plotted as in B. Again, both CNN models had higher prediction

correlation. Here their accuracy is evident in the observation that they accounted for large transient responses better

than the LN model (1Dx2-CNN, r = 0.729, 2D CNN: r = 0.748, pop-LN: r = 0.535; arrows at 0.25, 1.75 sec).

https://doi.org/10.1371/journal.pcbi.1011110.g003
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In addition to their increased accuracy relative to LN models, the population CNN models

performed better than the single-CNN model. This result indicates that the improved perfor-

mance of the population models was not solely due to their neural network architecture but

also reflected the gain in statistical power from pooling data across neurons. At the same time,

the single-CNN model did outperform both the LN and pop-LN models, confirming a benefit

Fig 4. Performance of models from each architecture with variable parameter count. A. Pareto plot compares

model complexity (parameter count) versus median prediction correlation for each model in A1 (n = 777 auditory-

responsive neurons). CNN models maintained consistently higher prediction correlation across a wide range of

complexity. Lines connect models in each of the six architectures. For population models, parameter count is

normalized by the number of neurons that were simultaneously fit. Circles indicate exemplar models from each

category with similar complexity (150–200 parameters per neuron, shaded region), which are examined in more detail

in subsequent analyses. B. Pareto plot comparing model performance in a secondary field (PEG, n = 339), plotted as in

A. Relative performance differences across model types were comparable to A1, but median prediction correlation was

lower for all models.

https://doi.org/10.1371/journal.pcbi.1011110.g004

Fig 5. LN and CNN exemplar model performance. A. Scatter plot comparing prediction correlation for exemplar

pop-LN and 1Dx2-CNN models for each neuron in the A1 dataset. The 1Dx2-CNN model had significantly higher

prediction correlation for 376 of the 777 neurons. B. Scatter plot comparing the 2D-CNN and 1Dx2-CNN models,

plotted as in A. Prediction correlations were comparable in this case, but the 1Dx2-CNN model still represents a small

overall improvement (signed-rank test, p = 1.10 x 10−8). C. Median prediction correlation in A1 for exemplar models

representing each architecture. All differences were statistically significant (signed-rank test, 1D-CNN vs. 2D-CNN:

p = 9.21 x 10−3, other comparisons: p< 10−7). D. Prediction correlation for PEG data, plotted as in C. Again, the pop-

LN model had the lowest prediction correlation (median 0.46). The difference between 1Dx2-CNN and 2D-CNN was

not significant (0.58 vs. 0.57, respectively, signed-rank test, p = 0.883), but all other differences were (p< 10−4).

Although overall prediction correlation was lower for PEG than A1, the relative difference in performance between

models was the same for both areas, and the 1Dx2-CNN model was the best-performing in both areas.

https://doi.org/10.1371/journal.pcbi.1011110.g005
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of the CNN architecture over the traditional LN model. The single-CNN architecture also con-

tinued to increase in accuracy as parameter count grew, suggesting that a large CNN can

indeed be an effective single-neuron model if a sufficiently large dataset is available.

Among population CNN models with similar parameter count, prediction correlation was

quite similar, suggesting that the specific architecture was not critical to performance (Fig 5B,

5C). Adding an extra convolutional layer to the 1D-CNN model (Fig 1D), which used filters

derived from auditory LN models, did increase prediction correlation (signed-rank test,

p = 3.89 x 10−18, Fig 5C), making 1Dx2-CNN (Fig 1E) the best-performing model tested. This

modest but significant difference suggests that CNN architectures can benefit from modality-

specific features like the 1D, temporal-only convolution. Further improvements may be

achieved by architectures that incorporate other known properties of the auditory system.

The relationships between models described for A1 also held true for PEG (Figs 4B and

5D). The exemplar 1Dx2-CNN model accounted for 34% of the explainable variance in the

PEG data (median prediction correlation 0.58), compared to 21% for the pop-LN model and

28% for the single-CNN model (median prediction correlation 0.46 and 0.43, respectively).

Compared to A1, median prediction correlation was consistently lower for PEG across all

architectures and model sizes. This lower prediction accuracy is consistent with previous work

arguing that non-primary cortex is selective for more complex sensory features, and accurate

modeling is likely to require larger fit datasets. The relative improvement of the 1Dx2-CNN

model over the pop-LN model was greater in PEG (63% increase in variance explained) rela-

tive to A1 (49% increase), consistent with the idea of greater nonlinearity in non-primary

cortex.

The relative performance of the CNN models did not depend on the metric used to evaluate

prediction accuracy. Previous studies have used log likelihood of the predicted response and

mutual information between predicted and actual response to evaluate model performance

[16,20]. We compared prediction accuracy between the pop-LN and 1Dx2-CNN models using

these alternative metrics and found a similar pattern of improvement (S2 Fig). The

1Dx2-CNN model had higher prediction accuracy across all metrics, and the relative different

between metrics was correlated across neurons, suggesting that they measure the same

improvements in performance.

Functional equivalence of CNN models

While the CNN models all predicted neural activity with similar accuracy, it was not immedi-

ately clear whether they captured the same functional properties or if their improvements over

the LN model instead reflected each one’s ability to account for distinct aspects of neural func-

tion. Examples of the detailed dynamics predicted by each CNN model were closely matched

between predictions for the same neurons, suggesting that they did capture the same func-

tional properties (Fig 3). To assess equivalence quantitatively, we measured the correlation

coefficient between the time-varying activity predicted by the 1Dx2-CNN, 2D-CNN, and pop-

LN models (Fig 6).

Equivalence was substantially higher between the two CNN models than between the

1Dx2-CNN and LN models (signed-rank test, p = 1.47 x 10−128). Furthermore, the equivalence

scores for the CNN models qualitatively resembled what we would expect for truly equivalent

models: a right-shifted distribution near the maximum score of 1.0 (Fig 6A and 6B). The LN

and pop-LN models served as a useful baseline for this comparison since we expected, and

observed, high equivalence for these models based on their architectures (Fig 6C and 6D).

Thus, the population CNN models appear to capture the same functional properties for most

neurons in the dataset.
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Population models generalize to novel datasets

We hypothesized that, when fit to the activity of many neurons, population models capture an

encoding subspace shared across neurons in the brain area that they describe. Whether con-

strained by information bottlenecks in neural circuits or by developmental plasticity following

exposure to behaviorally important sound features, the space of sound representations in cor-

tex is likely to be lower-dimensional than the space of all possible stimuli. Similarly, the shared

tuning described by population models is constrained by the dimensionality of the final hid-

den network layer. We reasoned that if these models captured the actual neural subspace, then

they should be able generalize to data from neurons that were not included in the original

model fit.

To test this hypothesis, we re-fit the 1Dx2-CNN, pop-LN, and single-CNN models using

two alternative approaches (Fig 7A). In a “held-out” model, all data from one recording site

Fig 6. Quantification of equivalence between CNN, pop-LN, and LN exemplar models. A. Histogram of

equivalence (correlation between predicted PSTHs) on the validation data for auditory-responsive A1 neurons

(n = 777/849), between 2D CNN and 1Dx2-CNN models (light green, hatched) and between 1Dx2-CNN and pop-LN

models (purple). Equivalence was greater between the two CNN models than between the 1Dx2-CNN and pop-LN

models (signed-rank test, p = 1.47 x 10−128). This result indicates that CNN models achieved higher prediction

accuracy over the LN architectures in similar ways. B. As A, but for PEG neurons (n = 339/398). Here again we

observed higher median equivalence between the CNN models (p = 1.64 x 10−55). C. Histogram of equivalence

between LN and pop-LN models for A1 neurons. The distribution is shifted even farther toward the 1.0 bound,

indicating that the LN and pop-LN models predicted closely matched PSTHs for most neurons. D. As C, but for PEG

neurons. The equivalence distribution is similarly right shifted.

https://doi.org/10.1371/journal.pcbi.1011110.g006
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was excluded during the first stage of the model fit. The output layer was then re-fit to each

excluded neuron in the second stage, but model parameters were kept fixed for all preceding

layers. In other words, the held-out model was pre-trained on data that excluded both the neu-

ron being predicted and its neighbors from the same recording site. Excluding the entire

recording site precluded the possibility of fitting to activity of neurons in the local network

with highly overlapping selectivity. As a control, we also fit a “matched” model in which a sub-

set of neurons from other recording sites was excluded during the first stage of fitting, such

that the number of neurons excluded was the same as for the held-out model. This design

ensured that the amount of fit data was matched to that of the held-out model, and data from

the predicted neuron was used to fit all model layers (see Methods).

If performance of the held-out and matched versions of a model is equal for a given neuron,

then the held-out model already accounts for the spectro-temporal encoding properties of that

neuron in its pre-trained layers. In this case, we can say that the model generalizes well: the

response of any novel neuron from the recorded brain area can be accounted for simply by re-

fitting the output layer of a pre-trained model. When we compared performance of the held-

out and matched versions of the three models (Fig 7B, 7C), we found that the 1Dx2-CNN and

pop-LN models both generalized well: there was no difference in prediction correlation

between the two fitting strategies (signed-rank test, A1; 1Dx2-CNN: p = 0.751; pop-LN:

p = 0.866; PEG; 1Dx2-CNN: p = 0.418; pop-LN: p = 0.941).

Since it was fit to data from a single neuron, it is not surprising that the single-CNN model

generalized poorly and did not capture the sensory space encoded by a novel neuron. We note,

however, that the held-out single-CNN model did perform above chance. This may reflect a

general sensitivity to stimulus onset and offset in auditory cortex that can be captured by a

very low-dimensional stimulus space, providing a basic control for the matched versus held-

out comparison for the population models.

The finding that the pop-LN model generalized to new data illustrates a broader value of

the population modeling approach. The LN model spans a more limited encoding subspace

Fig 7. Generalization of population models to novel neural data. A. Schematic of two-stage fitting process for held-

out and matched models. For the held-out model, responses of all K neurons from a recording site were excluded from

the first stage fit. For the matched model, K neurons from other sites with similar prediction correlation were excluded

during the first stage. For both models, all parameters except those in the final layer were frozen (dashed blue box)

while individually fitting the K excluded responses in the second stage. B. Prediction correlation of A1 held-out (H)

and matched (M) models. Boxes show the 1st, 2nd and 3rd data quartiles, and the small horizontal dash shows median

performance for the full model (Fig 5C). For both population models, the difference in prediction correlation between

held-out and matched was not significant (signed-rank test, 1Dx2-CNN: p = 0.751; pop-LN: p = 0.866), indicating that

these models generalize well to novel data. In contrast, there was a substantial decrease in prediction correlation for the

held-out single-CNN model (p = 4.93 x 10−81). C. Generalization for PEG neurons, plotted as in B. Once again,

performance was the same for held-out and matched population models but significantly decreased for the held-out

single-CNN model (signed-rank test, 1Dx2-CNN: p = 0.418; pop-LN: p = 0.941; single-CNN: p = 6.46 x 10−33).

https://doi.org/10.1371/journal.pcbi.1011110.g007

PLOS COMPUTATIONAL BIOLOGY A generalizable model for coding by auditory neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011110 May 5, 2023 11 / 27

https://doi.org/10.1371/journal.pcbi.1011110.g007
https://doi.org/10.1371/journal.pcbi.1011110


than the CNN models and thus does not predict activity as accurately. Still, this population

model captures the auditory space spanned by the LN model, permitting the simpler architec-

ture to generalize to data from new neurons. This observation suggests that the population

modeling approach can benefit analysis using any model architecture, including new architec-

tures that outperform those considered in the current study.

We also evaluated the ability of models to generalize to other brain regions by fitting a

model first to data from A1 and then fitting only the output layer to data from the secondary

cortical area PEG (Fig 8). For this comparison, we selected a subset of neurons from A1 that

had a matched distribution of auditory responsiveness (SNR) to the set of PEG neurons (Fig

8A). After controlling for this difference in responsiveness, prediction accuracy was still signif-

icantly lower in PEG (Fig 8B). To fit the cross-area model, we used the held-out approach (Fig

7A) to pre-train a 1Dx2-CNN model on A1 data, and then fit the output layer using data from

PEG neurons in the matched-SNR subset. The important distinction in this case is that the

output layer of each model was always fit to data from a PEG neuron, but the earlier layers

were fit using an independent set of either A1 or PEG responses. The model fit initially to A1

data performed as well as a model fit initially with PEG data (Fig 8C). This similarity in perfor-

mance suggests that CNN models generalized across cortical areas, in addition to new neurons

in the same area.

Pre-trained models benefit analysis of smaller datasets

Given the ability of a pre-trained model to generalize to new data, we reasoned that such a

model should also be beneficial to the analysis of smaller datasets that measure neural

responses to fewer auditory stimuli. The amount of data available from neurophysiological

Fig 8. Comparison of model performance between primary (A1) and secondary (PEG) auditory cortical regions

after controlling for differences in SNR. A. SNR scores for all neurons from A1 (white), PEG (gray), and an

overlapping subset (hatched) of neurons with matched distributions. Median SNR was higher for A1 (md = 0.0989, U

test: p = 2.49 x 10–6) than for PEG (md = 0.0713), and the A1 subset had a lower median SNR (md = 0.0709) while the

median for the PEG subset was mostly unchanged (md = 0.0710). To form the overlapping set, we selected the largest

possible subset of neurons from each brain region for which binned distributions of SNR scores for the two subsets

were identical. With this approach, the subset was formed primarily by excluding high-SNR neurons from A1 since

PEG neural responses were less reliable overall. B. Prediction accuracy of three exemplar models for neurons in the A1

and PEG subsets. Boxes show the 1st, 2nd and 3rd quartile for the selected subset, and the small horizontal dash

indicates median performance across all neurons from that brain region. The increase in prediction accuracy for A1

was smaller for this subset, but still significant (U test; 1Dx2-CNN: p = 6.685 x 104; pop-LN: p = 6.743 x 10−4; single-

CNN: p = 4.78 x 10−4), indicating that the increased SNR of A1 responses only partially accounts for our models’

higher prediction accuracy for A1 neurons. C. Prediction correlation for the 1Dx2-CNN PEG held-out model (Fig 5C,

median r = 0.569) and a “cross-area” held-out model (md = 0.581). Pre-fitting to A1 data proved to be just as effective

as pre-training on PEG data for predicting PEG neural responses (signed-rank test, p = 0.119).

https://doi.org/10.1371/journal.pcbi.1011110.g008
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recordings is often limited relative to the large datasets typically required for CNN models.

This problem is especially acute in studies of animal behavior, where data is limited by the

number of trials an animal is motivated to perform during a single recording session [46].

Thus, a pre-trained model that can accurately describe small datasets acquired in diverse

experimental settings would be of broad value to the study of auditory coding.

To test for benefits of generalization on smaller datasets, we subsampled spiking data over

10–100% of the original dataset. A 1Dx2-CNN held-out model was pre-trained on 100% of

data from all but one recording site, as above. The output layer was then re-fit to individual

neuron responses from the excluded site, using only the subsampled data. In other words, the

model drew on a much larger dataset for fitting the initial layers but only used the smaller sub-

sample for fitting the final layer. To prevent bias from potential instability in recordings, the

subsampled data were drawn uniformly from trials spanning the entire duration of each exper-

iment. We compared this model to a standard fit, in which both stages of fitting used data

from all recording sites, but only a subsample of data was used for the entire fit. The standard

model served as a control by representing a scenario in which data quantity is limited by exper-

iment duration or other factors and no pre-trained model is available. Performance of models

fit with the smaller datasets was quite variable, but the pre-trained held-out model performed

better than the standard model on average (Fig 9A, signed-rank test, p = 2.91 x 10−21). The

benefit of pre-training extended across all subsamples tested (Fig 9B, signed-rank test,

p< 10−9).

Discussion

We developed a convolutional neural network (CNN) architecture that simultaneously models

the responses of several hundred neurons to dynamic natural sounds. Consistent with previous

work in the visual system [38,39], these population CNNs substantially outperformed

Fig 9. Generalization of a pre-trained 1Dx2-CNN model to smaller datasets. A. A pre-trained model was fit to every

stimulus with neurons from one recording site excluded. The output layer was then re-fit for the excluded neurons,

using a fraction of the available stimuli. The standard model was fit to all neurons, but only a subset of stimuli was used

for the entire fit. Scatter plot compares prediction correlation between the pre-trained and standard models using 10%

of available data. On average, the pre-trained model more accurately predicted the subsampled data (signed-rank test,

p = 2.91 x 10−21). B. Median prediction correlation for pre-trained and standard models fit to subsampled data,

normalized to performance of the model fit to the full dataset. Improved accuracy of the pre-trained model was

consistent across all subsample sizes (signed-rank test, p< 10−9). Performance converges when 100% of data are used

to fit both models.

https://doi.org/10.1371/journal.pcbi.1011110.g009
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traditional LN models of auditory coding, as well as CNNs fit to the activity of individual neu-

rons. Moreover, population models were generalizable: the output layer of a pre-trained model

could be re-fit to novel data without a reduction in prediction correlation. The generalizability

and improved performance of the population CNN models is consistent with the hypothesis

that their early layers describe a comprehensive sensory space, encompassing sound encoding

by all neurons in the auditory field being analyzed.

Population network models provide a natural expansion of linear-

nonlinear encoding models

Alternatives to the LN model have been proposed to better characterize auditory encoding.

Polynomial expansions, based on Taylor and Volterra series, are the classic extension of linear

models to better account for sensory activity [11–13]. Although theoretically well motivated,

these second-order models provide only modest improvements over the first-order, linear

model. This shortcoming is likely due to two factors. First, second-order models require larger

datasets for fitting and are thus more prone to estimation noise than linear models. Second,

even with adequate fit data, the expanded functional space of a second-order model may not

align well to the actual nonlinear biological properties of auditory neurons. Another alternative

class of model attempts to address the latter limitation by accounting for specific biological

nonlinearities, such as contrast gain control, short-term plasticity, and local inhibition

[3,14,15]. With an empirically targeted design, these models tend to require less data for fitting.

However, they still only provide modest improvements to performance and may be limited in

their ability to account for the full complement of nonlinearities present in sensory neural

responses.

Multi-filter LN models [16–20] and artificial neural networks [7,21] provide a third alterna-

tive that can account for a broader range of nonlinear properties. These families of models are

all similar in that they project stimuli into a multi-dimensional subspace and then perform a

weighted sum across this space to produce a predicted response [13]. These large and complex

models have traditionally required specialized fitting procedures to account for sampling limi-

tations and noise in spiking data [21]. In the current study, we showed that the standard LN

model architecture can be extended smoothly into small neural networks with convolutional

units resembling linear filters in LN models. Moreover, we leveraged statistical power across

neurons to fit these models on a modestly sized dataset without highly tuned optimization

techniques. Population CNN models fit using this approach performed substantially better

than the LN model and other nonlinear models, including models that account for nonlinear

synaptic plasticity [3] and existing multi-filter models [19,20]. Analytically, the single-CNN is

an instantiation of a multi-filter model. Thus, one might expect similar prediction accuracy to

the other multi-filter models. The fact that the single-CNN and the population CNNs per-

formed consistently better may reflect details of the model architecture. Several aspects of the

CNN models developed here were chosen based on previous, exhaustive investigation of opti-

mal LN model architectures for sound coding in auditory cortex [43]. Most notably, all the

CNN models use low-rank spectro-temporal filters and a double exponential nonlinearity in

the final layer. Incorporating these elements into other multi-filter model frameworks could

yield increases in their performance.

For all population CNN architectures tested (1D-CNN, 1Dx2-CNN, 2D-CNN), prediction

correlation increased as model complexity increased and reached an asymptote at about 150–

200 free parameters per neuron. This parameter count reflects an increase in model complexity

relative to an efficiently parameterized LN model (< 100 free parameters per neuron), but still

falls far short of the approximately 450 free parameters per neuron required for an equivalent
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full-rank LN model [43]. The comparison between fit dataset size and prediction correlation

shows that performance was limited by the amount of fit data available (Fig 9), even for the rel-

atively diverse stimulus set used in this study. Thus, further increasing the amount of fit data

should lead to even more accurate model predictions. A more general model fit to a larger

dataset will likely require more free parameters.

Surprisingly, there was not a clear “winner” among population CNNs: these models were

highly equivalent, and differences in prediction correlation were small. Despite theoretical

guarantees that some CNN exists that can approximate a given neural encoding function, there

is no guarantee that any specific CNN of a fixed size can meet that goal. There is also no guar-

antee that a network’s parameters can be optimized for a particular function algorithmically,

even if the chosen architecture is sufficiently large [47]. Accordingly, we had no expectation of

equivalence between the CNNs we built despite their similarities. However, our results demon-

strate that population CNN models can be fit robustly and produce largely equivalent predic-

tions, regardless of details of the model architecture. At the same time, the best-performing

model employed a 1D-CNN architecture, derived from spectro-temporal LN models used in

the auditory system. In these models, early layers perform convolution only along the temporal

axis and perform a weighted sum across spectral channels. In contrast, the 2D-CNN architec-

ture, which was developed for visual signal processing, performs convolution across both the

time and frequency axes [7,27]. This result suggests that CNN architectures might be opti-

mized differently, depending on functional properties known to exist in the system of study.

Incorporating additional biological functions into CNN models, such as gain control or short-

term plasticity, could also lead to more effective models [48].

Toward a generalized model of auditory cortex

The goal of a fully generalizable brain model that can simulate neural activity across novel

experimental conditions is not new [49]. However, attempts to build detailed models from the

ground up have met with limited success, and it remains unclear which details of neural cir-

cuits and biophysical mechanisms are required to mimic natural function. In the current

study, we took a more functional approach to building a generalizable model. We used nonlin-

ear regression to model the auditory system, without accounting for detailed biological cir-

cuitry. In this sense, the population CNN models we developed bear a closer resemblance to

foundation models, which have grown increasingly valuable across the field of machine learn-

ing [35]. In the domain of language processing, for example, models such as BERT and GPT-3

can be applied to a wide range of language problems with little additional training [36,50]. A

foundation model for biological auditory coding could draw on existing foundation models or

the architectures developed here to describe a wide range of neurophysiological processes. Pre-

vious studies of auditory and visual neurophysiology have promoted a similar idea [27,31].

Intermediate representations in large CNN models, initially fit for a visual or image processing

problem, can be used in a generalized linear model to predict neurophysiological responses to

sensory stimuli. Here, we found such a model was able to generalize and account not just for

sensory selectivity but also for the time-varying response to dynamic natural auditory stimuli.

Functional differences across the cortical hierarchy

One open question in studies of the auditory system is how sound representations evolve

across the cortical processing hierarchy. Traditional LN models have been effective in the

brainstem and midbrain [51–53], but their accuracy is limited in auditory cortex [2,3]. Studies

comparing multiple cortical fields are limited but indicate LN models perform even more

poorly in non-primary auditory cortex than in A1 [41,43]. This is expected since sound-
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evoked activity in non-primary cortex is modulated more by changes in internal state [41,54]

and undergoes complex, long-lasting sensory adaptation that limits the efficacy of encoding

model analysis [55]. In this study, CNN models were able to achieve a substantial improve-

ment in performance over the LN model in a non-primary field (PEG). However, prediction

correlation was consistently lower for PEG than for A1, even after accounting for differences

in response reliability (SNR) between areas. This difference is consistent with the idea that

PEG neurons exhibit more selective, nonlinear response properties than A1. In the absence of

data limitations, a CNN or related model should be able to account for this sensory selectivity.

Thus, the difference in performance indicates that a larger fit dataset is required to characterize

PEG neurons as accurately as A1 neurons.

Neural population dynamics and the space of sensory representation

Questions around the dimensionality of cortical sensory coding spaces are an active area of

research [56]. Studies using multi-filter models have argued that the functional properties of

single neurons are best described as spanning a sensory subspace [13,16–20]. The population

models used here extend this idea to a shared subspace across the entire set of neurons studied.

The fact that population CNNs generalize readily to novel neural data suggests that, embedded

in their parameters, is a complete space of the sound features encoded across the entire cortical

field. The nonlinear combinations of spectro-temporal sound features that comprise each

channel of a population model’s final hidden layer may be dynamic and complex. However,

the dimensionality of this final layer determines how many channels are recombined to predict

the activity of any neuron. The best-performing 1Dx2-CNN model relied on 100 channels in

this layer, and the performance of the held-out models indicates that the constrained space

this layer represents could account equally well for the activity of any neuron in A1. This result

suggests that much of the sensory activity of the many thousands of neurons in auditory cortex

can be accounted for by a relatively low-dimensional space.

As high channel-count recordings in neurophysiological research continue to become

more prevalent and grow in scale, the feasibility and value of population models will also

increase. We expect these benefits to be particularly strong in circumstances where dataset size

is constrained by experimental design, such as in studies of behavior. When behavioral factors

such as motivation to perform a task limit the number of trials during recordings, statistical

power can be increased by recording from a large number of neurons. In addition, sensory

coding properties can be considered in a constrained sensory subspace by using a model pre-

trained on a larger dataset.

Methods

Ethics statement

All procedures were approved by the Oregon Health and Science University Institutional Ani-

mal Care and Use Committee and conform to standards of the Association for Assessment

and Accreditation of Laboratory Animal Care (AAALAC).

Data collection

Prior to experiments, ferrets (Mustela putorius furo, n = 5) were implanted with a custom steel

head post to allow for stable recording. While under anesthesia (ketamine followed by isoflur-

ane) and under sterile conditions, the skin and muscles on the top of the head were retracted

from the central 3 cm diameter of skull. Several stainless-steel bone screws (Synthes, 6 mm)

were attached to the skull, the head post was glued on the mid-line (Charisma), and the site
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was covered with bone cement (Charisma and/or Zimmer Palacos). After surgery, the skin

around the implant was allowed to heal. Analgesics and antibiotics were administered under

veterinary supervision until recovery.

After animals recovered from surgery and were habituated to a head-fixed posture, a small

craniotomy (approximately 0.5 mm diameter) was opened over A1 or the secondary auditory

field, PEG, immediately ventro-anterior to A1 [40,41]. Neurophysiological activity was

recorded using silicon multielectrode arrays (UCLA probes [57]). The array was inserted

approximately normal to the cortical surface using a microdrive (Alpha-Omega Engineering

EPS). Electrophysiological activity was amplified and digitized (Intan RHD-128) and recorded

using open-source data acquisition software (OpenEphys). Recording site locations were con-

firmed as being in A1 or PEG based on tonotopy, frequency tuning and response latency

[40,41].

Single- and multi-unit spiking events were extracted from the continuous, multichannel

electrophysiological traces using Kilosort 2 [58]. Units were only kept for analysis if they main-

tained isolation and a stable firing rate over the course of the experiment. Unit isolation was

quantified as the percent overlap of the spike waveform distribution with neighboring units

and baseline activity. Isolation > 95% was considered a single unit, and isolation > 85%

with< 15% change in spike rate between the first and last quarter of the recording was consid-

ered a multi-unit (single units: A1, 567/849; PEG, 314/398). There was no significant difference

in median prediction correlation for any of the exemplar models between these groups in

either brain area (U test, p> 0.05). Thus, we pooled single- and multi-unit data into a single

population for this study, and we refer to these units as “neurons.”

Stimulus presentation was controlled by custom software written in Matlab (Mathworks,

R2017A). Digital acoustic signals were transformed to analog (National Instruments PCI6259)

and amplified (Crown D-75a). Stimuli were presented through a flat-gain, free-field speaker

(Manger) 80 cm distant, 0-deg elevation and 30-deg azimuth contralateral to the neurophysio-

logical recording site. Prior to experiments, sound level was calibrated to a standard reference

(Brüel & Kjær). Stimuli were presented at 60–65 dB SPL (peak-to-peak amplitude).

Natural sound stimuli

Data were collected during presentation of a library of natural sounds (595 1-sec samples, 0.5

sec ISI). Approximately 15% of these sounds were ferret vocalizations and environmental

noises in the animal facility, recorded using a commercial digital recorder (44-KHz sampling,

Tascam DR-400). Recordings included infant calls (1 week to 1 month of age), adult aggression

calls, and adult play calls. No animals that produced the vocalizations in the stimulus library

were used in the current study. The remaining 85% of sounds were drawn from a library of

human speech, music and environmental noises developed to characterize natural sound sta-

tistics [59]. Activity was recorded during a single presentation of 577 samples and 20 repeti-

tions of the remaining 18 samples. The low-repetition data were used for model estimation

and the high-repetition data were used for model validation.

Modeling framework

For all analyses used in this study, spike data for each neuron was converted into a peristimu-

lus time histogram (PSTH), r(t), the time-varying spike rate, sampled at 100 Hz (10 ms bins).

The input to each model consisted of a sound waveform converted into a spectrogram, s(f,t),
using log compression and a second-order gammatone filter bank to account for the action of

the cochlea [60]. This step was fixed for each model rather than fitting the spectrogram’s

parameters, since we have observed little benefit from this additional complexity [43]. The

PLOS COMPUTATIONAL BIOLOGY A generalizable model for coding by auditory neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011110 May 5, 2023 17 / 27

https://doi.org/10.1371/journal.pcbi.1011110


filter bank included F = 18 filters with fj spaced logarithmically from flow = 200 to fhigh = 20,000

Hz (approximately 1/3 octave per bin). The filter bank output was downsampled to 100 Hz to

match the sampling of the neural PSTH. Filter shapes in the subsequent model definitions cor-

respond to these 1/3-octave frequency bins and 10 ms time bins. Since sampling resolution

and spectral resolution were fixed for this study, it is uncertain how higher resolution data

might affect these results. However, from past work with the LN model we would expect that

increasing either resolution would reduce prediction correlations consistently for all models

such that their performance relative to one another would be unchanged [43].

Linear-nonlinear models. The linear-nonlinear spectro-temporal receptive field (LN)

model is widely used in studies of neural auditory coding [13,61,62], and was used as a baseline

for this study (Fig 1A). The first stage of the LN model convolves a finite impulse response

(FIR) filter, h, with the stimulus spectrogram to generate a linear firing rate prediction, rlin:

rlinðtÞ ¼
XF

f

XU

u

hf ;usðf ; t � uÞ

For the models used here, the filter consists of F = 18 spectral channels and U = 25 temporal

bins. In principle, this transformation can be achieved with a single 18x25 filter. In practice,

the filter was implemented as a rank D factorization: projection onto an 18xD spectral weight-

ing matrix specified by a Gaussian function followed by convolution with a Dx25 temporal fil-

ter, where D varied from 1 to 11. This implementation substantially reduces the number of

free parameters without sacrificing model performance [43].

A static sigmoid nonlinearity that mimics spike threshold and firing rate saturation is

applied to the result of this convolution to produce the final model prediction. For this study,

we used a double exponential nonlinearity:

rðtÞ ¼ bþ a exp½� expðkðylinðtÞ � sÞ�

where the baseline spike rate, saturated firing rate, firing threshold, and gain are represented

by b, a, s and k, respectively [43]. This model predicts the activity of each neuron indepen-

dently from the rest of the recorded data, but we implemented it in TensorFlow using custom

layers such that we could run a single “model” for the full neural population [63]. This

approach enabled a dramatic speedup in fit time compared to a one-fit-at-a-time strategy and

allowed us to use the same optimization routine as for the population models.

Single-neuron CNN models. Single-neuron CNN models (single-CNN, Fig 1C) used in this

study have two layers. The first layer is a 1D convolutional layer composed of many units that

each apply the following operations in series: multiply Gaussian-distributed spectral weights with

the spectrogram to produce a single channel, convolve this weighted channel with a rank 1,

250ms temporal filter, then apply an offset rectified linearity (ReLU) to the output of the convolu-

tion. The number of units in this layer determines the model’s size. We fit a total of six model vari-

ants in the current study, with unit count ranging from 2 to 18. The second layer consists of a

single dense weighting unit with a double exponential nonlinearity as the activation function. The

output of this unit is the model’s prediction of a single neuron’s time-varying firing rate.

The activation functions described here were also used for all other neural network models in

this study: offset ReLU for all intermediate dense and convolutional layers unless otherwise speci-

fied, and double exponential (as described for the LN model) for the final dense layer (output).

Population CNN models. Population models are derived from the premise that neural

populations cooperatively encode sensory information within a common subspace [6,64]. We

implemented four population CNN architectures: a single 1D convolutional layer with no acti-

vation function followed by one dense layer (pop-LN, Fig 1B), a single 1D convolutional layer
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followed by two dense layers (1D-CNN, Fig 1D), two 1D convolutional layers followed by two

dense layers (1Dx2-CNN, Fig 1E), and three 2D convolutional layers followed by two dense

layers (2D-CNN, Fig 1F). For all population models, the number of units in the output layer is

equal to the number of neurons in the population used for fitting (n = 849 for A1, n = 398 for

PEG).

The pop-LN model resembles the LN model, in that the encoding properties of a single neu-

ron can be collapsed into an LN model. The only difference is that the entire population shares

a subspace defined by the convolutional layer, while weights for individual neurons are only

computed in the final layer. We consider this design to be the minimal change needed to con-

vert the single-neuron LN model into a population model. We tested 15 model variants within

this architecture, where the number of convolutional units for each variant ranged from 4 to

300. Note that while the pop-LN model is technically a CNN, we refer to it as the LN model

when contrasting it with the CNN models that contain intermediate nonlinearities.

The 1D-CNN model is similar to the single-CNN model, except there is a hidden dense

layer after the convolutional layer. We compared sixteen model variants for this architecture,

with 5 to 230 convolutional units and 10 to 300 hidden units.

The 1Dx2-CNN model is akin to the 1D-CNN model but has two consecutive convolu-

tional layers instead of one. The first layer uses 150ms filters while the second uses 100ms fil-

ters, yielding the same 250ms total “context memory” as the models described above. We fit a

total of 14 model variants for this architecture. The number of units in the first and second lay-

ers varied from 5 to 150 and 10 to 200, respectively, and the number of units in the hidden

dense layer ranged from 20 to 250.

The 2D-CNN model also resembles the 1D-CNN model, but the 1D convolutional layer is

replaced with three consecutive 2D convolutional layers each using ten 3x8 filters, encompass-

ing a cumulative 240ms of context memory. We compared 15 model variants for the 2D-CNN

architecture, where the number of units in the hidden dense layer ranged from 4 to 300.

To choose the structure of each model, we built progressively larger models out from the

canonical single-neuron LN model by hand-selecting models with increasing size and number

of network layers. For each model type, we evaluated a small number of wide-ranging hyper-

parameter combinations like learning rate and early stopping criteria, selected a combination

that provided stable fits and good performance for all architectures, and then varied convolu-

tional filter count and/or dense unit count to produce a continuum of model sizes. This was

not an exhaustive exploration of the possible hyperparameters for the model architectures cho-

sen, nor did we dive deeply into the full range of possible architectures. Additionally, we chose

not to explicitly imitate biological nonlinearities like short-term plasticity or gain control

within the models since the relatively brief stimuli used for this study were not designed to

probe these slower response dynamics.

Model optimization

Model parameters were fit using TensorFlow’s implementation of the Adam algorithm for sto-

chastic gradient descent, using a mean squared error (MSE) loss function [44,63]. Loss was

computed for all neurons in the population simultaneously. Mean squared error was chosen

because we have found in practice it is more well-behaved than popular alternatives like maxi-

mum likelihood or mutual information for our analyses, likely because we do not control stim-

ulus statistics or noise distribution. Past work has also demonstrated that several such loss

functions produce the same relative model ranking for a given set of parameters, so our choice

of loss function is not likely to influence the results of this study [43]. To mitigate overfitting,

an early stopping criterion was set using twenty percent of the estimation data. We also tested
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dropout and L2 regularization [65,66], but we found little to no benefit and chose to exclude

them from this study for simplicity.

Models were fit in two stages. For the first stage, models were fit to all units from one brain

region simultaneously (n = 849 A1; n = 398 PEG). Parameters were randomly initialized nine

times, with a tenth initialization set to the mean of the parameter distributions. Each initializa-

tion was used as the starting point for the first of three optimization steps. First, we fit a sub-

model defined by excluding the output layer while keeping the model otherwise identical.

Subsequently, these models were fit with the output layer included but parameters of all other

layers fixed. The best-performing initialization was then used as the starting point for a subse-

quent fit of all model parameters simultaneously. In past studies we found that this heuristic

approach, which for the LN model amounts to fitting the linear and nonlinear portions sepa-

rately, improved single-neuron model performance [22,43]. The same proved to be true for

this study’s population models. Most models fit using the same architecture but different initial

conditions converged on equivalent fits with very similar performance, while a small number

converged in local minima and had much worse performance (10–30% of fits).

In the second stage, the output layer of each model was re-fit to one unit at a time while

parameters for earlier layers were kept fixed. The second stage served two purposes. First, it

provided a modest increase in performance for population models by optimizing a separate

loss function for each unit, rather than a single loss function produced by an unweighted aver-

age across neurons. Second, it ensured there were no differences in fitting process for the mod-

els in the generalization analyses.

For the test of generalization, the same two-stage procedure was used but with subsets of the

data excluded. In held-out models, all K neurons from one site, S, were excluded from the first

stage fit. Model parameters from this fit were used to initialize second stage fits for the K excluded

neurons. In the case of the matched model, K neurons from other sites with prediction scores sim-

ilar to those in site S (for a single-neuron LN model) were excluded during the first stage. Thus,

the matched model provided a control for the generalization test, in that the number of neurons

used for fitting this model was the same as for the held-out model. This method was repeated for

every recording site to generate held-out and matched model predictions for every neuron.

Noise-corrected prediction correlation to evaluate model performance

After fitting was complete, model prediction accuracy was measured on a separate validation

dataset as the correlation coefficient (Pearson’s R) between the time-varying model prediction

and actual PSTH response to the validation stimulus. The PSTH was averaged across 20 repeti-

tions of the validation stimulus, which reduced noise from trial-to-trial response variability.

However, some noise from finite sampling remained, and the practical limit on the correlation

coefficient measured directly with the PSTH was less than the theoretical maximum of 1.0.

The effect of noise in the validation response can be compensated for by normalizing the

measured correlation coefficient by the trial-to-trial response correlation (TTRC) [43,45]. If

we define TTRC as the mean correlation coefficient between all unique trial pairs, i 6¼ j,

TTRC ¼ hcorrðriðtÞ; rjðtÞÞii;j

then the corrected prediction correlation is the mean correlation between the predicted, p(t),
and the single-trial actual response, ri(t), normalized by the TTRC,

Rnorm ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
TTRC
p hcorrðriðtÞ; pðtÞÞii
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For very small TTRC or for small number of repetitions, this approximation can be unsta-

ble, but for the 20-repetition validation datasets in the current study, it was stable, adjusting

prediction scores by a median of 35%. Importantly, applying this correction allowed for

bounded measures of prediction accuracy, but it did not affect relative model performance, as

the same correction was applied to every model prediction for the same neuron.

Alternative multi-filter model frameworks

We compared performance of the models developed in this study to two existing multi-filter

model frameworks. The Nonlinear Input Model (NIM) is an extension of the generalized lin-

ear model (GLM), which fits two or more linear filters that are separately rectified and then

linearly summed and passed through a static sigmoidal nonlinearity to produce a final pre-

dicted response [20]. NIM models were optimized by maximizing log-likelihood of the pre-

dicted response given the actual response. Hyperparameters were selected using grid search on

a subset of the data. Default values were used, except the L1 norm was set to lambda = 5. NIM

models with 2 or 3 input filters were tested.

The information-theoretic Spike-Triggered Average and Covariance model (iSTAC) archi-

tecture optimizes multiple linear filters using mutual information between the filter outputs

and time-varying spike rate [19]. Outputs of the linear filters were the combined through a sec-

ond-order polynomial nonlinearity optimized using a log-likelihood cost function. iSTAC

models were fit with three linear filters.

Exemplar models

After our exploration of a wide range of model sizes (Fig 3A, 3B), subsequent analyses focused

on exemplar models from each architecture. These exemplars were chosen such that each had

similar complexity, and that complexity was as low as possible while keeping prediction corre-

lation near the observed asymptote. Architectural hyperparameters were as follows, in layer-

order, where N represents the number of neural responses in the data:

• LN: 1 1D convolutional unit (rank-5 factorization), 1 output unit.

• pop-LN: 120 1D convolutional units (250 ms), N output units.

• single-CNN: 6 1D convolutional units, 1 output unit.

• 1D-CNN: 100 1D convolutional units (250 ms), 120 hidden dense units, N output units.

• 1Dx2-CNN: 70 1D convolutional units (150 ms), 80 1D convolutional units (100 ms), 100

hidden dense units, N output units.

• 2D-CNN: 3 layers of 10 2D convolutional units each, in series (each 80 ms x 3 spectral bins,

approximately 1 octave), 90 hidden dense units, N output units.

Model equivalence

To quantify prediction similarity between models, we computed model “equivalence” on the

validation data as the Pearson correlation coefficient between PSTHs predicted for each neu-

ron. This approach enables a relative comparison: if one distribution of equivalence scores is

shifted farther right, then that pair of models is more similar than the pair of models with the

leftmost distribution. This analysis was a variant of a previous method that computed the par-

tial correlation between PSTHs, relative to the prediction of a baseline model [22]. The simpler

comparison used in this study introduces the limitation that it cannot be meaningfully applied
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to models that explain a high amount of variance in the data. In that case, the model predic-

tions must be highly correlated with each other, so a separate baseline model would be

required to measure their similarity.

Statistical methods

For all statistical comparisons, we used non-parametric tests since the distributions of the rele-

vant variables were non-normal and no other distribution was apparent. For paired tests, e.g.,

comparing prediction correlations between different models on the same set of neurons, we

used a two-sided Wilcoxon signed-rank test (referred to as “signed-rank test”). For non-paired

tests, we used a two-sided Mann-Whitney U test (“U test”). Statistical significance was assigned

for p< 0.05. Full p-values are reported for completeness unless many tests are reported simul-

taneously. Note that due to the large number of units in the recordings, the p-values reported

here are often extraordinarily small. These values reflect the relatively large number of neurons

in the dataset, which provided substantial statistical power.

To determine whether a model’s prediction was above chance for a given neuron, or if one

model’s prediction was significantly more accurate than another’s for that neuron, we used a

jack-knifed t-test. For the population analyses reported in Figs 3–9, we only included data

from neurons for which the 1Dx2-CNN, pop-LN, and single-CNN exemplar models all per-

formed above chance. We considered neurons that met this criterion to be auditory-responsive

(n = 777/849 A1 neurons, n = 339/398 PEG neurons) and assumed the excluded neurons were

non-auditory.

A toolbox for systematic comparison of encoding models

All models in this study were fit using the Neural Encoding Model System (NEMS, https://

github.com/LBHB/NEMS). We developed this open-source software package to be a flexible

and extensible tool for fitting models to sensory neurophysiology data. Implementing all mod-

els in a common framework helped eliminate potentially problematic differences in our analy-

sis pipeline, like optimization routine and cost function evaluation, that otherwise might arise.

We will continue expanding the model architectures supported by NEMS, and we invite con-

tributions and suggestions to make this software helpful to the broader neuroscience

community.

The complete experimental dataset and illustrative code for loading data and fitting models

are available open-access for download (Zenodo, [67]).

Supporting information

S1 Fig. Performance comparison with other multi-filter model frameworks. A. Pareto plot

shows median performance of model architectures from the current study (repeated from Fig

4) and of multi-filter models estimated using previously published software. The Nonlinear

Input Model with 2 or 3 filters (NIMx2, NIMx3, [20]) showed a small improvement over a

baseline generalized linear model (GLM, p<1e-6, signed rank test). Free parameter counts

were higher than for CNN-single because full rank filters were used. Performance was lower

than for the CNN models. The information-theoretic Spike-Triggered Average and Covari-

ance model (iSTAC, [19]) with 3 filters required a similar number of parameters as NIMx3,

and performance was lower than the other models (n = 775 units with significant auditory

response and successful fits for all model frameworks). B. Comparison of model performance

for PEG, plotted as in A, shows a similar pattern as A1 (n = 337 units with significant auditory

response and successful fits for all model frameworks). C. Scatter plots compare prediction

correlation for GLM versus NIMx3 model (left) and NIMx3 model versus pop-LN (middle)
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and 1Dx2-CNN models (right). Median prediction correlation for each model is indicated in

the x- and y-axis labels and is always significantly greater for the model on the y-axis (p<1e-6,

signed rank test). While the pop-LN and 1Dx2-CNN models performed better than NIMx3,

relative performance across cells was correlated, indicating that both frameworks account for

similar auditory activity (correlation between prediction correlation, r, indicated in each sub-

plot). D. Comparison of prediction correlation for iSTAC versus pop-LN or 1Dx2-CNN mod-

els, plotted as in C. Median performance of both pop-LN and 1Dx2-CNN models was higher

than iSTAC (p<1e-6, signed rank test), but relative performance between iSTAC and the other

models was correlated across neurons.

(TIF)

S2 Fig. Comparison of model performance metrics. Performance assessed by prediction cor-

relation, mutual information (MI) and log likelihood (LL) shows consistent increases in pre-

diction accuracy for CNN models. A. Box plot compares 25-th, 50-th, and 75-th percentile

performance of pop-LN and 1Dx2-CNN models across the A1 population (n = 777 auditory

responsive neurons, data from Fig 5). Median prediction correlation of the 1Dx2-CNN model

is significantly greater than the pop-LN model (signed-rank test, p value at top of panel). B.

Comparison of model performance as measured by MI between predicted and actual time-

varying activity [16], plotted as in A. Median MI is significantly greater for the 1Dx2-CNN

model. C. Comparison of model performance as measured by LL of actual activity given pre-

dicted activity, plotted as in A. Median LL is significantly greater for the 1Dx2-CNN model. D.

Scatter plot compares difference in prediction correlation between 1Dx2-CNN and pop-LN

models against the difference in MI for each A1 neuron. There was some variability across

individual neurons, but the difference was correlated across the population (Pearson’s r and p
value from Student’s T-test at top of panel). The observation that the change in performance is

similar across neurons for both metrics is consistent with the idea that the capture similar

aspects of model performance. E. Scatter plot compares difference in prediction accuracy as

measured by prediction correlation and log likelihood, plotted as in D. Again, the change in is

correlation across neurons between metrics.

(TIF)
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