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Intestinal fibrosis associated stricture is a common complication of inflammatory bowel disease 
usually requiring endoscopic or surgical intervention. Effective anti-fibrotic agents aiming to con-
trol or reverse intestinal fibrosis are still unavailable. Thus, clarifying the mechanism underpinning 
intestinal fibrosis is imperative. Fibrosis is characterized by an excessive accumulation of extra-
cellular matrix (ECM) proteins at the injured sites. Multiple cellular types are implicated in fibrosis 
development. Among these cells, mesenchymal cells are major compartments that are activated 
and then enhance the production of ECM. Additionally, immune cells contribute to the persistent 
activation of mesenchymal cells and perpetuation of inflammation. Molecules are messengers 
of crosstalk between these cellular compartments. Although inflammation is necessary for fibro-
sis development, purely controlling intestinal inflammation cannot halt the development of fibro-
sis, suggesting that chronic inflammation is not the unique contributor to fibrogenesis. Several 
inflammation-independent mechanisms including gut microbiota, creeping fat, ECM interaction, 
and metabolic reprogramming are involved in the pathogenesis of fibrosis. In the past decades, 
substantial progress has been made in elucidating the cellular and molecular mechanisms of 
intestinal fibrosis. Here, we summarized new discoveries and advances of cellular components 
and major molecular mediators that are associated with intestinal fibrosis, aiming to provide a 
basis for exploring effective anti-fibrotic therapies in this field. (Gut Liver 2023;17:360-374)
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INTRODUCTION

Fibrosis is a dysregulated outcome of wound healing, 
especially during chronic inflammatory disorders.1 When 
inflammation is persistent, the severity of the damage 
may exceed the ability of the affected tissue to completely 
heal, which then initiates fibrotic response that eventually 
results in fibrosis.2,3 The gastrointestinal tract is a tubular 
structure and therefore fibrosis is presented with the nar-
rowing of lumen and intestinal stricture.4

Intestinal stricture is a common complication of inflam-
matory bowel disease (IBD) including Crohn's disease 
(CD) and ulcerative colitis (UC).5,6 CD is a transmural dis-
ease that can affect the entire gastrointestinal tract, while 
UC is a superficial inflammatory disease, restricted to the 
colonic mucosa and submucosa layer.7 At initial diagnosis, 

at least 10% of CD patients are presented with a fibroste-
nosis phenotype.8 However, up to 50% of CD patients ulti-
mately progress to stricturing or penetrating complications 
and 70% of patients require surgery within their life time.5,9 
Even though stricture formation is rather infrequent in 
UC, recent evidence suggested fibrosis occurs in both 
acute and chronic UC.10 In the past decades, despite the 
availability and efficacy of biological therapies in IBD, the 
incidence of intestinal stricture does not achieve a signifi-
cant reduction.11 This implies that pure anti-inflammatory 
treatments do not necessarily alleviate the associated fibro-
sis.

The review would provide a cellular and molecular bi-
ology of intestinal fibrosis (Fig. 1). Considering the close 
association between intestinal fibrosis and stricturing com-
plications, understanding the pathogenesis of intestinal 
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fibrosis is crucial to identify new anti-fibrotic targets for 
patients with intestinal strictures.

CELLULAR MECHANISMS OF FIBROSIS

Intestinal fibrosis is driven by multiple cellular compart-
ments including mesenchymal cells and immune cells.12 
The histological feature of intestinal stricture is thickening 
of the muscularis mucosa and muscularis propria owing to 
the activation and proliferation of mesenchymal cells. Ac-
tivated mesenchymal cells not only produce matrix com-
ponents, but also secrete chemokines to recruit cells from 
the immune system (e.g., macrophages and T cells), thus 
perpetuating chronic inflammation. Reciprocal interaction 
between mesenchymal and immune cell populations in the 
intestine create a unique pro-fibrotic microenvironment, 
eventually resulting in fibrosis formation.13

1. Mesenchymal cells and mesenchymal progenitors
Intestinal fibrosis results from sustained activation and 

proliferation of myofibroblasts.14 The activated myofibro-
blasts, as the final effector cells, can produce extracellular 

matrix (ECM) proteins and secrete cytokines such as 
interleukin (IL)-6 and IL-11, which facilitates formation 
of a fibrogenic milieu.15-17 The majority of myofibroblasts 
derive from resident fibroblasts and smooth muscle cells 
(SMCs). However, they can also originate from other cell 
types like epithelial and endothelial cells, pericytes, bone 
marrow stem cells and bone marrow-derived circulating 
fibrocytes.18,19 The various types of cells weave together in 
the inflamed intestine and contribute to the development 
of intestinal fibrosis.20

1) Fibroblasts
Fibroblasts are characterized by an elongated or spindle-

shaped morphology, which are the most abundant cell type 
in connective tissue. Their main function is to maintain 
tissue integrity.21 Fibroblasts can be activated and multiply 
in response to pro-inflammatory mediators, such as insu-
lin-like growth factor (IGF)-I, fibroblast growth factor, and 
IL-1β.22 The growth of fibroblasts can also be induced by 
immune cells or inflammatory cells through a cell-to-cell 
contact mechanism.23,24 In addition, fibroblasts can migrate 
to the site of inflammation foci along the concentration 
gradient of pro-inflammatory cytokines via activation of 
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Fig. 1.Fig. 1. Cellular and molecular components implicated in intestinal fibrosis. Intestinal strictures are characterized by extracellular matrix (ECM) 
accumulation, intestinal muscularis propria thickening, and mesenteric fat wrapping. Myofibroblasts, the major source of ECM production, can 
originate from various types of mesenchymal cells. Immune cells contribute to persistent myofibroblasts proliferation and activation by secreting 
abundant cytokines. In addition, inflammatory-independent factors including gut microbiota, ECM interaction, creeping fat and metabolic repro-
gramming are involved in fibrosis formation.
EMT, epithelial-mesenchymal transition; EndMT, endothelial-mesenchymal transition; FFAs, free fatty acids; FNs, fibronectins; HA, hyaluronan.
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NF-κB and JAK-STAT signaling pathways.16,25,26 A previ-
ous study reported that fibroblasts isolated from inflamed 
or fibrotic CD tissue, or inflamed UC mucosa exhibited 
an increased proliferation, when compared with normal 
tissue.27 Recently, Wohlfahrt et al.28 found that activated 
fibroblasts could be reprogrammed into resting fibroblasts 
by pharmacological and genetic inactivation of PU.1, lead-
ing to fibrosis regression. In recent years, the advent of 
single-cell RNA sequencing (scRNA-seq) technology may 
assist to reveal the heterogeneous functionality of fibroblast 
populations, which may shed some insights on the fibrotic 
pathogenesis of fibroblasts.29

2) Myofibroblasts
Myofibroblasts are characterized by the expression of 

α-smooth muscle actin (α-SMA), with enhanced produc-
tion of collagen and increased capacity of contraction.30 Al-
though the exact molecular mechanism of myofibroblasts 
in fibrosis remains incompletely understood, mediators 
acting on myofibroblasts are clearly demonstrated, includ-
ing pro-inflammatory cytokines, paracrine and autocrine 
factors (e.g., IGF-1), and pathogen or damage-associated 
molecular patterns.31 The activated myofibroblasts initiate 
fibrotic process in the following ways. Firstly, myofibro-
blasts secrete ECM components, as well as various cyto-
kines and chemokines, directly or indirectly contributing 
to the thickening of mesenchymal cell layer.32,33 Secondly, 
myofibroblasts participate in tissue remodeling through 
mechanical contractions.34,35 Thirdly, the mechanic con-
traction of myofibroblasts can activate latent transforming 
growth factor-β1 (TGF-β1) released from ECM.36 TGF-β1 
and its related pathways are major drivers in the process of 
fibrosis.37 Recently, de Bruyn et al.38 using specimens from 
the same CD patients has firstly found that primary myofi-
broblasts isolated from stenotic ileum were phenotypically 
and functionally (e.g., ECM organization and collagen 
production) distinct from myofibroblasts isolated from 
normal and inflamed areas. Specifically, stenotic myofi-
broblasts can increase tissue stiffness, while suppress the 
expression of matrix metalloproteinase (MMP)-3 activity, 
to facilitate fibrosis development.38

3) Smooth muscle cells
SMCs are one of the three interrelated cell phenotypes 

(the other two being fibroblasts and myofibroblasts).33 
SMCs and fibroblasts are derived from the same primitive 
mesenchymal cells.39 SMCs are regarded as the progenitors 
of myofibroblasts.39 A dynamic equilibrium exists between 
SMCs and myofibroblasts phenotypes.39 SMCs can change 
their phenotypes in response to environmental stimula-
tion.40 A previous study found that SMCs isolated from CD 

ileum presented alterations in morphology and contractile 
activity.41 It was demonstrated that SMCs isolated from CD 
ileum had an overexpression of platelet-derived growth 
factor (PDGF)-β, which drove the myogenic phenotype 
switch to synthetic one. The effect of PDGF-β was paral-
leled to a reduced encoding of contractile genes that were 
responsible for quiescent smooth muscle.41 SMCs are also 
able to release significant amounts of IL-6, contributing to 
inflammatory process.42 Besides, these cells actively con-
tribute to the development of intestinal fibrosis by inducing 
the production of collagens and MMPs.41 These evidences 
suggested that the phenomenon of smooth muscle hyper-
plasia/hypertrophy in CD may be a driving force, rather 
than simply a passive increase of stricture formation.

4) Epithelial or endothelial-mesenchymal transition
Epithelial or endothelial-mesenchymal transition (EMT 

or EndMT) represents a dynamic entity where epithelial 
or endothelial cells transform to mesenchymal cells in 
response to inflammatory cytokines, oxidative stress and 
hypoxia.43-45 EMT is implicated in CD-associated fistu-
las and intestinal fibrosis.46,47 During formation of CD-
associated fistulas, intestinal epithelial cells start with the 
dissociation from the base membrane and then migrate to 
the lining of the fistula tracts, where they convert to mes-
enchymal cells.47 In CD-associated intestinal fibrosis, EMT 
serves as a reservoir that can generate new fibroblasts and 
consequently result in fibrosis formation.46,48 Results from 
Iwano et al.49 study found that approximately 36% of new 
fibroblast specific protein-1 positive fibroblast cells origi-
nated from local EMT in mouse models of liver and renal 
fibrosis. Frid et al.50 previously demonstrated that endo-
thelial cells could differentiate into SMCs in vitro. Zhang 
et al.51 reported that 17% of fibroblasts/myofibroblasts in 
the fibrotic myocardium were EndMT-derived. Evidence 
of EndMT can be also detected in colonic tissues from IBD 
patients as well as patients with radiation-induced procti-
tis.52 Multiple targeted therapies aiming to inhibit EMT in 
cancer are already undergoing clinical evaluation.53 Tar-
geting EMT or EndMT may hold therapeutic promise for 
fibrotic disorders.

5) Telocytes
Telocytes (TCs) are a novel type of interstitial cells char-

acterized by CD34/PDGFRα, and have been demonstrated 
to be involved in several disorders including CD.54-56 The 
function of TCs is widely linked with other cells including 
mast cells, macrophages, myofibroblasts, and fibroblasts.57 
Milia et al.55 firstly identified that TCs were distributed in 
all layers of ileum, from mucosa to subserosa. Comparing 
normal with fibrotic resected ileal specimens from human, 
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they found that TCs were nearly disappeared in the fibrotic 
ileum. A previous study showed that disappearance of TCs 
was accompanied by an increasement of myofibroblasts in 
UC, suggesting that TCs loss might be associated with the 
aberrant differentiation of fibroblasts into myofibroblasts.58 
However, further studies are needed to elucidate the casual 
relationship of TC and fibrosis.

6) Fibrocytes
Fibrocytes are bone marrow-derived mesenchymal pro-

genitors, with the features of both hematopoietic (CD34) 
and fibroblast markers (collagen-I). Fibrocytes play a criti-
cal role in fibrotic diseases.59 Previous studies revealed 
that fibrocytes could be triggered by several inflammatory 
cytokines.59 Specifically, within four-day following injury, 
activated fibrocytes typically migrate into injured sites 
and then participate in fibrotic reactions through a direct 
way by production of ECM proteins and fibrogenic cyto-
kines, or an indirect way by differentiation into myofibro-
blasts.60-62 Sazuka et al.61 found that bone marrow-derived 
fibrocytes were associated with intestinal fibrosis, which 
was consistent with another study that the frequency of 
circulating fibrocytes was increased in fibrostenotic CD 
patients, compared with healthy individuals.63 A recent 
study has revealed that fibrocytes deposited in inflamed 
colon can produced tissue inhibitor of metalloproteinase to 
inhibit degradation of collagen.64 Therefore, circulating fi-
brocytes may be a therapeutic target of intestinal fibrosis.63

2. Immune cells
A variety of key innate (macrophages) and adaptive (T 

cell subsets) immune cell types have been well-established 
in orchestrating the fibrotic microenvironment in intes-
tine. The immune cell skewing in fibrosis niche probably 
perpetuates inflammation and exacerbates the process of 
wound healing.65 Here, we will discuss several immune cell 
subsets, pointing toward novel immune-based therapeutic 
strategies in fibrosis.

1) Th2 cells
T helper 2 (Th2) cells are hallmarked by the secretion 

of cytokines IL-4, IL-5, and IL-13, which are responsible 
for type 2 immune responses.66 The type 2-associated cyto-
kines are actively engaged in wound healing and fibrosis.65 
At inflammatory sites, activated innate immune cells, such 
as group 2 innate lymphoid cells (ILC2) and basophils, are 
usually the early sources of local cytokines IL-4, IL-5, and 
IL-13, which trigger the activation and accumulation of Th2 
cells.67,68 Th2 cells-derived IL-4 and IL-13 further promote 
the accumulation and proliferation of ILC2, thus creating 
a vicious cycle.69 Activated Th2 cells orchestrate the pro-

cess of tissue fibrosis directly and indirectly by acting on 
immune or non-immune cells including local M2 macro-
phages, fibroblasts, endothelial cells and epithelial cells.70,71 
Besides, as a well-known opponent of Th1 cells, Th2 cells 
can reverse the expression levels of Th1-associated anti-
fibrotic cytokines such as interferon γ (IFN-γ).72 However, 
randomized controlled trials showed that blockade of IL-
13 to target Th2 responses while administration of IFN-γ 
to stimulate Th1 responses failed to attenuate pulmonary 
fibrosis.73-75 Conversely, in a phase II trial, neutralization of 
IL-4/IL-13 effectively improved early skin fibrosis.76 The 
inconsistent results suggested targeting Th2 response as a 
therapeutic strategy for fibrosis requires further investiga-
tion.

2) Macrophages
Macrophages are highly heterogeneous and plastic cell 

populations, and are key regulators of tissue fibrosis in sev-
eral organs.66,77 Generally, macrophages are classified into 
two subtypes: M1 macrophages with pro-inflammatory 
roles, and M2 macrophages with pro-fibrotic properties. 
The latter is activated by IL-4 and IL-13, and characterized 
by effects of inflammation resolution and tissue restora-
tion.66 In intestine, STAT6-dependent M2 macrophages 
promote mucosal repair through activating Wnt signal-
ing pathway.78 Moreover, macrophages from CD patients 
showed a significant enrichment in the expressions of 
M2-related as well as fibrotic-related genes, implying that 
M2 macrophages potentially exacerbated fibrosis forma-
tion.79 Results from STAT6 deficient colitis mice showed 
that the frequency of CD16+ macrophages was enhanced 
in the damaged mucosa of CD patients with stenotic or 
penetrating complications, and were also associated with 
the expression of fibrotic-related markers.80 Blockade of 
the interactions between inflamed macrophages and stro-
mal cells has been proven to potentially ameliorate aber-
rant wound repair in zebrafish IBD model.81 Recently, the 
advanced scRNA-seq has revealed a novel macrophage 
subgroup, named with CX3CR1+SiglecF+ transitional mac-
rophages, which are abundant in fibrotic niche and exhibit 
a pro-fibrotic effect in bleomycin-induced lung fibrosis.82 
ScRNA-seq will be a promising technique to reveal the cel-
lular heterogeneity of macrophages in fibrosis.

3) Th17 cells
T helper 17 (Th17) cells are characterized by RAR-

related orphan receptor γt (ROR-γt) expression and signa-
tured by producing IL-17, IL-21, and IL-22 cytokines,83,84 
which have fibrogenic properties. IL-17A, the predomi-
nant Th17-assciated cytokines, exerts its fibrotic effects via 
acting on myofibroblasts and regulating EMT.85-87 In gut, 
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elevated levels of tissue Th17 cells and IL-17 production 
are observed in patients with intestinal stenosis.87 Recently, 
Paul et al.88 has showed that IL-17-driven fibrosis is nega-
tively regulated by Itch, whereas Itch deficiency leads to 
increased expression of collagen-I and α-SMA in response 
to IL-17 in myofibroblasts. In vitro, IL-17A can dose-
dependently induce EMT in intestinal epithelial cells.89 In 
vivo, IL-17A blockade significantly ameliorates TNBS-in-
duced intestinal fibrosis through enhancing ECM degrada-
tion and decreasing pro-fibrotic cytokines production.89,90 
Of note, in clinical trials, administration with neither anti-
IL-17A monoclonal antibody (secukinumab) nor its recep-
tor monoclonal antibody (brodalumab) is effective in CD 
patients with stenosis.91,92 Th17 cells expressing IL-22 are 
also implicated in fibroblast activation, myofibroblast dif-
ferentiation and ECM gene expression in skin fibrosis.93,94 
The fibrotic effects of Th17 cells-derived cytokines are still 
largely unknown.

4) Innate lymphoid cells
ILCs are a functionally diverse but developmentally 

related family of innate lymphocytes, with phenotypes 
and functions having striking similarities to T helper (Th) 
cells.95 According to cytokine signatures and transcription 
factors expression, ILCs are divided into three groups.96 

Group 1 ILCs (ILC1) subsets share common properties 
with Th1 cells and express the transcription factor T-bet.97 
Group 2 ILCs (ILC2) express the transcription factors 
RORα and GATA-3, which resembles Th2 cells function-
ally.98 Group 3 ILCs (ILC3), expressing transcription factor 
RORγt, are analogous to Th17 cells.99,100 ILC2 can respond 
rapidly to tissue damage, followed by an increase of Th2-
like cytokines.101 An increased frequency of ILC2 has been 
detected in intestinal tissues from CD patients.102 Lo et 
al.103 reported that Rorasg/sg bone marrow transplant (BMT) 
chimeric mice which was a model of ILC2 deficiency was 
resistant to salmonella-induced intestinal fibrosis, with 
reduced collagens deposition and fibroblasts accumulation 
in infected intestinal tissues. Furthermore, restoring ILC3 
function in Rorasg/sg BMT mice was able to reestablish the 
susceptibility to intestinal fibrosis.103 Although the effect 
of ILCs in intestinal inflammation is explicit, their roles in 
fibrotic process still require more investigation.

MOLECULAR MECHANISMS OF FIBROSIS

Molecules are messengers of crosstalk between immune 
and non-immune cells and actively contribute to persistent 
inflammation.13 Although inflammation is a prerequisite 

Table 1. Table 1. Cytokine and Chemokine Profiles Involved in Intestinal Fibrosis

Cytokine
Pro- or  

anti-fibrosis
Effects on intestinal fibrosis References

IL-1 Pro Induce fibroblasts activation; enhance pro-fibrotic cytokines production; inhibit ECM degradation; en-
hance collagens expression

104-106  

IL-4 Pro Promote myofibroblasts activation; promote type 2 immunity-induced fibrosis 107,108 
IL-6 Pro Promote SMCs activation; promote fibroblasts activation and proliferation; enhance ECM production 109-111 
IL-10 Uncertain Inhibit collagens deposition; no effects on fibroblasts and myofibroblasts 112,113 
IL-11 Pro Enhance collagens expression; may promote SMCs hyperplasia 114 
IL-12 Pro Promote inflammation 115,116  
IL-13 Pro Promote TGF-β1 production; initiate fibrosis 117,118  
IL-17 Pro Stimulate myofibroblasts activation; enhance collagens expression; decrease ECM degradation; in-

duce EMT
85,89,119  

IL-21 Uncertain Facilitate Th2 and Th17 development; enhance MMPs secretion 120,121  
IL-22 Pro Inhibit inflammation; enhance MMPs secretion; promote myofibroblasts differentiation 122-124  
IL-23 Pro Promote inflammation; promote fibrotic responses 115,116,124  
IL-25 Non IL-13 production depends on IL-25; induce type 2 immunity; promote inflammation 125,126  
IL-33 Pro Promote pro-fibrotic type 2 immunity 127,128  
IL-34 Pro Enhance collagens expression; promote fibroblasts activation 129  
IL-36 Pro Enhance collagens expression; promote fibroblasts activation 130  
TL1A Pro Enhance collagens expression and pro-fibrotic molecules production; promote fibroblasts activation; 

induce EMT
131,132  

IFN-γ Anti Inhibit TGF-β signaling; inhibit fibroblasts migration and myofibroblasts differentiation 133-135  
TGF-β Pro Enhance pro-fibrotic molecules production; promote fibroblasts activation; induce EMT 43,136-138  
CXCR4 Pro Mediate pro-fibrotic effects of PDGF-C 139  
CCL11 Pro Induce eosinophils recruitment and in turn promote fibroblasts activation 140  
CXCL8 Pro Promote pro-fibrotic growth factors production; enhance MMPs secretion 141 

IL, interleukin; ECM, extracellular matrix; SMCs, smooth muscle cells; TGF, transforming growth factor; EMT, epithelial-mesenchymal transi-
tion; Th, T helper; MMPs, matrix metalloproteinases; TL1A, tumor necrosis factor-like ligand 1A; IFN, interferon; CXCR4, C-X-C motif chemokine 
receptor 4; PDGF-C, platelet-derived growth factor-C; CCL11, C-C motif chemokine ligand 11; CXCL8, C-X-C motif chemokine ligand 8.
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of fibrosis, purely controlling intestinal inflammation can-
not hold back the progression of fibrosis.8 This implies 
that inflammation is not the exclusive driver of fibrosis. In 
the following section, a detailed discussion concerning in-
flammation-dependent, but with a focus on inflammation-
independent factors of fibrosis, will be reported.

1. Inflammation-dependent molecular mechanisms
Cytokines and chemokines secreted by immune and 

non-immune cells are orchestrators of sustained inflamma-
tory microenvironment, and are also observed to possess 
pro-fibrotic effects, which lay foundations for uncovering 
novel therapeutic targets in fibrotic disorders.142 Several 
novel cytokines involved in fibrogenesis will be detailly de-
scribed in this part, and the elaborate profile of cytokines 
and chemokines are shown in Table 1.

1) Interleukin-11
IL-11, a member of IL-6 family, is recognized as a pro-

fibrotic cytokine secreted by stromal cells, as well as epi-
thelial cells during tissue injuries.143 IL-11 is upregulated in 
various fibro-inflammation disorders.143 Ng et al.144 report-
ed that IL-11 was increasingly expressed in invasive lung 
fibroblasts isolated from patients with idiopathic pulmo-
nary fibrosis. They demonstrated that IL-11 exerted pro-
fibrotic effects by driving fibroblasts activation, while anti-
IL-11 treatment reversed lung fibrosis in mice.144 Recently, 
Schafer et al.145 has showed that fibroblast-specific IL-11 
transgene expression or administration with IL-11 in mice 
resulted in heart and kidney fibrosis, whereas genetic dele-
tion of IL-11 receptor alpha chain 1 (IL-11ra1) protected 
against fibrosis. scRNA-seq has revealed that the expres-
sion of IL-11 is enhanced in activated fibroblasts from CD 
inflamed segments.146 Lim et al.114 has found that SMC-
specific IL-11 transgenic expression can induce inflamed, 
thickened and fibrotic bowel in mice. This is in line with 
another animal model with fibroblast-specific expression 
of IL-11.114 The emerging data prioritize IL-11 as a drug 
target for fibrotic diseases.

2) Interleukin-33
IL-33, a member of IL-1 superfamily, is passively re-

leased upon cellular damage and necrosis and is thus 
considered as an alert of inflammation.147 IL-33 is also 
involved in the process of fibrogenesis.148 Binding of IL-
33 to its receptor ST2 triggers activation of Th2 cells to 
produce amphiregulin, which then drove osteopontin pro-
duction by eosinophils, thus forming IL-33-amphiregulin-
osteopontin axis. The axis conferred to fibrotic responses 
in eosinophilic airway inflammation.149 With regard to in-
testine, the expression of IL-33 and ST2 were upregulated 

in mucosa from UC patients and dextran sulfate sodium 
(DSS) colitis model.136,137 In particular, elevated epithelial 
expression of IL-33 was strongly associated with fibrosis 
progression in pediatric Crohn’s ileitis.138 A recent study 
by Imai et al.127 has unveiled a novel relationship between 
IL-33/ST2 signaling and gut dysbiosis in intestinal fibro-
sis. They reported that adherent-invasive Escherichia coli 
(AIEC) colonization elicited ST2 expression in intestinal 
epithelium, which in turn augmented the sensing of IL-33/
ST2 signaling and ultimately promoted intestinal fibrosis. 
Alternatively, targeting IL-33/ST2 signaling with a neu-
tralizing anti-ST2 antibody attenuated fibrotic effects of 
AIEC.127

3) Interleukin-34
IL-34, a member of 4-helical cytokine family, is pro-

duced by a wide range of cells including fibroblasts, im-
mune cells, epithelial cells, endothelial cells and adipo-
cytes.150 The association of aberrant high expression of 
IL-34 and fibrosis has been identified in several organs, 
including liver, kidney, and gut.129,151,152 Production of IL-34 
was enhanced in inflamed mucosa in IBD patients and in 
DSS-induced colitis, which was regulated by tumor necro-
sis factor-α (TNF-α) via NF-κB signaling.153,154 Notably, the 
expression of IL-34 was elevated in fibrostrictures sites of 
CD.129 It was observed that activated fibroblasts by TNF-α 
exhibited increased expression of IL-34.129,155 Besides, fi-
broblasts stimulated with IL-34 could enhance expression 
of COL1A1 and COL3A1, while this effect disappeared in 
fibroblast-specific IL-34 knockout mice.129 These evidences 
raise a possibility that fibroblast is a cellular target of IL-34.

4) Interleukin-36
IL-36, also belonging to IL-1 superfamily, consists of five 

isoforms: IL-36α, IL-36β, IL-36γ, IL-36Ra, and IL-38.156,157 
Among them, IL-36α, IL-36β, and IL-36γ play pro-inflam-
matory effects through activating IL-36 receptor (IL-36R) 
signaling, while IL-36Ra and IL-38 have opposing effects 
as they are inhibitors of IL-36R signaling.156,158 It is dem-
onstrated that IL-36α and IL-36γ are elevated in both CD 
and UC mucosa under inflammation stimuli.158,159 Of note, 
IL-36α had an increased expression in tissues of CD fibro-
stenosis.130 Stimulation of IL-36α and IL-36γ can induce 
fibroblasts activation and epithelial cells proliferation,159,160 
which is associated with an enhancement of collagen-VI 
secretion and ultimately fibrosis development.130 Impor-
tantly, both IL-36R blockade and IL-36 genes knockout are 
sufficient to attenuate intestinal fibrosis, which highlights 
the therapeutic values of IL-36 in fibrosis.130
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5) Tumor necrosis factor-like ligand 1A
Tumor necrosis factor-like ligand 1A (TL1A) is a mem-

ber of TNF superfamily and interacts with death recep-
tor-3 (DR3) to form TL1A/DR3 co-stimulatory system.161 
Aberrant TL1A/DR3 signaling is involved in chronic 
inflammation and fibrogenesis.162-165 CD patients with 
higher expression of serum TL1A were prone to develop 
stricture.166 Another study found that CD patients present-
ing with specific TL1A genotype rs6478108 were suscep-
tible to forming stricturing phenotype.167 In vivo, mice 
with constitutive TL1A expression exhibited exaggerated 
intestinal inflammation and fibrosis,166,168 while neutral-
izing anti-TL1A antibody attenuated and even reversed the 
established fibrosis.131,165,169 Additionally, pro-fibrotic ef-
fects of TL1A/DR3 may depend on the presence of micro-
biota, since fibrosis was resistant in transgenic TL1A mice 
when specific microbiota such as Mucispirillum schaedleri 
and Ruminococcus absented.170 In phase 2 clinical trial 
(NCT02840721), treatment with anti-TL1A antibody (PF-
06480605) has reduced the expressions of fibrotic-related 
genes and alleviated ECM remodeling.171

2. Inflammation-independent molecular mechanisms
Recently, several inflammation-independent mecha-

nisms including ECM interaction, creeping fat (CrF), gut 
microbiota, as well as metabolic reprogramming, have 
attracted much attention because of their unique roles in 
intestinal fibrosis, which will be discussed in the following 
part.14,172,173

1) ECM-cells interactions
ECM is a highly specialized and dynamic three-dimen-

sional scaffold in tissue, which is an active player rather 
than a purely passive player in fibrosis.14 ECM comprises a 
variety of fibrous components such as collagens, hyaluro-
nan (HA) and fibronectin.174 HA exists as a high-molecu-
lar-weight polymer in normal conditions. During excessive 
inflammation, the polymer is cleaved to fragments of lower 
molecular weight, which promotes fibroblasts prolifera-
tion and myofibroblasts differentiation, thus contributing 
to fibrosis process. Besides, HA in low molecular weight 
fragments aids in recruiting immune cells to inflammatory 
sites, which in turn release a variety of inflammatory medi-
ators and growth factors to initiate fibrosis.175-177 Fibronec-
tin can enhance the susceptibility of SMCs to proliferation 
through combining with αVβ3 integrin.178 Additionally, 
the phenotype and function of myofibroblasts are altered 
along with the increased ECM stiffness. Myofibroblasts 
isolated from stenotic intestine display enhanced contrac-
tility of ECM and decreased activity of MMP-3, resulting 
in a vicious circle that further leads to tissue rigidity.38 

Increased ECM stiffness is also able to drive fibroblasts to 
produce more ECM proteins through the Hippo and yes-
associated protein pathway.14

2) CrF and intestinal fibrosis
CrF indicates that mesenteric fat wrapping around 

more than 50% of the intestinal circumference, which is 
the unique hallmark of CD.179 Although CrF was first de-
scribed nearly 100 years ago, whether CrF is pathogenic or 
protective is still a controversy.179 Previous studies found 
that CrF was associated with the severity of intestinal in-
flammation and strictures.180 Inclusion mesentery in ileo-
colic resection achieved a reduction of stricture recurrence 
and reoperation.181,182 However, Ha et al.183 has reported 
that translocation of Clostridium innocuum to mesenteric 
adipose tissue (MAT) stimulated tissue remodeling via M2 
macrophages and adipose proliferation, suggesting that 
CrF may restrict intestinal inflammation and bacterial dis-
semination in CD patients.

The relationship between CrF and intestinal fibrosis is 
still underexplored. Our previous study has uncovered a 
positive feedback loop between CrF and intestinal muscu-
laris propria.184 Firstly, CrF-derived long-chain free fatty 
acids significantly enhanced proliferation and activation of 
intestinal muscle cells, with increased production of ECM 
proteins and strictures formation subsequently.184,185 Vise 
versa, hypertrophic muscularis propria triggered migration 
of preadipocytes out of MAT by fibronectin production, 
which facilitated CrF development.186 Another study ob-
served that adipocytes within CrF were capable to convert 
to fibroblasts, whereas selective ablation of CrF adipocytes 
attenuated collagen deposition and bowel wall thicken-
ing.187 Noteworthily, new animal models via repeated 
colonic biopsy or antimesenteric enterotomy have been 
recently established,188,189 which will make a big difference 
for uncovering the complex relationship between CrF and 
intestinal fibrosis in the future.

3) Gut microbiota
Accumulating evidence indicates that gut microbiota 

plays crucial roles in fibrosis.8 The direct evidence was 
that experimental mice when reared under specific-
pathogen-free conditions displayed a minimal inflam-
mation, whereas when injected bacteria or bacterial wall 
components they exhibited inflammation and fibrosis.190 
The terminal ileum is the most common site of intestinal 
stricture, where AIEC mainly colonize, giving us a hint 
that AIEC may be correlated with fibrosis development.191 
Indeed, research using mice with AIEC inoculation found 
that flagellin of AIEC via IL-33-ST2 signaling facilitated 
intestinal fibrosis.127 Intestinal fibroblasts isolated from CD 
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patients are observed to have an increased expression of 
several Toll-like receptors (TLRs) including 2, 3, 4, 6, 7.192 
It is known that TLRs can be activated by perceiving mi-
crobial components, which are called pathogen-associated 
molecular patterns.172 The activated TLRs then promote 
the differentiation of fibroblasts into myofibroblasts.192 
For example, TLR-3 activation in fibroblasts can augment 
α-SMA expression and TGF-β1 production via NF-κB 
signaling.193 Additionally, lipopolysaccharide activating 
TLR-4 can also stimulate α-SMA expression and collagen 
synthesis in fibroblasts.194,195 In conclusion, when exposed 
to pathogen-associated molecular patterns, intestinal myo-
fibroblasts expressed upregulated levels of α-SMA and in-
creased production of ECM proteins, thus confirming the 
link between gut microbiota and intestinal fibrosis.172,174,192

4) Metabolic reprogramming
Metabolic reprogramming has been widely described 

in fibrotic diseases. Generally, increased glycolysis and 
decreased fatty acid metabolism in fibroblasts are the main 
manifestations of metabolic reprogramming,173 Succinate is 
a key regulator of glycolysis.173 A recent study has reported 
that the expression levels of succinate and its specific re-
ceptor SUCNR1 in both serum and intestinal tissue are 
significantly increased in CD patients when compared with 
non-CD patients. Additionally, fibroblasts isolated from 
damaged intestine of CD patients also displayed an en-
hanced expression of SUCNR1. Furtherm ore, fibroblasts 
treated with succinate dose-dependently increased mRNA 
expressions of pro-fibrotic factor (e.g., TGF-β), as well as 
fibrotic markers (e.g., COL1A1, α-SMA), implying that 
succinate may be a potential target for intestinal fibrosis.196

With regard to lipid metabolism, peroxisome prolifer-
ator-activated receptor-γ (PPAR-γ) is responsible for the 
uptake and oxidation of fatty acids and is recognized as an 
anti-fibrotic factor.173,197 Results from a mice model with 
intestinal fibrosis showed that the expression of PPAR-γ 
was significantly decreased in fibrotic colon. Additionally, 
the administration of PPAR-γ agonist (GED-0507-34 Levo) 
was able to reduce the production of collagens and the ex-
pression of pro-fibrotic molecules, as well as prevent TGF-
β-induced EMT, thus attenuating fibrosis.197

FUTURE PERSPECTIVE

Despite substantial progress have been achieved over 
the past decades in the understanding of cellular and mo-
lecular pathogenesis of fibrosis, ideal anti-fibrotic agents 
that specifically target intestinal fibrosis without signifi-
cant side-effects have not been identified yet. Unravelling 

the inflammatory-independent mechanisms concerning 
pathogenesis of intestinal fibrosis, such as intestinal mus-
cularis propria thickening, microbiota colonization and 
mesenteric fat hypertrophy, may open a new avenue to this 
perplexing issue.172,198 In addition, emerging methodology 
such as scRNA-seq has brought about new discoveries. For 
example, a deeper understanding of cell populations like 
fibroblasts or macrophages may reveal novel therapeutic 
points towards fibrosis.29,82 The past few years have also 
witnessed a rapid evolution of multi-omics analyses, which 
are able to integrate data across different levels of cellular 
organization, including genomes, epigenomes, transcrip-
tomes, as well as proteomes. These multifaceted ap-
proaches provide an unprecedented opportunity to decode 
the complex mechanisms underlying intestinal fibrosis. 
Promising anti-fibrotic agents targeting intestine should be 
available in the near future.
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