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Abstract

In the past decade, single-cell technologies have proliferated and 
improved from their technically challenging beginnings to become 
common laboratory methods capable of determining the expression 
of thousands of genes in thousands of cells simultaneously. The field 
has progressed by taking the CNS as a primary research subject — the 
cellular complexity and multiplicity of neuronal cell types provide 
fertile ground for the increasing power of single-cell methods. Current 
single-cell RNA sequencing methods can quantify gene expression 
with sufficient accuracy to finely resolve even subtle differences 
between cell types and states, thus providing a great tool for studying 
the molecular and cellular repertoire of the CNS and its disorders. 
However, single-cell RNA sequencing requires the dissociation of 
tissue samples, which means that the interrelationships between cells 
are lost. Spatial transcriptomic methods bypass tissue dissociation 
and retain this spatial information, thereby allowing gene expression 
to be assessed across thousands of cells within the context of tissue 
structural organization. Here, we discuss how single-cell and spatially 
resolved transcriptomics have been contributing to unravelling the 
pathomechanisms underlying brain disorders. We focus on three 
areas where we feel these new technologies have provided particularly 
useful insights: selective neuronal vulnerability, neuroimmune 
dysfunction and cell-type-specific treatment response. We also discuss 
the limitations and future directions of single-cell and spatial RNA 
sequencing technologies.
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function, which is crucial for studying dysregulated cellular networks 
in the vicinity of pathogenic hallmarks.

In this Review, we describe how single-cell technologies have 
advanced our understanding of several aspects related to brain dis-
eases: selective neuronal vulnerability, neuroimmune dysfunction 
and heterogeneity of brain tumour cells. We comment on the current 
limitations and challenges of single-cell techniques and provide our 
perspective on future applications of these technologies to neurology 
research.

Single-cell technologies
scRNA-seq and snRNA-seq
The first description of single-cell transcriptome analysis based on 
next-generation sequencing was published in 2009, wherein single 
mouse blastomeres and oocytes were manually picked under the micro-
scope and subjected to mRNA sequencing11. Since then, multiple efforts 
have been made to improve and scale up the technology. Important 
milestones include the introduction of unique molecular identifiers for 
accurate RNA molecule counting12, cell barcoding13, adapting micro
fluidics for cell capture14,15, optimization of experimental workflows and 
streamlining of computational analysis. As the degree of automation 
and the throughput have increased, the cost per cell has substantially 
reduced. This progress was accelerated with the introduction, in 2015, 
of droplet-based microfluidic methods for scRNA-seq (Drop-seq16 and 
inDrop17). Droplet-based capture has also been successfully adapted for 
snRNA-seq. snRNA-seq has been shown to provide an effective alterna-
tive to scRNA-seq for the analysis of cellular diversity18,19. The biggest 
advantages of snRNA-seq over scRNA-seq are that nuclei isolation can 
be easily applied to cells that are difficult to dissociate intact, such as 
neurons, and that it can be performed from cryopreserved tissues 
(Supplementary information). The latter is particularly important in 
the context of clinical tissue samples. snRNA-seq has been widely used 
in brain research, allowing the analysis of archived clinical material, 
which is stored through brain banks as flash-frozen or fixed tissue19–22. 
Other available approaches for sequencing multiple cells or nuclei at a 
time include combinatorial indexing (as in SPLiT-seq23 or sci-RNA-seq24)  
as well as Microwell-seq, which uses an agarose-constructed micro-
well array and barcoded beads25. Microwell-seq has been used for 
the single-cell dissection of over 50 fetal and adult human tissues 
within the human cell landscape atlas26. The most commonly used 
platforms for single-cell, single-nucleus and spatial RNA sequencing 
are summarized in Table 1.

The main steps of an scRNA-seq experiment are: isolation of live 
single cells, cell lysis, capture of polyadenylated RNAs, reverse tran-
scription, cDNA amplification, library preparation and sequencing 
(Fig. 1). Computational data analysis is an integral part of single-cell 
RNA sequencing. In brief, computational workflows consist of several 
steps including read alignment, generation of gene and unique molecu-
lar identifier (UMI) counts, cell quality control, data normalization 
and downstream analyses such as clustering of cells, differential gene 
expression and, in the case of cycling and differentiating cells, pseudo
temporal ordering. A common practice for clustering and interpreting 
sequencing results is to preprocess the data by selecting highly vari-
able genes and performing dimensionality reduction using principal 
component analysis, t-distributed stochastic neighbour embedding or 
uniform manifold approximation and projection27. An overview of the 
most commonly used computational tools is provided in Box 1. Several 
scRNA-seq analysis pipelines have been developed that guide the 
user from raw data to defined single-cell populations28, and a detailed 

Key points

•• High-throughput single-cell technologies enable multiple layers of 
molecular biology to be probed at the single-cell level.

•• Single-cell transcriptomic atlases spanning multiple developmental 
stages have been generated with the aim of dissecting the cellular 
complexity of the human brain.

•• Single-cell RNA sequencing technologies increase our understanding  
of pathomechanisms of brain disorders, providing information 
on selective neuronal vulnerability, neuroimmune aspects and  
cell-type-specific treatment responses.

•• Spatially resolved transcriptomics provides information about the 
relationships between spatial tissue organization and dysregulated 
molecular networks in the vicinity of pathogenic hallmarks.

•• Single-cell transcriptomic methods have proven useful in the 
biomedical field and are emerging as valuable future tools for 
diagnostics and the development of precision treatments in clinical 
practice.

Introduction
The first attempts to combine brain histology with gene expression 
aimed to detect multiple transcripts in situ in brain sections from 
individuals with tuberous sclerosis. In the mid-1990s, Eberwine and 
co-workers1 developed a multistep protocol consisting of Nestin 
immunostaining, in situ reverse transcription, in situ cDNA synthe-
sis, aspiration of labelled cells and detection of mRNAs by reverse 
northern blotting. That elegant yet technically complex procedure 
enabled detection of over 20 mRNAs in individual nestin-positive giant 
cells and neurons within cortical tubers1. However, high-throughput 
determination of gene expression profiles in individual neural cells has 
become accessible only in the past decade. This advance was the result 
of next-generation DNA sequencing technologies, the adaptation of 
molecular biology techniques to subnanomolar amounts of starting 
material and scaling-up of computational analyses to accommodate 
large numbers of samples. To date, the most mature single-cell inves-
tigation technique merged with genome-scale analysis is single-cell 
RNA sequencing (scRNA-seq). Although scRNA-seq has limitations, 
including data sparsity and low detection efficiency, it enables the 
measurement of thousands of transcripts in thousands of cells in a 
single experiment.

The rapid evolution of scRNA-seq methods has led to manifold 
discoveries over a short time, including the identification of novel cell 
types and subtypes2–4, description of rare cell populations5,6, insights 
into the evolution of the human brain6,7, revisions to established dif-
ferentiation hierarchies8 and characterization of cell-state changes dur-
ing development and in response to external stimuli9,10. In addition to 
providing a static snapshot of cell states within a given tissue or organ, 
rapid advances in computational methods have enabled the use of 
single-nucleus RNA sequencing (snRNA-seq) and scRNA-seq to charac
terize dynamic processes in cells (Figs. 1 and 2). Furthermore, novel 
spatial transcriptomic methods are now providing a structural layer 
of information. This spatially resolved RNA sequencing can provide 
information about the relationships between spatial organization and 
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step-by-step scRNA-seq data processing and analysis outline can be 
found in ref. 29.

Spatially resolved RNA-seq
Spatially resolved RNA sequencing, or spatial transcriptomics, gen-
erates quantitative transcriptome-wide RNA-seq data from tissue 
sections. This result is achieved by capturing polyadenylated RNA 
on arrays of spatially barcoded DNA capture probes and introducing 
positional molecular barcodes in the cDNA synthesis reaction30 (Fig. 3). 
These positional barcodes enable each transcript to be mapped back 
to its original spot on the tissue section. Spatial transcriptomics tech-
niques have been commercialized; they include the Visium Spatial 
Gene Expression platform30,31 (10× Genomics), GeoMx32 (NanoString 
Technologies), CosMx33 (NanoString Technologies) and Molecular 
Cartography34 (Resolve Biosciences), and the latter three are in situ 
hybridization-based spatial profiling platforms (Supplementary infor-
mation). Although spatial transcriptomics methodologies are still in 
their infancy, they hold promise for gleaning essential insights into 
the molecular mechanisms that trigger and maintain disease pheno-
types. Of note, computational strategies that couple single-cell and 
spatially resolved transcriptomics have been introduced, and tools such 
as cell2location35 are designed to perform a joint analysis of multiple 
scRNA-seq and spatial transcriptomic datasets.

Latest developments
Single-cell technologies are now moving in two main directions. The 
first is to perform integrated, multiple measurements from indi-
vidual single cells. A great example is Patch-seq, a method in which, 
after electrophysiological recording in a brain slice, the neurons 
are aspirated and subjected to an scRNA-seq procedure to profile 
their transcriptomes36,37. The second direction is the combination 
of measurements from multiple molecular layers in single cells; that 
is, overlaying transcriptomic data with proteomic, metabolomic or 
chromatin accessibility data in an approach termed single-cell multi-
omics. For example, cellular indexing of transcriptomes and epitopes by 
sequencing integrates protein and transcriptome measurements into 
an efficient, single-cell readout38. It uses oligonucleotide-conjugated 

antibodies to combine multiplexed protein-marker detection with 
unbiased transcriptome profiling of single cells. The possible appli-
cations of multiomics approaches in the fields of neuroscience and 
neurology are discussed in more detail in this Review.

Exploring brain complexity
Surveying the mouse CNS provided a showcase for single-cell RNA 
transcriptomics. In 2015, Zeisel et al.2 analysed the transcriptomes 
of more than 3,000 individual cells from the mouse somatosensory 
cortex and hippocampal CA1 region. The next year, Tasic et al.3 reported 
transcriptomic characteristics of more than 1,600 single cells from the 
visual cortex. Both studies provided information on the transcriptomic 
diversity of neurons and non-neuronal brain cell types and highlighted 
the exploratory power of scRNA-seq. Since these initial publications, 
both embryonic and adult mouse brains have been exhaustively studied 
using single-cell RNA transcriptomic methods (Box 2). Various tran-
scriptomic cell atlases have been generated for many regions of the 
nervous system and developmental stages in mouse39–41, and increas-
ing numbers are available for human and non-human primates4,42–46. 
Jointly, these atlases reveal highly complex transcription factor net-
work topology and excitability-related gene expression for neurons 
within numerous identified types and subtypes, depending on the 
brain region. These findings have markedly expanded the repertoire 
of morphology-based and connectivity-based definitions of neuronal 
types and subtypes. Non-neuronal cells generally display less diver-
sity than neurons; however, substantial regional specificity has been 
reported for astrocytes47 and microglia48. Additionally, many non-
neuronal cell types can exhibit a wide range of cell states under different 
physiological or diseased conditions49.

The growing amount of single-cell transcriptomic data has 
contributed to a paradigm shift in brain cell taxonomy, and the new 
gene-expression-based taxonomies3,42,50,51 have been compared and 
combined with traditional morphological, physiological and con-
nectomic taxonomies52. For example, by combining biocytin staining, 
Patch-seq and multiplexed error-robust fluorescence in situ hybridiza-
tion of primary motor cortex, researchers from the BRAIN Initiative Cell 
Census Network connected transcriptome-based cell-type taxonomies 
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Fig. 1 | Experimental pipeline of a droplet-based single-cell RNA sequencing 
in a nutshell. a, Generation of single-cell or single-nuclei suspensions from 
a tissue. b, Use of microfluidic device to encapsulate the individual cells or 
nuclei in nanolitre droplets with barcoded beads. Next steps include: cell lysis, 

capture of polyadenylated RNA, reverse transcription combined with the 
introduction of unique molecular identifiers and cell barcodes, and amplification 
and fragmentation of cDNA. c, Next-generation sequencing of the obtained cDNA 
library is performed on a standard platform, typically by solid-phase amplification.
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Fig. 2 | Analysis of single-cell RNA sequencing data set can provide multiple 
types of information on cell types, states and their activation and enables 
inference of dynamic cellular processes. a, High-dimensional single-cell 
RNA sequencing data can be visualized by using dimensionality reduction 
algorithms to reveal cell clusters. b, Cell clusters are assigned to specific cell 
types and subtypes on the basis of marker genes. c, Deeper analysis of single-
cell transcriptomes can provide information about cell states and activation or 

uncover rare or new cell subtypes. d, Advanced algorithms and computational 
tools are designed to infer differentiation trajectories and transition states 
or compare phenotypes at the cellular level. AD, Alzheimer disease; ALS, 
amyotrophic lateral sclerosis; CSC, cancer stem cell; DAM, disease-associated 
microglia; MS, multiple sclerosis; RA, reactive astrocyte; t-SNE, t-distributed 
stochastic neighbour embedding; WT, wild type. Part d reprinted with 
permission from ref. 81, Elsevier.
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with physiology, morphology and circuit-based brain function53. This 
pilot study revealed good correspondence among molecular, anatomi-
cal and physiological datasets, thereby reinforcing the transcriptomic 
classification of neuronal types and subtypes. Another study combined 
single-projection-level analysis of neuron morphology with single-
cell transcriptomic profiles and reported overall good concordance 
between the transcriptome and the major projection types defined by 
morphology54. However, worse correlation was observed between the 
fine-grained subtypes defined with the two different methods. Cortical 
GABAergic interneurons have also been classified using a combina-
tion of transcriptomic and physiological properties, showing robust 
mutual predictability of both properties55. Such cross-modality studies 
are necessary to achieve a proper description of complete single-
cell anatomy and cell-type classification in healthy and pathological 
tissues, including the brain. Importantly, emerging transcriptome-
based cell-type taxonomies of the homeostatic, healthy mammalian 
brain provide crucial references for studies focusing on pathologies, 
neurodevelopment and evolution4,25,39,46,53,56.

Indeed, single-cell transcriptomic approaches have now also 
been applied to the study of diseased CNS tissue, and in the subse-
quent sections we provide an overview of how scRNA-seq and spatial 
transcriptomics have contributed to our current understanding of 
pathomechanisms of brain disorders, including neurodegenera-
tive diseases, neurodevelopmental disorders, psychiatric diseases 
and brain tumours (Fig. 4). We focus on three topics in which we feel 
the most progress has been made: selective neuronal vulnerability, 
neuroimmune responses and cell-type sensitivity to treatment.

Selective neuronal vulnerability
In the majority of neurodegenerative conditions, there are specific 
groups of cells in the CNS that seem to be particularly vulnerable to 
degeneration. This selective neuronal vulnerability is a widely appre-
ciated but poorly understood phenomenon. Indeed, our lack of an 
understanding of the molecular mechanisms underlying selective 
neuronal vulnerability is recognized as one of the major obstacles to 
treating neurodegenerative conditions57. However, single-cell technolo-
gies have emerged as useful methods to identify intrinsic properties of 
vulnerable cell types and subtypes; subsequently, we discuss selected 
studies that we feel illustrate this application of single-cell methods 
particularly well.

Neurodegenerative disease
Alzheimer disease (AD) is a slowly progressing neurodegenerative 
disorder and the pathological process begins years, if not decades, 
before clinical symptoms occur58. In the early stages of AD, neurons 
from several areas of the brain — for example, principal neurons of 
the entorhinal cortex layer II, hippocampal CA1 pyramidal cells and 
pyramidal neurons in neocortex association areas — are particularly 
susceptible to degeneration. By contrast, other brain regions, such 
as the primary sensory cortices, are relatively resistant to degenera-
tion59. However, the molecular basis underlying this selective vulner-
ability remains unclear. In a study published in 2021, a combination 
of snRNA-seq and quantitative immunofluorescence for different 
markers of excitatory neurons was used to analyse post-mortem 
human brain samples, with the aim of defining the vulnerable neu-
ronal populations in the entorhinal cortex of individuals with AD60. 
In the caudal entorhinal cortex, specific excitatory neuron subpopu-
lations expressing RORB were depleted during disease progression 
in AD. These RORB-positive excitatory neurons included both large 
multipolar neurons and pyramidal neurons and preferentially accu-
mulated tau inclusions, which are a key neuropathological hallmark 
of AD. No substantial changes in the abundance of inhibitory neuron 
subpopulations were observed, and there was no evidence of selective 
vulnerability among any subpopulation of inhibitory neurons in the  
entorhinal cortex60.

Parkinson disease (PD) is defined by the neurodegeneration of 
nigrostriatal dopaminergic neurons. α-Synuclein aggregates and mito-
chondrial dysfunction have been implicated in PD pathogenesis, but 
the mechanisms underlying vulnerability of dopaminergic neurons to 
neurodegeneration are not yet well understood61. In 2022, snRNA-seq 
and spatial transcriptomics were applied to the definition of molecular 
features associated with vulnerability of dopamine neurons within 
the substantia nigra pars compacta to neurodegeneration in PD62. 
On the basis of a published scRNA-seq data set of mouse midbrain39, 
the researchers selected the Nr4a2 gene as a marker of mammalian mid-
brain dopamine neurons and used fluorescence-activated nuclei sort-
ing to enrich human dopamine neuron samples for NR4A2-expressing 
cells. In-depth snRNA-seq analysis of dopamine neurons from neuro
typical donors revealed 10 subtypes that were then analysed with 
spatial transcriptomics in macaque brain. The authors identified a 
subpopulation of dopaminergic neurons characterized by SOX6 and 
AGTR1 expression that was in a location suggestive of PD susceptibility. 
Indeed, when samples from individuals with PD were compared with 
those from neurotypical individuals, the largest decline in dopamine 
cell number was observed within the SOX6+ AGTR1+ subpopulations, 
indicating selective vulnerability of these neurons. In another study 
from the same year, midbrains from individuals with idiopathic PD 

Table 1 | Comparison of different single-cell and single-
nucleus RNA sequencing methods

Method Advantages Disadvantages Platforms

Single-
cell RNA 
sequencing

Dissociated cells 
can be stored 
fixed in methanol

Requires cells 
dissociation from 
fresh tissue
Not applicable to 
adult brain tissue
Transcriptomes 
perturbed during 
isolation
No spatial 
information 
preserved

Smart-Seq147

Smart-Seq2 (ref. 148)
Fluidigm C1 (ref. 149)
Drop-seq16

10× Chromium150

CEL-seq2 (ref. 151)
inDrop-seq17

MATQ-seq152

ScNaUMi-seq153

Single-
nucleus 
RNA 
sequencing

Fresh, fixed or 
frozen tissue can 
be used
Applicable to 
adult or sensitive 
tissue
Reduced 
perturbation of 
transcriptomes 
during isolation
High throughput

Dissociated nuclei 
cannot be stored
No spatial 
information 
preserved
Mostly nuclear 
transcripts 
measured

sNuc-Seq154

Div-Seq154

DroNc-seq19

Spatial RNA 
sequencing

Fresh and fixed 
tissue can be used
Spatial 
information 
preserved

Low rate or limited 
number of mRNA 
captures
Low throughput

Seq-FISH155

MERFISH156

Slide-seq157

Visium30,31

GeoMx32

CosMx33
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and age-matched control individuals were analysed post-mortem with 
snRNA-seq. The researchers identified a small subpopulation of neu-
rons that was proportionally increased in individuals with PD compared 
with control individuals63. These neurons had a dopaminergic origin; 
were characterized by high expression of CADPS2, low expression of 
TH and elevated levels of TIAM1; and, according to validation analyses 
in laser-microdissected neurons, probably represented degenerating 
dopamine neurons63.

Neuropsychiatric disorders
In neuropsychiatric disorders, consistent evidence of gross brain mal-
formations or a characteristic neuropathology is lacking. In the case of 
schizophrenia or major depressive disorder (MDD), a prevalent view 
is that the underlying pathophysiology involves the dorsolateral pre-
frontal cortex (DLPFC) and hippocampal areas and their associated 
circuitries. That view is based on converging evidence from neuro-
physiological, functional neuroimaging and cognitive studies64. An 
approach that has been used for disentangling the neuronal types and 
subtypes involved in neuropsychiatric disorders is to combine scRNA-
seq data with information on gene sets known to be perturbed in neu-
ropsychiatric disorders. snRNA-seq data obtained from the DLPFC of 
individuals with MDD and psychiatrically healthy individuals revealed 
sets of dysregulated genes that were mainly assigned to two types of 
cell: immature oligodendrocyte precursors and deep-layer excitatory 
neurons65. Of the 96 dysregulated genes, 26 were linked to mental ill-
nesses in data from genome-wide association studies (GWASs) provided 
by the PsyGeNET consortium. Similarly, another study linked genetic 
associations from a schizophrenia GWAS to specific cell types66. The 
common genomic variants for schizophrenia consistently mapped to 
pyramidal cells, medium spiny neurons and specific types of interneu-
rons, but far less consistently to embryonic, progenitor or glial cells. 
The genetic risk associated with medium spiny neurons did not overlap 
with that of glutamatergic pyramidal cells and interneurons, suggesting 
that different cell types have biologically distinct roles in schizophrenia.

Finally, a spatial topography of gene expression in human DLPFC 
has been published and analysed with respect to gene sets that are 
perturbed in neuropsychiatric disorders67. The brain sections used 
for the study encompassed all six grey matter layers of the DLPFC 
and were collected from three neurotypical adults. To enhance gene 
annotation, the spatial sequencing was overlaid with snRNA-seq data. 
Differential gene expression analysis across the laminar organization of 
the DLPFC revealed sets of layer-enriched genes. Laminar enrichment 
of genes in the DLPFC has been linked to common genetic variation 
associated with schizophrenia68, autism spectrum disorder (ASD)69, 
bipolar disorder and MDD70. The authors identified an overlap between 
L2-enriched and L5-enriched genes and risk for schizophrenia, with 
additional overlap between L2-enriched genes and risk for bipolar dis-
order67. This proof-of-principle spatial transcriptomics study in DLPFC 
highlighted a preferential layer-enriched expression of the genes impli-
cated in neuropsychiatric disorders and showed the power of spatial 
transcriptomics for studying cell-specific basis of neuropathologies.

Neurodevelopmental conditions
Similar to neuropsychiatric disorders, neurodevelopmental condi-
tions have a strong and very complex genetic basis, involving many 
independent loci containing common and rare variants69. scRNA-
seq or snRNA-seq of in vivo and/or in vitro models of ASD has been 
extremely helpful to define how the presence of high-confidence risk 
genes affects brain development. In one of the first applications of this 

technology to the study of ASD, Kriegstein and co-workers used snRNA-
seq to examine post-mortem tissue samples from prefrontal cortex 
and anterior cingulate cortex of individuals with ASD, individuals with 
sporadic epilepsy and control individuals71. They identified cell-type 
specific dysregulation of gene expression in individuals with ASD com-
pared with the control individuals. The neuronal genes that were most 
downregulated in ASD were expressed in layer 2 and layer 3 excitatory 
neurons and vasoactive intestinal polypeptide-expressing interneu-
rons. The most upregulated genes were expressed in non-neuronal 
cell types: protoplasmic astrocytes and microglia. The dysregulated 
genes overlapped substantially with high-confidence ASD-associated 
genetic risk factors71. Another group used in vivo Perturb-seq to func-
tionally evaluate selected de novo ASD or neurodevelopmental delay 
risk genes72. Using CRISPR–Cas9, they introduced frameshift mutations 
in 35 risk genes in the developing mouse brain in utero and analysed 
the transcriptomes in the perturbed cells at the postnatal stages. These 
experiments helped to identify cell-type-specific and evolutionarily 
conserved gene modules from both neuronal and glial cell classes and 
determine how individual mutations affected cell types diversification 
and activation in the developing brain72.

Next steps
From the studies described earlier, it is clear that single-cell tech-
nologies are becoming extremely helpful for the identification of the 
molecular mechanisms involved in selective neuronal vulnerability. 

Box 1

Summary of the most 
commonly used single-cell 
computational tools
Read alignment

•• Bowtie170

•• STAR171

•• TopHat2172

•• HISAT2173

Quality control
•• Seurat174

•• Scater175

Normalization
•• sctransform176

•• Scran177

•• SCnorm178

•• bayNorm179

Batch correction  
and merging of  
datasets

•• ComBat180

•• Seurat181

Imputation
•• MAGIC121

•• SAVER122

•• RESCUE124

Visualization
•• UMAP27

•• t-SNE

Gene expression 
quantification

•• Cufflinks182

•• StringTie183

•• Kallisto184

•• Salmon185

Pseudotime and trajectory 
interference

•• PAGA186

•• Monocle3187

•• Velocyto188
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The next step is to perform mechanistic studies with the aim of design-
ing and testing therapeutic strategies to alter the features that make 
neurons vulnerable to death. In theory, such therapies could slow down 
or stop the progression of PD, AD or other neurodegenerative disorders. 
However, it is also very important to investigate whether the identified 
vulnerable cell types or structures are disease-prone owing to primary 
(that is, heritable) features or whether their vulnerability is secondary 
to other influences, for example, from the surrounding neuroimmune 
compartment (as discussed subsequently). Both possibilities could be 
assessed with modern genomics and multi-omics approaches, espe-
cially if applied to unbiased single-cell or single-nuclei suspensions 
from a given brain structure. One approach would be to use machine 
learning to integrate neuron-type-specific molecular profiles from 
mouse models with post-mortem human functional genomics and 
quantitative genetics data to pinpoint the functional gene modules 
that underlie selective vulnerability — this has been achieved for AD59. 
Pharmacological or genetic (for example, CRISPR-based) perturba-
tions in healthy or diseased conditions, in combination with single-cell 
profiling (for example, Perturb-seq), could also be used to understand 
how mutations affect the adaptation of disruptive or restorative cell 
states and whether these states affect cell-type function or dysfunction.

Neuroimmune dysfunction
Neurodegeneration
An immune contribution to neurodegeneration was regarded as little 
more than a curiosity a decade ago, but neuroinflammation is now 
considered to have a role in AD, PD, amyotrophic lateral sclerosis (ALS), 
Huntington disease and multiple sclerosis (MS). Microglia are the resi-
dent immune cells of the CNS and, when activated, they secret pro-
inflammatory mediators such as tumour necrosis factor-α, IL-1b and 

reactive oxygen species, which are detrimental to neurons73. The brain 
also hosts several other myeloid populations including perivascular 
cells, meningeal macrophages and choroid plexus macrophages74. 
Moreover, astrocytes can produce immune factors when activated by 
neuronal dysfunction and microglial activation75. Single-cell sequenc-
ing technologies have become a key tool for studying the landscape 
and heterogeneity of the neuroimmune compartment. Resource stud-
ies in mice and humans revealed higher than expected complexity of 
microglial cellular states in the healthy brain throughout the lifespan49, 
as well as during disease9,76. Single-cell transcriptomics of the CNS 
have also revealed the great plasticity and diversity of other myeloid 
cell types and reactive astrocytes77–79.

The innate immune response. In a recent AD GWAS, risk loci and 
disease-associated genes were enriched for immune-related features 
and immune cell types80. The authors concluded that the data indicate 
a causal role of the immune system in AD, as opposed to an immune 
response to AD pathology. Single-cell approaches have been used to 
characterize the microglial population during neurodegeneration. In 
a study by Keren-Shaul et al.81, single-microglia transcriptomes were 
generated from 5XFAD mice — a transgenic model of AD that expresses 
five human familial AD gene mutations — and a microglial type associ-
ated with neurodegenerative disease was identified. These disease-
associated microglia (DAM) were characterized by a substantial decrease 
in expression of homeostatic microglia genes (such as those encod-
ing the purinergic receptors P2RY12/P2RY13, CX3CR1 and TMEM11) 
and upregulation of known AD risk genes (Apoe, Ctsd, Lpl, Tyrobp and 
Trem2)81. In another study, researchers examined microglia from the 
hippocampus of the CK-p25 inducible mouse model, which develops 
AD-like pathology82. Analysis of four timepoints during the course of 

Library preparation Next-generation sequencing

Sectioning

Oligo(dT)
Spatial barcode

mRNA capture

Gene expression matrix

Spots–cells GeneX

GeneY

HighLow
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b

Fig. 3 | Spatial transcriptomics: the principle and a workflow. a, The 
tissue is subjected to cryosectioning on an mRNA capture slide, fixation and 
permeabilization to release RNA. The poly-A tail of the mRNA binds to an 
oligo(dT) ending fragment (single-stranded sequence of deoxythymines) 

on the capture DNA probes, which also contain embedded positional barcodes. 
b, After library preparation and sequencing, the computational analysis includes 
retrieval of the positional barcodes and tissue coordinates to reconstruct the 
relationship between transcripts and their locations.
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neurodegeneration revealed different microglial cell states discrimi-
nating early and late responses. In the late stage of neurodegeneration, 
the researchers identified a subset of microglia typified by strongly 
upregulated expression of antiviral and interferon response genes and 
major histocompatibility complex (MHC) class II components. They 
noted a substantial similarity between the expression profiles of these 
late-response microglia and the DAMs identified by Keren-Shaul et al.81.

In the study by Keren-Shaul et al.81, the spatial distribution of DAMs 
was analysed using immunohistochemistry and single-molecule fluo-
rescence in situ hybridization for marker genes — DAMs were located 
close to Aβ plaques in CK-p25 mouse brains and post-mortem brain 
samples from individuals with AD and were present in the spinal cords 
of mSOD1 mice (a model of ALS). In a more recent study, Maniatis et al.83 
applied spatial transcriptomics to generate a more detailed profile 
of gene expression in spinal cord from wild-type mice and the SOD1-
G93A mouse model of ALS at several stages of disease progression, 
as well as from humans with the disease. The spatiotemporal gene 
expression analysis recapitulated the perturbed expression pattern of 
several known ALS-associated genes. Furthermore, the results pointed 
towards a microglial dysfunction preceding astroglial dysfunction 
in ALS. The microglial dysfunction was observed proximal to motor 
neurons and occurred well before the onset of disease symptoms83. 
In another study, induction of LPS-induced neuroinflammation in the 
mouse brain resulted in distinct reactive astrocyte states and subtypes, 
revealing spatial (that is, depending on the anatomical localization 
in the brain) and subtype-specific variation in response, including 
‘super-responding’ subpopulations79.

One key question regarding neuroimmune dysfunction in AD is 
whether reactive microglia and reactive astrocytes have common gene-
expression patterns. To test that, and also to uncover novel therapeutic 
targets for AD, Xu et al.84 combined single-cell and single-nucleus tran-
scriptome data from transgenic mouse models and brains of individuals 
with AD and compared them with datasets on drug-target networks, 
metabolite–enzyme associations, human protein–protein interac-
tomes and longitudinally collected patient information. The molecular 
networks shared between DAMs and disease-associated astrocytes 
were significantly enriched in neuro-inflammatory pathways and 
genetic variants associated with an increased risk of AD (that is, BIN1)84.

snRNA-seq has also been used to investigate the cell-type-specific 
contribution of the pro-inflammatory IL-12 and IL-23 signalling path-
ways to AD-driven neuroinflammation in the APPS1 mouse model85. 
The results, which have been posted on a preprint server but not yet 
published in a peer-reviewed journal, indicated that IL-12, but not IL-23, 
is the main driver of AD-specific neuroinflammation and that it alters 
neuronal and oligodendrocyte functions. Interestingly, genetic abla-
tion of IL-12 and IL-23 signalling did not affect the inflammatory gene 
expression profiles of DAMs, but reversed the loss of mature myelin-
producing oligodendrocytes and alterations in neuronal homeostasis 
in APPPS1 mice. Perhaps targeting of ‘an immune component’, specifi-
cally the IL-12 signalling cascade, could be a promising interventional 
approach in the future treatment of AD.

Application of single-cell technologies has provided a new, excit-
ing chapter for studying MS, a chronic inflammatory, demyelinating 
and disabling neurodegenerative disorder. Much effort has been 
directed towards disentangling activated microglial subtypes in 
demyelinating injury in mice9,49 as well as human MS lesions86. In the 
experimental autoimmune encephalomyelitis (EAE) mouse model 
of autoimmune demyelination, single-cell RNA profiles were gen-
erated for immune cells isolated from several CNS compartments 

— including leptomeninges, perivascular space, parenchyma and cho-
roid plexus — and a high level of myeloid cell diversity was observed 
among compartments77. One study analysed RNA profiles from cells 
isolated from the cerebrospinal fluid (CSF) and blood of individuals 
with MS and compared them with those of control individuals. The 
results indicated that MS is associated with diverse transcriptional 
changes within cell populations in the blood, without changes in cell-
type ratios. By contrast, CSF from individuals with MS showed altered 
cell-type ratios and an overall increase in cell-type diversity, which 
could be attributed to compartmentalized mechanisms driving human 
autoimmunity in the brain87. In another study, Masuda et al.9 performed 
scRNA-seq on microglia isolated from the brains of individuals with 
early-active MS and control individuals. The researchers identified 
an increase in the expression of genes encoding MHC class II-related 
molecules, as well as SPP1, PADI2 and LPL, in the individuals with MS; this 
transcriptional profile was similar to that of microglia associated with 
demyelination in mice9. Interestingly, in mice, the microglial response 
differed between those with neurodegenerative pathology (facial 
nerve axotomy) and those with demyelinating pathology (cuprizone)9. 

Box 2

Expanding landscape of the 
brain cell-type diversity
Neuronal and non-neuronal cell types have been characterized 
with single-cell transcriptomics in multiple regions of the mouse 
brain, including the striatum50, midbrain189,190, hypothalamus191–194, 
suprachiasmatic nucleus195, lateral geniculate nucleus of the 
thalamus196, dorsal and median raphe nuclei197, cerebellum198–200, 
olfactory bulb201, prefrontal cortex202, visual cortex3,113,203, motor 
cortex42,203, somatosensory cortex2, developing neocortex114, 
amygdala112, subventricular zone204,205 and dentate gyrus206,207. 
Single-cell transcriptomics have provided information on specific 
cell populations; for example, interneuron diversity within CA1 
hippocampus208 and cortex209; dopamine neurons194,210; serotonin 
neurons197; oligodendrocyte progenitor cells, their transcriptome 
profiles within the spinal cord and the forebrain10 and stages in 
the maturation path to mature oligodendrocytes189; mouse brain 
macrophages211; microglia throughout mouse lifespan49; and across 
different brain regions9.

In humans, the characterization of single cells or nuclei 
has been performed in adult visual cortex, frontal cortex and 
cerebellum212, developing midbrain213 and early stages of human 
brain development (gestational weeks 6–10: telencephalon, 
diencephalon, midbrain, hindbrain, cerebellum, ganglionic 
eminences, thalamus, hypothalamus and cortex)4. Most recently, 
snRNA-seq of over 3 million nuclei from the human post-mortem 
brain across the forebrain, midbrain and hindbrain has been 
reported, revealing 461 clusters and 3,313 subclusters of distinct 
cell types or subtypes190. These data, which have been posted on 
a preprint server, are a long-awaited and comprehensive resource 
that provides new evidence for the molecular complexity of 
human neural cells and constitutes a valuable reference dataset for 
comparative studies, for example, those focusing on brain disorders.
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Another study profiled microglia in mice during neurodevelopment, 
ageing and brain injury and observed Spp1+ microglia in the subcorti-
cal axon tracts of the corpus callosum in the forebrain, as well as in the 
axon tracts of the cerebellum49. This specialized subpopulation of cells 
has been termed axon tract-associated microglia.

More recently, Schirmer et al.86 performed snRNA-seq on samples 
from cortical and subcortical lesion and non-lesion areas in individu-
als with MS. The results indicated that most dysregulated genes in MS 
mapped to vulnerable upper-cortical-layer neurons and reactive glia 
at the borders of subcortical MS lesions. Activated microglia were 
enriched for transcripts encoding activation markers, complement 
factors, MHC class II-associated proteins and lipid degradation proteins 
(in line with the findings of Masuda et al.9) and were localized to the 
chronic active boundaries of subcortical MS lesions. Additionally, 
the authors detected a subpopulation of microglial cells involved in 
myelin phagocytosis. Together, the studies discussed here indicate the 
presence of context-dependent transcriptomic subtypes of microglia 

in MS, raising the possibility that one or more of these subtypes could 
be targeted therapeutically.

The adaptive immune response. Single-cell transcriptomic 
approaches have also proven useful for understanding the role of the 
adaptive immune response, that is, T cells and B cells, in neurodegen-
eration. scRNA-seq performed on CSF from individuals with MS and 
healthy individuals identified altered cell-type ratios — an expansion 
of cytotoxic CD4+ T cell and late-stage B lineage cell populations — in 
individuals with MS87. The transcriptomic profile of the different cell 
types did not differ significantly between individuals with MS and 
healthy individuals. Using a method called the cell-set enrichment 
analysis, the researchers observed an expansion of the T follicular 
helper cell population in the CSF of individuals with MS and also in 
the EAE mouse model. The results of reverse translation experiments 
in mice indicated that these T follicular helper cells drive local B cell 
responses in the CNS to promote MS-like autoimmunity87.
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Yang et al., 2021 (medial frontal gyrus)    COVID-19
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Cingulate cortex
Al-Dalahmah et al., 2020  HD
Velmeshev et al., 2019  ASD
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Yang et al., 2021  COVID-19
Fullard et al., 2021  COVID-19
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Herrero et al., 2020 ASD
Sorrelis et al., 2019  Dev

Entorhinal cortex
Grubman et al., 2019 AD
Leng et al., 2021  AD
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Renthal et al., 2018 Rett S
Lake et al., 2018 Healthy

Cerebellum
Gregory et al., 2020 ALS
Lake et al., 2018 Healthy
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Ja�e et al., 2020 SCZ
Zhong et al., 2018 Dev
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Fullard et al., 2020 COVID-19
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Fig. 4 | Single-cell RNA-sequencing, single-nuclei RNA-sequencing and 
spatial transcriptomics studies reveal cellular and molecular heterogeneity 
in human neurological disorders. Samples collected from the brain, spinal 
cord, cerebrospinal fluid (CSF) and peripheral blood have been used to 
analyse transcriptomes of thousands of cells and/or nuclei from individuals 
with multiple sclerosis (MS)87,158–160, Rett syndrome (Rett S)161, Alzheimer 

disease (AD)60,82,84,162,163, Huntington disease (HD)164, COVID-19 (refs. 98–100), 
amyotrophic lateral sclerosis (ALS)83,165, major depressive disorder (MDD)65, 
schizophrenia (SCZ)166 and autism spectrum disorders (ASD)71,167 and to 
compare them with healthy controls. Such an approach has also been used 
to compare different neurodevelopmental (Dev) stages168,169. GM, grey matter;  
WM, white matter.
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More recently, another group of researchers performed single-
cell transcriptome and T-cell receptor sequencing on blood and CSF 
from individuals with PD and healthy individuals; the aim of the study 
was to decode the composition, function and lineage relationship of 
T cells in these individuals88. In blood and CSF from individuals with PD, 
they identified a large population of CD8+ T cells showing continuous 
progression from central-memory to terminal-effector T cells. Two 
specific groups of cells — terminal-effector CD8+ T cells and cyto-
toxic CD4+ T cells — were expanded in individuals with PD compared 
with healthy individuals. Similar to the MS study described earlier, 
the results of this study indicate an influence of peripheral T cells on 
neuronal degeneration and identify specific cell populations likely 
to be involved. Indeed, lymphocyte infiltration has been observed in 
post-mortem brain samples from individuals with PD89.

In summary, studies using single-cell transcriptomics have pro-
vided evidence that the immune system — specifically, CNS-resident 
immune cells and infiltrating peripheral immune cells — has an impor-
tant role in the onset and progression of neurodegenerative disease. 
Many of these discoveries would not have been possible with bulk RNA 
sequencing. We expect that this line of research will continue to unravel 
new aspects of immune system biology that might be translated into 
clinical practice. In theory, therapeutic strategies that target disease-
specific and CNS region-specific myeloid cell subsets could have fewer 
adverse effects than the global immune suppressive therapies cur-
rently administered to individuals with neuroinflammatory disorders. 
Indeed, in a publication from 2022, researchers describe an approach 
in mice that induced expression of the immune-modulating cytokine 
IL-2 specifically in astrocytes, with the aim of targeted delivery of IL-2 
to regions of inflammation90. Mice with IL-2 delivery were effectively 
protected from neuroinflammation during brain injury, stroke or EAE.

Glioma
Glioma is a type of CNS tumour that originates from glial cells and, 
depending on the cellular origin, it can be classified as oligodendro-
glioma, astrocytoma, ependymoma or glioblastoma91. Glioma tumour 
cells, along with the tumour microenvironment, create a complex milieu 
that ultimately promotes tumour cell adaptability and disease progres-
sion. scRNA-seq studies have broadened our view of the tumour micro-
environment, especially of the immune cells that occupy the tumour 
and peritumoural regions. Knowledge afforded by these technologies 
is providing substantially more granularity to the concept of intratu-
moural heterogeneity and complex interactions between cancer cells and 
immune cells. For example, comparison of scRNA-seq profiles from isoci-
trate dehydrogenase-mutant astrocytomas and oligodendrogliomas, and 
mutual analysis of 165 bulk RNA profiles from The Cancer Genome Atlas, 
revealed that isocitrate dehydrogenase-mutant astrocytomas and oligo-
dendrogliomas differed in their tumour microenvironment, in particular, 
in the abundance of microglia and tumour-associated macrophage cells5. 
In another study, distinct myeloid cell populations were found in the 
glioblastoma core when compared with the peritumoural tissue92; that is, 
tumour-infiltrating macrophages and microglia preferentially occupied 
the tumour and peritumoural spaces, respectively92. Analysis of resident 
myeloid subpopulations from naive and glioma-bearing mice suggested 
that sex-specific gene expression in glioma-activated microglia could be 
relevant to the incidence and outcomes of glioma93.

In addition to revealing heterogeneity in the immune component of 
the tumour microenvironment, single-cell analyses have also provided 
information on how the immune microenvironment alters the physi-
ology and fate of cancer cells. In a study that used a high-throughput 

single-cell transcriptomic analysis of human tumours and mouse 
models in combination with functional assays, macrophages were 
found to promote the transition of cancer cells into a mesenchymal-
like state94. Mesenchymal-like cell states were also associated with 
increased abundance and cytotoxicity of tumour-infiltrating T cells, 
and targeting these T cells might represent a therapeutic opportunity 
for mesenchymal-like glioblastomas94. A spatial transcriptomics study 
published in 2022 identified enhanced immunosuppressive interac-
tions between tumour cells and myeloid cells in segregated niches 
within glioblastoma tumours95. A combination of spatial transcriptom-
ics and high-throughput proteomics was used to characterize these 
‘reactive-immune regions’. It revealed enrichment in tumour-associated 
myeloid cells, T cells and cells with mesenchymal-like and astrocytic-like 
transcriptional signatures, described ‘MES–AC-hybrid’states. Overall, 
these findings could have implications for testing next-generation 
molecular targets for therapeutic interventions, especially designing 
immunotherapies for treating glioblastomas.

COVID-19
Although SARS-CoV-2 primarily targets the respiratory system, patients 
and survivors of COVID-19 often have neurological manifestations, for 
example, headache, anosmia, aheusia, acute encephalopathy, coma 
and stroke96. The pathomechanism of neurological abnormalities in 
COVID-19 is currently not well understood97–99, but single-cell approaches 
have provided some useful information. In snRNA-seq studies of post-
mortem brain tissue from individuals with COVID-19 and control indi-
viduals, perturbation of gene expression was observed in the brains of 
individuals with COVID-19. This perturbation was observed mainly in 
microglia and astrocytes and was characterized by inflammatory and 
dysregulated homeostatic pathways, including activation of antivi-
ral defence genes99 and activation of the innate immune response98. 
Interestingly, some of the detected activation states shared features 
with pathological cell states that have been reported in human neuro-
degeneration99. Moreover, peripheral T cells were detected in the brain 
parenchyma of individuals with COVID-19 but not control individuals99. 
Analyses of choroid plexus helped to identify an increased proportion of 
stromal cells, monocytes and macrophages in individuals with COVID-19 
(ref. 98) and broad cellular perturbations including upregulation of 
inflammatory genes across choroid plexus cell types99. Overall, these 
observations suggest that barrier cells forming choroid plexus sense 
and relay peripheral inflammation into the brain in COVID-19.

In another study, CSF samples from individuals with COVID-19 who 
developed neuro-COVID were compared with those from individuals 
with non-inflammatory and autoimmune neurological diseases or with 
viral encephalitis100. This comparison revealed an expansion of dedif-
ferentiated monocytes and of exhausted CD4+ T cells that was specific 
to individuals with COVID-19. Interestingly, individuals with severe 
neuro-COVID had broader clonal T cell expansion and a lower interferon 
response than individuals with mild neuro-COVID, which might be the 
reason for impaired antiviral responses. Leukocytes exhibited disease-
specific signs of local immune overactivation, despite the absence 
of SARS-CoV-2 in the CSF. The findings support the hypothesis that 
immune-mediated mechanisms contribute to neurological sequelae 
in individuals with COVID-19 (ref. 100).

Drug-sensitive cell types
Single-cell technologies are becoming recognized as powerful tools 
to investigate and monitor response to drugs and treatments, a fact 
that is already well appreciated in cancer research. Elimination of 

http://www.nature.com/nrneurol


Nature Reviews Neurology | Volume 19 | June 2023 | 346–362 356

Review article

the cancer stem cells that drive tumour progression is considered 
a promising treatment strategy, and a few early clinical trials of 
cancer stem cell-targeting therapies are underway101. In a study 
published in 2021, scRNA-seq revealed multiple subtypes of glio-
blastoma stem cells within individuals and even greater heteroge-
neity among individuals102. The common feature of these subtypes 
was upregulation of cell cycling programmes, with overexpression 
of genes known to promote self-renewal and progenitor expansion 
in the neocortex. Furthermore, the gene expression profiles of glio-
blastoma stem cells correlated strongly with the gene expression 
profiles of reactive astrocytes, which suggest active inflammatory 
processes in glioblastoma stem cells102. These findings highlight the 
heterogeneity of glioblastoma stem cells and raise the possibility 
of developing future therapies to simultaneously target the devel-
opmental and inflammatory processes observed in glioblastoma  
stem cells.

Another paper from 2021 describes an approach for rapid 
screening of cell-type-specific drug sensitivities in glioma103. In this 
approach, an acute slice culture from a freshly resected tumour is 
subjected to multiplexed drug perturbation followed by scRNA-seq 
to profile transcriptome-wide drug responses. Such personalized 
drug screening was performed for six individuals and provided infor-
mation on cell-type-specific responses to the chemotherapy drugs 
etoposide and panobinostat. In this study, screening and analysis were 
completed less than 1 week after surgery, which highlights the poten-
tial for this approach to inform the administration of personalized  
therapies.

Medulloblastoma is the most prevalent malignant (WHO grade 4) 
brain tumour in children104 and is classified into four major tumour 
subgroups: wingless, sonic hedgehog (SHH), group 3 and group 4 
(refs. 105,106). In 2019, three independent scRNA-seq studies per-
formed on clinical medulloblastoma samples or mouse models were 
published. The aim of these studies was to address the gap in our 
understanding of the cells of origin for different medulloblastoma 
subgroups107 and to define treatment-resistant populations for SHH 
medulloblastoma108,109. In one of these studies, OLIG2-positive stem-like 
cells were identified as a key cellular component of SHH medulloblasto-
mas during both the initiation and a recurrence of tumour108. In another 
study, scRNA-seq was used to investigate the responses to the SHH-
pathway inhibitor vismodegib109. Cells expressing the Notch pathway 
transcription factor HES1 were found to be sensitive to the drug treat-
ment, and MYOD1 expression was observed in vismodegib-resistant 
tumour cells109.

Challenges and limitations
Sample collection
The major limitations of single-cell transcriptomic approaches stem 
from technical challenges in obtaining good quality single cells or 
nuclei from complex brain tissue. Defining the proper conditions of 
harvesting, handling, freezing and monitoring, the quality of brain 
samples for scRNA-seq and spatial transcriptomics is crucial, but 
not yet adopted in standard clinical practice. Also, sample handling 
time (that is, the time between sample collection and analysis) has a 
tremendous impact on the quality of single-cell transcriptome data 
and needs to be reduced to minimum to preserve the quality of RNA; 
however, this timing is difficult to monitor during surgery110. These 
initial steps of tissue handling need to be monitored, further opti-
mized and standardized for clinical use to ensure high-quality data 
and reproducibility.

Isolation of single cells
From the methodological side, isolating intact and live cells from the 
adult brain without losing their integrity, viability and compromising 
their RNA content is difficult (see Supplementary information). Tran-
scriptomic analyses of single-cell suspensions are limited to freshly 
isolated neurosurgical tissues and rely on harsh enzymatic dissocia-
tion111. The isolation process might bias the proportions of recovered 
cell types and subtypes39 or affect gene expression profiles of cells, 
for example, by induction of stress-dependent transcription112. Solu-
tions to this problem have been proposed, and they are mostly used 
to minimize the activation profiles in brain and tumour cells that can 
arise from single-cell dissociation procedures20,112–114. Nuclei are less 
susceptible to isolation artefacts than whole cells, are easier to isolate 
intact and can be obtained from cryopreserved material115,116; therefore, 
for frozen or fixed post-mortem brain tissues, snRNA-seq is the method 
of choice117,118. However, with snRNA-seq, all the information encrypted 
in neuronal processes is lost. A growing body of evidence indicates that 
many genes act locally at the synapse119, so that single-nucleus data 
might not always capture the full picture of neuronal transcriptomes. 
Given these limitations, spatial transcriptomics emerges as an attrac-
tive method to capture cellular RNA in intact brain tissue, regardless 
of its low resolution and low throughput. However, it is difficult to 
perform spatial transcriptomics in a large-scale or high-throughput 
manner. Spatial transcriptomics experiments are also expensive — in 
our experience, it costs a few thousand US dollars for library prepara-
tion and sequencing of a 6 mm × 6 mm × 10 µm section. Currently, the 
expense limits access to spatial transcriptomics to well-funded research 
laboratories and makes the use of the technology in the standard clinical 
context unlikely unless the cost drops.

Data analysis and interpretation
Owing to high dimensionality and increasing scalability, single-cell 
datasets are highly complex and their analysis and interpretation are 
a challenge. First, datasets generated from scRNA-seq or snRNA-seq 
have technical limitations, mainly associated with a low mRNA capture 
rate. Because of low capture efficiency, many transcripts seem to be 
lost during reverse transcription, which generates sparse data with 
common occurrences of so-called dropout events, when a transcript 
is detected in one cell but missing in another cell120. To address this 
shortcoming, imputation methods have been designed to estimate the 
gene expression of the dropout genes using other cells from the data-
set as a guide; these methods include MAGIC121, SAVER122, scImpute123 
and RESCUE124. The relatively low mRNA capture rate and high cDNA 
amplification bias can also lead to distortion in gene expression pro-
files and can inflate the estimates of cell-to-cell variability125. The 
technical noise in single-cell data may also contribute to other fac-
tors such as batch effects, which are generated when cells from the 
same group are captured or sequenced separately, and cell-to-cell 
variability, for example, variability that might be result from differ-
ences in cell cycle state125,126. Several of these issues can be corrected 
using computational methods, and selection of these is summarized  
in Box 1.

There is a growing need to integrate multiple datasets generated 
across samples from different timepoints, treatment groups or individ-
uals, as well as samples with different sequencing depths or performed 
on different platforms. Eventually, integration across different types 
of single-cell measurement (DNA, RNA and protein) might be required 
and beneficial. This integration presents another major challenge127, 
which is particularly important for drawing proper conclusions from 
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comparisons between healthy and diseased tissues. More information 
on the challenges of computational analysis of scRNA-seq datasets can 
be found elsewhere120.

Regulatory non-polyadenylated transcripts
scRNA-seq and snRNA-seq techniques are based on the capture and 
analysis of polyadenylated transcripts, including the majority of 
mRNA and some of long non-coding RNAs. However, a substantial 
part of our transcriptome is not polyadenylated and not covered by 
currently available scRNA-seq or snRNA-seq pipelines. This part of 
the transcriptome includes transcripts often jointly referred to as 
‘regulatory’ RNA molecules, for example, ribosomal RNA, transfer 
RNA and short RNAs such as microRNAs or piwi-interacting RNAs, 
small nuclear RNAs, small nucleolar RNAs and non-polyadenylated long 
non-coding RNAs as well as circular RNAs (circRNAs). Many of these 
regulatory transcripts (for example, circRNAs) are tissue-specific and 
regionally enriched in the CNS128,129. In the future, it would be helpful 
to expand single-cell methodologies in the direction of capturing and 
analysing these non-polyadenylated RNA classes, which are responsible 
for numerous transcriptional and post-transcriptional gene expression  
processes.

Future directions
Single-cell multi-omics
As mentioned earlier, to gain a deeper insight into brain function and 
human pathologies, we need experimental and computational tools 
to combine data from multiple single-cell approaches and then to inte-
grate them with clinical data. Single-cell multi-omics technologies aim 
to overlay gene expression profiles in single cells with information 

on the proteome, the metabolome, chromatin accessibility and/or 
DNA methylation. With the aim of performing simultaneous genera-
tion of multimodal data, several experimental methods have been 
developed that do not require the physical separation of RNA and DNA 
from a single cell38,130,131. These methods have already been applied 
to post-mortem human frontal cortex tissue and have enabled joint 
analyses of the methylome, transcriptome, chromatin accessibility and 
conformation of over 60 human cortical cell types (results posted on 
preprint server)132. Such approaches might be useful for the develop-
ment of new fluid biomarkers of immune dysregulation or the iden-
tification of novel therapeutic targets, especially when coupled to 
machine learning-based predictive algorithms133. A particularly active 
area of research focuses on the use of machine learning models to 
enable early diagnosis on the basis of molecular and genetic data134, 
including multi-omics data133.

A key goal of future single-cell transcriptomics research is to gen-
erate treatment recommendations on a per-patient basis that are 
useful for the physician and beneficial to the patients. Spatial tran-
scriptomics is the most likely candidate for achieving this goal, as it 
allows spatially resolved gene-expression measurement directly in 
pathology-derived patient samples. Indeed, spatially resolved tran-
scriptomics was crowned the ‘Method of the Year’ for 2020 by Nature 
Methods135. Given the ongoing rapid technological developments, we 
expect that new methods will combine single-cell multi-omics with 
spatial transcriptomics to capture cellular changes with both high 
sensitivity and high resolution. Also, the advances in applying spatial 
transcriptomics to formalin-fixed paraffin-embedded tissues136 are 
emerging as crucial development for future clinical and biomedical  
research.

Glossary

CD4+ T cell
Subpopulation of major 
histocompatibility complex 
class II-restricted T helper cells, which 
are a type of T cell that has an important 
role in the adaptive immune system; 
they support the activity of other 
immune cells by releasing cytokines.

CD8+ T cells
Subpopulation of major 
histocompatibility complex 
class I-restricted T helper cells, which 
are a type of T cell that has an important 
role in the adaptive immune system.

cDNA
A DNA that is complementary to a 
given RNA; synthetized in an enzymatic 
reaction called reverse transcription.

cDNA amplification bias
In the context of scRNA-seq, this term 
refers to the stochastic capture of a 
subset of polyadenylated transcripts 

from a cell and the consequent failure 
to detect some of the transcripts, 
leading to over-representation of 
captured RNAs during amplification of a 
cDNA library.

Cell barcoding
The use of a short DNA sequence as a 
‘tag’ to identify reads that originate from 
the same cell.

Dimensionality reduction
Computational procedure that aims 
to reduce the number of separate 
dimensions in the high-dimensional 
space of scRNA-seq data; enables 
the comparison of cells on the basis 
of their expression values across 
multiple genes.

Mesenchymal-like state
A cellular state that is characterized 
by increased expression of a 
mesenchymal programme (transition 
to mesenchymal lineages). It is also 

one of the four recurrent cellular states 
described for glioblastoma.

Neuro-COVID
A term describing conditions related 
to neurological sequelae, such as 
headache and neuroinflammatory or 
cerebrovascular disease, developed by 
individuals with COVID-19.

Next-generation DNA 
sequencing
A massively parallel sequencing 
technology that offers high throughput 
and scalability to determine the order 
of nucleotides in entire genomes, 
targeted regions of DNA, or RNA that is 
reverse-transcribed into cDNA libraries.

Read alignment
A bioinformatic procedure that enables 
observation of the differences between 
the sequencing read and the reference 
genome.

Reverse transcription
Enzyme-mediated synthesis of a 
DNA molecule (cDNA) from the RNA 
template.

Single-cell multi-omics
Single-cell technologies designed to 
measure multiple types of molecules 
and modalities from an individual cell in 
high-throughput manner, that is, across 
multiple cells at the same time.

Unique molecular identifiers
A randomized nucleotide sequence 
incorporated into the cDNA in the initial 
steps of the scRNA-seq protocol. It is 
used to recognize multiple sequencing 
reads originating from the same mRNA 
molecule in a given cell.
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Single-cell analysis of brain organoids
Human brain organoids are emerging as a potent experimental sys-
tem that is genetically tractable and can be coupled to physiological 
and molecular measurements at the single-cell level. Single-cell tran-
scriptomics and epigenomics have been already applied to address 
the questions of cellular composition and reproducibility of cerebral 
organoids, and those data served as an invaluable toolbox for bench-
marking the fidelity of organoids for studies on the pathomechanisms 
of human brain diseases137–139. Detecting the earliest molecular altera-
tions in brain organoids or defining pathology-initiating cell types 
could pave the way for a workflow to test treatments that aim to prevent 
the pathogenic event140. To this end, the reconstruction of regulatory 
lineages for cortical cell populations has already been performed in 
organoids, yielding insights into genetic risk for neuropsychiatric traits 
and enabling prediction of cell types vulnerable to disease4,46,132,140,141.

Brain organoids are also considered an effective future platform 
for testing personalized therapies. For example, single-cell analy-
sis of brain tumours and tumour-derived organoids demonstrated 
that organoids preserve many key features of glioblastomas and 
can be rapidly deployed to investigate patient-specific treatment 
strategies142,143.

Gathering more clinical data
The current picture emerging from systems-level single-cell transcrip-
tomics points towards cell diversity and biological pathways related 
to synaptic function, inflammation, proteostasis, cell death, oxidative 
stress and myelination as molecular drives of pathological changes in 
neurodegenration82. It seems crucial to implement cell transcriptomics 
in larger human cohorts and, importantly, also develop a standardized 
protocol to generate comparable data sets for reliable assessment of 
disease-associated cellular phenotypes. Tracking immune changes at 
the molecular and cellular levels both from the CSF and bloodstream 
with single-cell technologies is currently achievable and provides new 
opportunities for researchers to screen individuals with different 
neurological disorders, as adaptive immune activation is increasingly 
implicated in neurodegenerative conditions.

Conclusions
In conclusion, we are witnessing an explosion of single-cell sequenc-
ing technologies, which over the past 6–7 years have greatly matured 
from both the experimental and data analysis perspectives. Our under-
standing of the human brain and its pathologies is now progressing 
from descriptive histological examinations to detailed single-cell char-
acterizations. In particular, scRNA-seq and snRNA-seq are becoming 
invaluable tools for investigating neuroimmune dysfunction, selective 
neuronal vulnerability to disease and cell-type susceptibility or resilience 
to treatment. Moreover, accumulating evidence from single-cell studies 
highlights glial cells as essential contributors to CNS homeostasis and 
neurological pathologies, especially their ability to acquire a wide range 
of activation states. The application of single-cell technologies is bringing 
us closer to illuminating the cellular states on the verge of homeostatic 
and pathological physiology, at least at the gene expression level.

Over the past few years, several international initiatives have been 
launched that aim to define human cell types in terms of distinctive 
molecular profiles. One such initiative is the Human Cell Atlas Project, 
which aims to bring together different groups within the biomedical 
community to build a comprehensive atlas comprising two branches — 
a cellular branch, focused on the properties of individual cells, and a  
spatial branch, focused on the histological organization of cells in 
tissues144. The pan-European LifeTime consortium aims to study human 
cells at single-cell resolution during the onset and progression of com-
plex diseases and during their response to therapy, with the ultimate 
aim of creating a framework for cell-based interceptive medicine145. 
The NIH BRAIN initiative in the USA is entering a new phase and aims 
to achieve three main goals by 2026 — a comprehensive human brain 
cell atlas, a whole mammalian brain microconnectivity map and tools 
for precision access to brain cell types146.

We can now sequence the RNA of a single cell or a single nucleus, 
examine the state of the chromatin, start to explore the proteome of 
individual cells and even spatially resolve these data. We envision that 
advanced integrative technologies for measuring transcriptomes and 
other modalities from single cells will enable us to investigate features 
of the human healthy and diseased brain with cell-type, and perhaps 
subcellular resolution and will provide invaluable information for 
designing new treatments for individuals with neurological condi-
tions. In our opinion, emerging single-cell multi-omics technologies 
and machine learning models have tremendous potential for clini-
cal application, to study disease mechanisms and develop precision 
treatments (Fig. 5).
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Fig. 5 | Future directions for the application of single-cell and spatial 
transcriptomics in clinical use. In the future, we expect that analysis of single 
cells from patients or patient-derived in vitro models will help to explore 
molecular mechanisms of diseases and define the spatial localization of rare cell 
types and cellular subpopulations emerging during disease. Furthermore, single-
cell technologies will contribute to the discovery of new therapeutic targets. 
The efficacy of newly discovered drugs will then be tested in patient-derived in 
vitro models and monitored using single-cell technologies to define the cell‐
type-specific responses of the patient to treatment, which can then be used to 
specify the best therapeutic strategy for the individual patient.

http://www.nature.com/nrneurol


Nature Reviews Neurology | Volume 19 | June 2023 | 346–362 359

Review article

References
1.	 Crino, P. B., Trojanowski, J. Q., Dichter, M. A. & Eberwine, J. Embryonic neuronal markers 

in tuberous sclerosis: single-cell molecular pathology. Proc. Natl Acad. Sci. USA 93, 
14152–14157 (1996).

2.	 Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell 
RNA-seq. Science 347, 1138–1142 (2015).  
This paper published the first large scRNA-seq-based taxonomy of cell types in mouse 
adult cortex and hippocampus, and showcased the utility of Drop-seq for cell-type 
discovery and characterization.

3.	 Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. 
Nat. Neurosci. 19, 335–346 (2016).

4.	 Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas 
of early human brain development highlights heterogeneity of human neuroepithelial 
cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

5.	 Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human 
oligodendroglioma. Nature 539, 309–313 (2016).

6.	 Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 
586, 262–269 (2020).

7.	 Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate 
microglia program. Cell 179, 1609–1622 (2019).

8.	 Durante, M. A. et al. Single-cell analysis of olfactory neurogenesis and differentiation in 
adult humans. Nat. Neurosci. 23, 323–326 (2020).  
In this study, single-cell RNA sequencing analysis of the olfactory neuroepithelium 
niche provides evidence that neuron production might continue for decades in 
humans.

9.	 Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at 
single-cell resolution. Nature 566, 388–392 (2019).  
This paper uses single-cell approaches to systematically characterize subtypes 
of microglia in multiple regions of the CNS during development, homeostasis and 
demyelinating pathologies.

10.	 Marques, S. et al. Transcriptional convergence of oligodendrocyte lineage progenitors 
during development. Dev. Cell 46, 504–517 (2018).

11.	 Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 
377–382 (2009).

12.	 Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. 
Nat. Methods 11, 163–166 (2014).

13.	 Jaitin, D. A. et al. Massively parallel single-cell RNA-Seq for marker-free decomposition 
of tissues into cell types. Science 343, 776–779 (2014).

14.	 Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular 
heterogeneity and activated signaling pathways in developing cerebral cortex. 
Nat. Biotechnol. 32, 1053–1058 (2014).  
This study describes one of the first microfluidic scRNA-seq methods established for 
characterization of cell populations in developing human cerebral cortex.

15.	 Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using 
single-cell RNA-seq. Nature 509, 371–375 (2014).

16.	 Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells 
using nanoliter droplets. Cell 161, 1202–1214 (2015).  
This paper introduces Drop-seq and opened the way to more scalable approaches 
to scRNA-seq using droplets.

17.	 Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic 
stem cells. Cell 161, 1187–1201 (2015).

18.	 Lake, B. B. et al. A comparative strategy for single-nucleus and single-cell transcriptomes 
confirms accuracy in predicted cell-type expression from nuclear RNA. Sci. Rep. 7, 6031 
(2017).

19.	 Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 
14, 955–958 (2017).  
This study introduced DroNc-seq: massively parallel single-nuclei sequencing 
with droplet technology. It has been extensively used in the biomedical field 
ever since.

20.	 Slyper, M. et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen 
human tumors. Nat. Med. 26, 792–802 (2020).

21.	 Rousselle, T. V. et al. An optimized protocol for single nuclei isolation from clinical 
biopsies for RNA-seq. Sci. Rep. 12, 9851 (2022).

22.	 Amamoto, R. et al. FIN-Seq: transcriptional profiling of specific cell types from 
frozen archived tissue of the human central nervous system. Nucleic Acids Res. 48, e4 
(2019).

23.	 Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal 
cord with split-pool barcoding. Science 360, 176–182 (2018).

24.	 Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular 
organism. Science 357, 661–667 (2017).

25.	 Han, X. et al. Mapping the mouse cell atlas by Microwell-Seq. Cell 172, 1091–1107 (2018).
26.	 Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 

303–309 (2020).
27.	 Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. 

Nat. Biotechnol. 37, 38–44 (2019).
28.	 Vieth, B., Parekh, S., Ziegenhain, C., Enard, W. & Hellmann, I. A systematic evaluation 

of single cell RNA-seq analysis pipelines. Nat. Commun. 10, 4667 (2019).
29.	 Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: 

a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

30.	 Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial 
transcriptomics. Science 353, 78–82 (2016).  
This study paved the way to spatial transcriptomics.

31.	 Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. 
Nat. Methods 16, 987–990 (2019).

32.	 Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. 
Nat. Biotechnol. 38, 586–599 (2020).

33.	 He, S. et al. High-plex multiomic analysis in FFPE tissue at single-cellular and subcellular 
resolution by spatial molecular imaging. Preprint at bioRxiv https://doi.org/10.1101/ 
2021.11.03.467020 (2021).

34.	 D’Gama, P. P. et al. Diversity and function of motile ciliated cell types within ependymal 
lineages of the zebrafish brain. Cell Rep. 37, 109775 (2021).

35.	 Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial 
transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

36.	 Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling 
of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).  
This study introduced Patch-seq, a method combining whole-cell electrophysiological 
patch-clamp recordings, single-cell RNA-sequencing and morphological 
characterization.

37.	 Cadwell, C. R. et al. Multimodal profiling of single-cell morphology, electrophysiology, 
and gene expression using Patch-seq. Nat. Protoc. 12, 2531–2553 (2017).

38.	 Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single 
cells. Nat. Methods 14, 865–868 (2017).

39.	 Saunders, A. et al. Molecular diversity and specializations among the cells of the adult 
mouse brain. Cell 174, 1015–1030 (2018).  
A comprehensive adult mouse brain cell atlas. In this study, over 690,000 cells are 
analysed from 9 brain regions (see also ref. 40).

40.	 Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 
(2018).  
An extensive adult mouse nervous system cell atlas encompassing 19 anatomical 
regions (brain, spinal cord, peripheral sensory, enteric and sympathetic nervous 
system). Over 500,000 cells are analysed (see also ref. 39).

41.	 La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 
92–96 (2021).

42.	 Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset 
and mouse. Nature 598, 111–119 (2021).

43.	 Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, 
bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).

44.	 Hardwick, S. A. et al. Single-nuclei isoform RNA sequencing unlocks barcoded exon 
connectivity in frozen brain tissue. Nat. Biotechnol. 40, 1082–1092 (2022).

45.	 Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the 
human prefrontal cortex. Nature 555, 524–528 (2018).

46.	 Polioudakis, D. et al. A single-cell transcriptomic atlas of human neocortical 
development during mid-gestation. Neuron 103, 785–801.e8 (2019).  
This high-resolution single-cell gene expression atlas of developing human cortex 
provides the first single-cell characterization of previously uncharacterized cell types, 
including human subplate neurons.

47.	 Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell 
resolution. Nat. Commun. 11, 1220 (2020).

48.	 Tan, Y.-L., Yuan, Y. & Tian, L. Microglial regional heterogeneity and its role in the brain. 
Mol. Psychiatry 25, 351–367 (2020).

49.	 Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse 
lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 
253–271 (2019).

50.	 Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell  
RNA-Seq. Cell Rep. 16, 1126–1137 (2016).

51.	 Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and 
hippocampal formation. Cell 184, 3222–3241 (2021).

52.	 Miller, J. A. et al. Common cell type nomenclature for the mammalian brain. eLife 9, 
e59928 (2020).

53.	 Callaway, E. M. et al. A multimodal cell census and atlas of the mammalian primary 
motor cortex. Nature 598, 86–102 (2021).  
The first output of the BRAIN Initiative Cell Census Network describing the generation 
of a multimodal single-cell census of the mammalian primary motor cortex; the study 
reports correspondence among molecular, anatomical and physiological datasets 
and reinforces the transcriptomic classification of neuronal types and subtypes.

54.	 Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell 
types. Nature 598, 174–181 (2021).

55.	 Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification 
of cortical GABAergic. Cells Cell 183, 935–953 (2020).

56.	 Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. 
Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).  
This study was the first scRNA-seq dataset of human adult cortex (see also ref. 11).

57.	 Fu, H., Hardy, J. & Duff, K. E. Selective vulnerability in neurodegenerative diseases. 
Nat. Neurosci. 21, 1350–1358 (2018).

58.	 Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: 
recommendations from the National Institute on Aging-Alzheimer’s Association 
workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 
J. Alzheimers Assoc. 7, 280–292 (2011).

http://www.nature.com/nrneurol
https://doi.org/10.1101/2021.11.03.467020
https://doi.org/10.1101/2021.11.03.467020


Nature Reviews Neurology | Volume 19 | June 2023 | 346–362 360

Review article

59.	 Roussarie, J.-P. et al. Selective neuronal vulnerability in Alzheimer’s disease: 
a network-based analysis. Neuron 107, 821–835 (2020).

60.	 Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s 
disease. Nat. Neurosci. 24, 276–287 (2021).  
This study addresses selectively vulnerability of neurons in the entorhinal cortex 
of AD brains with snRNA-seq.

61.	 Surmeier, D. J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 
285, 3657–3668 (2018).

62.	 Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies 
a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 
588–595 (2022).  
In this study, the authors develop a protocol to enrich and transcriptionally profile 
dopaminergic neurons from substantia nigra of post-mortem brain samples from 
individuals with PD; selectively degenerating DA neurons were spatially localized 
using Slide-seq.

63.	 Smajić, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a 
Parkinson-specific neuronal state. Brain J. Neurol. 145, 964–978 (2022).

64.	 Birnbaum, R. & Weinberger, D. R. Genetic insights into the neurodevelopmental origins 
of schizophrenia. Nat. Rev. Neurosci. 18, 727–740 (2017).

65.	 Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major 
depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. 
Nat. Neurosci. 23, 771–781 (2020).  
This study applies snRNA-seq to examine DLPFC of individuals with MDD and 
psychiatrically healthy controls and is the first study to address gene expression 
changes specific to diffrent cell types in MDD.

66.	 Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium 
et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 
825–833 (2018).

67.	 Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human 
dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).

68.	 Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant 
genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

69.	 Grove, J. et al. Identification of common genetic risk variants for autism spectrum 
disorder. Nat. Genet. 51, 431–444 (2019).

70.	 Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine 
the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

71.	 Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes 
in autism. Science 364, 685–689 (2019).  
This study is the first large snRNA-seq study that addressed cell-type-specific gene 
expression changes in the brain affected by autism or epilepsy; involved snRNA-seq 
of over 100,000 nuclei.

72.	 Jin, X. et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with 
autism risk genes. Science 370, eaaz6063 (2020).  
This study is the first study that assayed de novo loss-of-function risk gene variants 
using in vivo Perturb-seq. It is used to functionally evaluate genes that have been 
associated with ASD and neurodevelopmental delay.

73.	 Baidya, F. et al. Neuroimmune crosstalk and evolving pharmacotherapies in 
neurodegenerative diseases. Immunology 162, 160–178 (2021).

74.	 Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin 
to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

75.	 Han, R. T., Kim, R. D., Molofsky, A. V. & Liddelow, S. A. Astrocyte–immune cell interactions 
in physiology and pathology. Immunity 54, 211–224 (2021).

76.	 Mathys, H. et al. Temporal tracking of microglia activation in neurodegeneration 
at single-cell resolution. Cell Rep. 21, 366–380 (2017).

77.	 Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct 
fates during neuroinflammation. Science 363, eaat7554 (2019).

78.	 Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 
593–599 (2020).

79.	 Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory 
astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).

80.	 Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional 
pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

81.	 Keren-Shaul, H. et al. A unique microglia type associated with restricting development 
of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).  
This study reports identification of a novel microglia type associated with 
neurodegenerative diseases, that is, DAM. scRNA-seq was instrumental to discovery 
of DAM and DAM-activation pathways in AD.

82.	 Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 
332–337 (2019).  
This study was the first snRNA-seq analysis in human AD samples and identified 
subpopulations of reactive astrocytes.

83.	 Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic 
lateral sclerosis. Science 364, 89–93 (2019).  
In this study, spatial transcriptomics is applied to examine murine models of ALS and 
postmortem spinal cord samples from individuals with ALS; it highlights regional 
differences between microglia and astrocyte populations at early timepoints of the 
disease.

84.	 Xu, J. et al. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers 
molecular networks between disease-associated microglia and astrocytes with 

implications for drug repurposing in Alzheimer’s disease. Genome Res. 31, 1900–1912 
(2021).

85.	 Schneeberger, S. et al. The neuroinflammatory interleukin-12 signaling pathway drives 
Alzheimer’s disease-like pathology by perturbing oligodendrocyte survival and neuronal 
homeostasis. Preprint at bioRxiv https://doi.org/10.1101/2021.04.25.441313 (2021).

86.	 Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. 
Nature 573, 75–82 (2019).

87.	 Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid 
leukocytes in multiple sclerosis. Nat. Commun. 11, 247 (2020).

88.	 Wang, P. et al. Single-cell transcriptome and TCR profiling reveal activated and expanded 
T cell populations in Parkinson’s disease. Cell Discov. 7, 52 (2021).

89.	 Brochard, V. et al. Infiltration of CD4+ lymphocytes into the brain contributes to 
neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182–192 
(2009).

90.	 Yshii, L. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases 
brain-resident regulatory T cell numbers and protects against pathological 
neuroinflammation. Nat. Immunol. 23, 878–891 (2022).

91.	 Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: 
a summary. Neuro Oncol. 23, 1231–1251 (2021).

92.	 Darmanis, S. et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the 
migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

93.	 Ochocka, N. et al. Single-cell RNA sequencing reveals functional heterogeneity 
of glioma-associated brain macrophages. Nat. Commun. 12, 1151 (2021).

94.	 Hara, T. et al. Interactions between cancer cells and immune cells drive transitions 
to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792 (2021).

95.	 Ravi, V. M. et al. Spatially resolved multi-omics deciphers bidirectional tumor–host 
interdependence in glioblastoma. Cancer Cell 40, 639–655 (2022).

96.	 Chou, S. H.-Y. et al. Global incidence of neurological manifestations among patients 
hospitalized with COVID-19 — a report for the GCS-NeuroCOVID Consortium and the 
ENERGY Consortium. JAMA Netw. Open 4, e2112131 (2021).

97.	 Ellul, M. A. et al. Neurological associations of COVID-19. Lancet Neurol. 19, 767–783 (2020).
98.	 Fullard, J. F. et al. Single-nucleus transcriptome analysis of human brain immune response 

in patients with severe COVID-19. Genome Med. 13, 118 (2021).
99.	 Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. 

Nature 595, 565–571 (2021).
100.	 Heming, M. et al. Neurological manifestations of COVID-19 feature T cell exhaustion and 

dedifferentiated monocytes in cerebrospinal fluid. Immunity 54, 164–175 (2021).
101.	 Caras, I. W. Two cancer stem cell-targeted therapies in clinical trials as viewed from the 

standpoint of the cancer stem cell model. Stem Cells Transl. Med. 9, 821–826 (2020).
102.	 Richards, L. M. et al. Gradient of developmental and injury response transcriptional 

states defines functional vulnerabilities underpinning glioblastoma heterogeneity. 
Nat. Cancer 2, 157–173 (2021).

103.	 Zhao, W. et al. Deconvolution of cell type-specific drug responses in human tumor tissue 
with single-cell RNA-seq. Genome Med. 13, 82 (2021).

104.	 Ostrom, Q. T. et al. CBTRUS Statistical report: primary brain and other central nervous 
system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 21, v1–v100 
(2019).

105.	 Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 
468, 1095–1099 (2010).

106.	 Menyhárt, O., Giangaspero, F. & Győrffy, B. Molecular markers and potential therapeutic 
targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J. Hematol. Oncol. 
12, 29 (2019).

107.	 Hovestadt, V. et al. Resolving medulloblastoma cellular architecture by single-cell 
genomics. Nature 572, 74–79 (2019).

108.	 Zhang, L. et al. Single-cell transcriptomics in medulloblastoma reveals tumor-initiating 
progenitors and oncogenic cascades during tumorigenesis and relapse. Cancer Cell 36, 
302–318 (2019).

109.	 Ocasio, J. et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and 
lineage expansion support resistance to SHH inhibitor therapy. Nat. Commun. 10, 5829 
(2019).

110.	 Liu, X. et al. Clinical challenges of tissue preparation for spatial transcriptome. Clin. Transl. 
Med. 12, e669 (2022).

111.	 Kulkarni, A., Anderson, A. G., Merullo, D. P. & Konopka, G. Beyond bulk: a review of single 
cell transcriptomics methodologies and applications. Curr. Opin. Biotechnol. 58, 129–136 
(2019).

112.	 Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell populations using 
single-cell RNA-Seq. Neuron 96, 313–329 (2017).

113.	 Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in 
the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

114.	 Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. 
Nat. Commun. 10, 134 (2019).

115.	 Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched 
cortical cell types. PLoS ONE 13, e0209648 (2018).

116.	 Nadelmann, E. R. et al. Isolation of nuclei from mammalian cells and tissues for 
single-nucleus molecular profiling. Curr. Protoc. 1, e132 (2021).

117.	 Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA 
sequencing of the human brain. Science 352, 1586–1590 (2016).  
This study describes the first taxonomy of cells in adult human cortex obtained with 
snRNA-seq (see also ref. 56).

http://www.nature.com/nrneurol
https://doi.org/10.1101/2021.04.25.441313


Nature Reviews Neurology | Volume 19 | June 2023 | 346–362 361

Review article

118.	 Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of 
activation. Nat. Commun. 7, 11022 (2016).

119.	 Perez, J. D. et al. Subcellular sequencing of single neurons reveals the dendritic 
transcriptome of GABAergic interneurons. eLife 10, e63092 (2021).

120.	 Kharchenko, P. V. The triumphs and limitations of computational methods for scRNA-seq. 
Nat. Methods 18, 723–732 (2021).  
This consistent review provides a summary of computational steps in scRNA-seq 
analysis; it also discusses at length the current challenges and limitations of scRNA-
seq approaches from the data analysis perspective.

121.	 van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. 
Cell 174, 716–729 (2018).

122.	 Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. 
Nat. Methods 15, 539–542 (2018).

123.	 Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell 
RNA-seq data. Nat. Commun. 9, 997 (2018).

124.	 Tracy, S., Yuan, G.-C. & Dries, R. RESCUE: imputing dropout events in single-cell 
RNA-sequencing data. BMC Bioinforma. 20, 388 (2019).

125.	 Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 
21, 31 (2020).

126.	 Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA 
sequencing data are corrected by matching mutual nearest neighbours. Nat. Biotechnol. 
36, 421–427 (2018).

127.	 Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. 
Nat. Methods 19, 41–50 (2022).

128.	 A, R.-W. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and 
dynamically expressed. Mol. Cell 58, 870–885 (2015).

129.	 Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation 
and affects brain function. Science 357, eaam8526 (2017).

130.	 Luo, C. et al. Robust single-cell DNA methylome profiling with snmC-seq2. Nat. Commun. 
9, 3824 (2018).

131.	 Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and 
nucleosome phasing in single cells. eLife 6, e23203 (2017).

132.	 Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome 
diversity. Cell Genomics 2, 100107 (2022).

133.	 Reel, P. S., Reel, S., Pearson, E., Trucco, E. & Jefferson, E. Using machine learning 
approaches for multi-omics data analysis: a review. Biotechnol. Adv. 49, 107739 (2021).

134.	 Myszczynska, M. A. et al. Applications of machine learning to diagnosis and treatment 
of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440–456 (2020).

135.	 Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 
(2021).

136.	 Gracia Villacampa, E. et al. Genome-wide spatial expression profiling in formalin-fixed 
tissues. Cell Genomics 1, 100065 (2021).

137.	 Klaus, J. et al. Altered neuronal migratory trajectories in human cerebral organoids 
derived from individuals with neuronal heterotopia. Nat. Med. 25, 561–568 (2019).

138.	 Amiri, A. et al. Transcriptome and epigenome landscape of human cortical development 
modeled in organoids. Science 362, eaat6720 (2018).

139.	 Paulsen, B. et al. Autism genes converge on asynchronous development of shared 
neuron classes. Nature 602, 268–273 (2022).

140.	 He, Z. et al. Lineage recording in human cerebral organoids. Nat. Methods 19, 90–99 
(2022).

141.	 Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical 
development. Nature 598, 205–203 (2021).

142.	 Chen, C.-C. et al. Patient-derived tumor organoids as a platform of precision treatment 
for malignant brain tumors. Sci. Rep. 12, 16399 (2022).

143.	 Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates 
inter- and intra-tumoral heterogeneity. Cell 180, 188–204 (2020).

144.	 Regev, A. et al. The human cell atlas white paper. Preprint at ArXiv https://doi.org/ 
10.48550/arXiv.1810.05192 (2018).

145.	 Rajewsky, N. et al. LifeTime and improving European healthcare through cell-based 
interceptive medicine. Nature 587, 377–386 (2020).

146.	 Ngai, J. BRAIN 2.0: transforming neuroscience. Cell 185, 4–8 (2022).
147.	 Goetz, J. J. & Trimarchi, J. M. Transcriptome sequencing of single cells with Smart-Seq. 

Nat. Biotechnol. 30, 763–765 (2012).
148.	 Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. 

Nat. Methods 10, 1096–1098 (2013).
149.	 Xin, Y. et al. Use of the fluidigm C1 platform for RNA sequencing of single mouse 

pancreatic islet cells. Proc. Natl Acad. Sci. USA 113, 3293–3298 (2016).
150.	 Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. 

Nat. Commun. 8, 14049 (2017).
151.	 Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. 

Genome Biol. 17, 77 (2016).
152.	 Sheng, K., Cao, W., Niu, Y., Deng, Q. & Zong, C. Effective detection of variation in 

single-cell transcriptomes using MATQ-seq. Nat. Methods 14, 267–270 (2017).
153.	 Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. High throughput error corrected 

nanopore single cell transcriptome sequencing. Nat. Commun. 11, 4025 (2020).
154.	 Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn 

neurons. Science 353, 925–928 (2016).
155.	 Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA 

seqFISH. Nature 568, 235–239 (2019).

156.	 Xia, C., Babcock, H. P., Moffitt, J. R. & Zhuang, X. Multiplexed detection of RNA using 
MERFISH and branched DNA amplification. Sci. Rep. 9, 7721 (2019).

157.	 Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide 
expression at high spatial resolution. Science 363, 1463–1467 (2019).

158.	 Beltrán, E. et al. Early adaptive immune activation detected in monozygotic twins with 
prodromal multiple sclerosis. J. Clin. Invest. 129, 4758–4768 (2019).

159.	 Esaulova, E. et al. Single-cell RNA-seq analysis of human CSF microglia and myeloid cells 
in neuroinflammation. Neurol. Neuroimmunol. Neuroinflamm. 7, e732 (2020).

160.	 Kaufmann, M. et al. Identifying CNS-colonizing T cells as potential therapeutic targets to 
prevent progression of multiple sclerosis. Med 2, 296–312 (2021).

161.	 Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-
nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).

162.	 Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s 
disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 
(2019).

163.	 Del-Aguila, J. L. et al. A single-nuclei RNA sequencing study of Mendelian and sporadic 
AD in the human brain. Alzheimers Res. Ther. 11, 71 (2019).

164.	 Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte 
states. Acta Neuropathol. Commun. 8, 19 (2020).

165.	 Gregory, J. M. et al. Spatial transcriptomics identifies spatially dysregulated expression 
of GRM3 and USP47 in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 46, 
441–457 (2020).

166.	 Jaffe, A. E. et al. Profiling gene expression in the human dentate gyrus granule cell layer 
reveals insights into schizophrenia and its genetic risk. Nat. Neurosci. 23, 510–519 (2020).

167.	 Herrero, M. J. et al. Identification of amygdala-expressed genes associated with autism 
spectrum disorder. Mol. Autism 11, 39 (2020).

168.	 Sorrells, S. F. et al. Immature excitatory neurons develop during adolescence in the 
human amygdala. Nat. Commun. 10, 2748 (2019).

169.	 Zhong, S. et al. Decoding the development of the human hippocampus. Nature 577, 
531–536 (2020).

170.	 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient 
alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

171.	 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinforma. Oxf. Engl. 29, 15–21 
(2013).

172.	 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, 
deletions and gene fusions. Genome Biol. 14, R36 (2013).

173.	 Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment 
and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

174.	 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-
cell transcriptomic data across different conditions, technologies, and species. 
Nat. Biotechnol. 36, 411–420 (2018).

175.	 McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality 
control, normalization and visualization of single-cell RNA-seq data in R. Bioinforma. Oxf. 
Engl. 33, 1179–1186 (2017).

176.	 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-
seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

177.	 Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis 
of single-cell RNA-seq data with bioconductor. F1000Research 5, 2122 (2016).

178.	 Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 
14, 584–586 (2017).

179.	 Tang, W. et al. bayNorm: Bayesian gene expression recovery, imputation and 
normalization for single-cell RNA-sequencing data. Bioinformatics 36, 1174–1181 (2020).

180.	 Stein, C. K. et al. Removing batch effects from purified plasma cell gene expression 
microarrays with modified ComBat. BMC Bioinforma. 16, 63 (2015).

181.	 Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
182.	 Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated 

transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 
(2010).

183.	 Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from 
RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

184.	 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq 
quantification. Nat. Biotechnol. 34, 525–527 (2016).

185.	 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and 
bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

186.	 Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference 
through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

187.	 Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. 
Nature 566, 496–502 (2019).

188.	 La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
189.	 Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central 

nervous system. Science 352, 1326–1329 (2016).
190.	 Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. 

Preprint at bioRxiv https://doi.org/10.1101/2022.10.12.511898 (2022).
191.	 Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence 

cell types. Nat. Neurosci. 20, 484–496 (2017).  
One of the first studies that integrates scRNA-seq data with GWAS data sets to identify 
cell types relevant for human phenotypes or diseases.

192.	 Kim, D.-W. et al. Multimodal analysis of cell types in a hypothalamic node controlling 
social behavior. Cell 179, 713–728 (2019).

http://www.nature.com/nrneurol
https://doi.org/10.48550/arXiv.1810.05192
https://doi.org/10.48550/arXiv.1810.05192
https://doi.org/10.1101/2022.10.12.511898


Nature Reviews Neurology | Volume 19 | June 2023 | 346–362 362

Review article

193.	 Mickelsen, L. E. et al. Single-cell transcriptomic analysis of the lateral hypothalamic 
area reveals molecularly distinct populations of inhibitory and excitatory neurons. 
Nat. Neurosci. 22, 642–656 (2019).

194.	 Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals 
distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017).

195.	 Wen, S. et al. Spatiotemporal single-cell analysis of gene expression in the mouse 
suprachiasmatic nucleus. Nat. Neurosci. 23, 456–467 (2020).

196.	 Kalish, B. T. et al. Single-cell transcriptomics of the developing lateral geniculate nucleus 
reveals insights into circuit assembly and refinement. Proc. Natl Acad. Sci. USA 115, 
E1051–E1060 (2018).

197.	 Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons 
in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).

198.	 Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands 
of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).  
In this study, a new method is reported that enables to identify full-length RNA 
isoforms in single cells.

199.	 Carter, R. A. et al. A single-cell transcriptional atlas of the developing murine cerebellum. 
Curr. Biol. 28, 2910–2920 (2018).

200.	Peng, J. et al. Single-cell transcriptomes reveal molecular specializations of neuronal cell 
types in the developing cerebellum. J. Mol. Cell Biol. 11, 636–648 (2019).

201.	 Zeppilli, S. et al. Molecular characterization of projection neuron subtypes in the mouse 
olfactory bulb. eLife 10, e65445 (2021).

202.	Bhattacherjee, A. et al. Cell type-specific transcriptional programs in mouse prefrontal 
cortex during adolescence and addiction. Nat. Commun. 10, 4169 (2019).

203.	Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. 
Nature 563, 72–78 (2018).

204.	Zywitza, V., Misios, A., Bunatyan, L., Willnow, T. E. & Rajewsky, N. Single-cell 
transcriptomics characterizes cell types in the subventricular zone and uncovers 
molecular defects impairing adult neurogenesis. Cell Rep. 25, 2457–2469 (2018).

205.	Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. 
Nature 571, 205–210 (2019).

206.	Hochgerner, H., Zeisel, A., Lönnerberg, P. & Linnarsson, S. Conserved properties of 
dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA 
sequencing. Nat. Neurosci. 21, 290–299 (2018).

207.	 Artegiani, B. et al. A single-cell RNA sequencing study reveals cellular and molecular 
dynamics of the hippocampal neurogenic niche. Cell Rep. 21, 3271–3284 (2017).

208.	Harris, K. D. et al. Classes and continua of hippocampal CA1 inhibitory neurons revealed 
by single-cell transcriptomics. PLoS Biol. 16, e2006387 (2018).

209.	Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 
555, 457–462 (2018).  
This study includes scRNA-seq resource of mouse interneurons and their diversity and 
specification across developmental timepoints.

210.	 Tiklová, K. et al. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity 
emerging during mouse brain development. Nat. Commun. 10, 581 (2019).

211.	 Hove, H. V. et al. A single-cell atlas of mouse brain macrophages reveals unique 
transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 
1021–1035 (2019).

212.	 Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in 
the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

213.	 La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and 
stem cells. Cell 167, 566–580 (2016).

Acknowledgements
We thank M. Jens, N. Karaiskos and D. Koppstein for a critical reading and the feedback on 
the manuscript. Funding: M.P. was supported by The Polish National Agency for Academic 
Exchange (Polish Returns grant no. PPN/PPO/2019/1/00035/U/0001) and The National 
Science Centre (grant no. 2018/30/E/NZ3/00624). A.R.-W. was supported by MDC and BIH 
funding.

Author contributions
A.R.-W. and M.P. researched data for the article. A.R-W. and M.P. contributed substantially to 
discussion of the content. M.P. and A.R-F. wrote the article. All authors reviewed and/or edited 
the manuscript before submission.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at  
https://doi.org/10.1038/s41582-023-00809-y.

Peer review information Nature Reviews Neurology thanks M. Johnson and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this 
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

© Springer Nature Limited 2023

http://www.nature.com/nrneurol
https://doi.org/10.1038/s41582-023-00809-y

	Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease

	Introduction

	Single-cell technologies

	scRNA-seq and snRNA-seq

	Summary of the most commonly used single-cell computational tools

	Spatially resolved RNA-seq

	Latest developments


	Exploring brain complexity

	Expanding landscape of the brain cell-type diversity


	Selective neuronal vulnerability

	Neurodegenerative disease

	Neuropsychiatric disorders

	Neurodevelopmental conditions

	Next steps


	Neuroimmune dysfunction

	Neurodegeneration

	The innate immune response
	The adaptive immune response

	Glioma

	COVID-19


	Drug-sensitive cell types

	Challenges and limitations

	Sample collection

	Isolation of single cells

	Data analysis and interpretation

	Regulatory non-polyadenylated transcripts


	Future directions

	Single-cell multi-omics

	Single-cell analysis of brain organoids

	Gathering more clinical data


	Conclusions

	Acknowledgements

	Fig. 1 Experimental pipeline of a droplet-based single-cell RNA sequencing in a nutshell.
	Fig. 2 Analysis of single-cell RNA sequencing data set can provide multiple types of information on cell types, states and their activation and enables inference of dynamic cellular processes.
	Fig. 3 Spatial transcriptomics: the principle and a workflow.
	Fig. 4 Single-cell RNA-sequencing, single-nuclei RNA-sequencing and spatial transcriptomics studies reveal cellular and molecular heterogeneity in human neurological disorders.
	Fig. 5 Future directions for the application of single-cell and spatial transcriptomics in clinical use.
	Table 1 Comparison of different single-cell and single-nucleus RNA sequencing methods.




