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Single-cell RNA sequencing reveals changes in glioma-
associated macrophage polarization and cellular states of
malignant gliomas with high AQP4 expression
Ran Wang 1,5, Lu Peng2,5, Yong Xiao1,5, Qi Zhou1, Zhen Wang1, Lei Tang1, Hong Xiao3, Kun Yang 1✉, Hongyi Liu 1✉ and Li Li 4✉

© The Author(s) 2022, corrected publication 2023

Glioma is the most common primary central nervous system tumor in adults. Aquaporin-4, as a water channel protein encoded by
AQP4 in the brain, is reported to alter its aggregation status to affect plasma membrane dynamics and provide the potential for
metastasis of tumor cells and components of the tumor microenvironment. We performed single-cell RNA transcriptome
sequencing of 53059 cells from 13 malignant glioma samples and spotted that the expression of AQP4 differed between samples.
The same result was observed in the TCGA glioma database, showing poor overall survival and poor response to chemotherapy in
AQP4 overexpressed populations. Concomitant with the overexpression of AQP4, genes related to the immune system were also
over-expressed, such as CD74, HES1, CALD1, and HEBP2, indicating AQP4 may relate to immune factors of tumor progression. We
also found that tumor-associated macrophages tended to polarize toward M2 macrophages in the high AQP4 group. In
glioblastoma samples, we examined cell status differences and identified that cell status differs according to AQP4 expression
levels. Briefly, our study revealed substantial heterogeneity within malignant gliomas with different AQP4 expression levels,
indicating the intricate connection between tumor cells and the tumor immune environment.
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INTRODUCTION
Glioma is the most common type of tumor in adults’ central
nervous system (CNS). Grade III and IV gliomas are more malignant
due to their rapid progression and high recurrence rate [1].
Glioblastomas (GBMs), in particular, lead to a poor prognosis
despite the standard radiotherapy and chemotherapy adminis-
tered, with overall survival of only 12 to 18 months [2].
Targeted therapies have always been potential strategies for

this notorious tumor. However, it has had little impact on glioma
treatment these years. Recent advances [3, 4] suggest that
targeted therapies that are often used in clinical practice won’t
benefit overall survival as they may induce resistance after a
period of therapy, leading to immune suppression. Immunother-
apy strategies are also meant to deal with this tricky situation.
However, evidence shows that the efficacies of immunotherapy
remain limited, including cellular [5, 6], vaccination [7, 8], and
immune-checkpoint inhibitor treatment [9].
The tumor microenvironment (TME) consists of immune cells,

lymphocytes, bone marrow-derived inflammatory cells, blood
vessels, extracellular matrix, fibroblasts, and signaling molecules
[10]. TME, especially the immune microenvironment, is associated
with tumorigenesis as it can harbor tumor cells and stimulate
uncontrolled cell proliferation [11–13], explaining the poor efficacy
of current treatments.

Recent studies show that the immune microenvironment varies
across different tumor types. Unlike nuances of cell atlas in
melanoma, pancreatic, colorectal, and breast cancer, GBMs seem
to change the composition of the immune microenvironment
significantly to the opposite extreme [14], indicating potential
characteristics related to the immune microenvironment are to be
discovered.
The lymphatic system is the bridge between the circulatory and

the immune system. It has been recently identified that the brain
has its unique lymphatic system—the glymphatic system. It clears
the interstitial solutes in the brain parenchyma, associated with
the causes of many neurodegenerative diseases [15, 16]. The
glymphatic system clears the interstitial solutes in the brain
parenchyma. Moreover, it has been revealed to transport CNS-
derived antigens to induce an immune response, influencing the
outcome of brain tumors [17]. Aquaporin-4 (AQP4) is a crucial
protein in the glymphatic system [18]. It is concentrated in
perivascular and subpial end-foot membranes, and creates micro-
domains at the blood-brain and cerebrospinal fluid brain barrier
[19]. The previous study [20] shows that the expression of AQP4
varies across different grades and individuals. Due to its pivotal
role in the glymphatic system, AQP4 may contribute to the impact
on glioma malignancy. At present, some studies suggest AQP4
may be a marker for the progression of malignant glioma [21],
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while others argue that AQP4 has no impact on the overall survival
of IDH-wildtype GBMs [22]. As for immune-related aspects, there is
little research regarding AQP4 and glioma’s immune system
within the last ten years except for two case reports [23, 24]. Its
role in the glioma immune microenvironment is yet to be
revealed.
Single-cell RNA sequencing (scRNA-seq) allows us to probe the

expression distribution down to the individual cell level [25]. As
the diversity of cell type and tumor microenvironment is
increasingly studied in the field of glioma therapy, scRNA-seq
becomes more and more appealing to glioma research. By
digging and comparing the heterogeneity of glioma cells based
on the expression of AQP4, we investigated the correlation
between AQP4 and the glioma immune microenvironment from a
novel perspective.

RESULTS
Tumor heterogeneity revealed within glioma samples
We used the public glioma dataset GSE135045 [26], and collected
additional resection samples from 6 patients with malignant
glioma during surgery. All glioma samples used were assessed by
pathologists using the 2021 WHO Classification of Tumors of the
Central Nervous System (Supplementary Table S1). After con-
structing scRNA-seq libraries according to the protocol, we
performed strict quality control, normalization, and data scaling.
Eventually, we obtained a total of 53059 cells and 34031 genes per
cell for subsequent analysis (Fig. 1a). These cells were clustered
into 43 groups using unsupervised Uniform Manifold Approxima-
tion and Projection (UMAP) (Fig. 1b). Two comprehensive
reference data sets were used to perform cluster annotation
(see Material and methods). We managed to confirm the identity
of macrophages, monocytes, T cells, B cells, oligodendrocytes, and
pericytes (Fig. 1c, d). The rest of the cells were suspiciously
malignant cells as these clusters were far away from each other,
suggesting that they were highly heterogeneous as formerly
described [27].

AQP4 expression profile varies across glioma samples
Assuming those undefined clusters of cells are genuine tumor
cells, we extracted these cells and performed unsupervised
clustering using t-Distributed Stochastic Neighbor Embedding (t-
SNE) for visualization (Fig. 2a). As a result, we found it still
remarkable that the samples were highly different. Therefore the
influence of other types of cells on clustering was excluded. To
further verify whether these cells are genuine malignant cells, we
analyzed the copy number variation (CNV) of each sample. We use
the inferCNV R package to infer somatic large-scale chromosomal
copy number alterations [28]. According to inferCNV manual, the
cut-off was set to 0.1 for the minimal average read counts per
gene among cells. The output heatmap (Fig. 2b) was rather
apparent that all samples showed over or less abundance in
different regions of the tumor genome, respectively. Thus, we
were confident that these previously undefined clusters of cells
were tumor cells.
Based on the dimensional reduction plot of tumor cells, we

further examined the AQP4 expression among each glioma
sample. Interestingly, the AQP4 expression profile varies across
glioma samples. The expression of AQP4 was relatively high in
4 samples (Sample 1, 2, 12, and 39) and low in the other samples
(Fig. 2c, d). For the convenience of subsequent analysis, we put
samples 1, 2, 12, and 39 together as the “high AQP4” group,
samples 3, 7, 16, 20, 21, 44, 45, 47, and 49 as “low AQP4” group.

The association between AQP4 expression and the prognosis
of gliomas
To demonstrate the meaning of AQP4 expression diversity, we
used the TCGA GBM (the glioblastoma dataset, n= 163), LGG (the

lower grade glioma dataset, n= 518), and GTEx normal brain
tissues data (n= 207) to compare with all types of tumor samples
and paired normal tissues. The gene expression profile showed
that AQP4 is highly expressed in gliomas (including GBM and
LGG) than in normal brain tissues. In other organs, comparably,
AQP4 expressions are at very low levels in both tumor and paired
normal tissues (Fig. 3a), consistent with previous studies [29, 30].
We further compared AQP4 expression levels between tumor and
normal brain tissues of LGG and GBM, respectively, and found
that AQP4 tends to be overexpressed in the tumor samples
(p < 0.05, Fig. 3b), inferring that AQP4 may have an impact on
glioma development. The Kaplan–Meier survival analysis was
performed to investigate the association between AQP4 expres-
sion and prognosis of gliomas to describe the Overall Survival
(OS) curves of AQP4 over- and lower-expression groups in all
gliomas (TCGA GBM and LGG), GBM, and LGG datasets,
respectively. Log-rank was used to validate the difference
between two groups in each dataset (Fig. 3d). The hazard ratio
was calculated based on the Cox proportional-hazards model to
evaluate the risk of death. Compared to the low AQP4 group, the
high AQP4 group tended to have shorter OS in all gliomas (Fig.
3d, Supplementary Fig. S1). In LGG, the same result was achieved.
In GBM, however, the discrepancy of OS was not significant
between low AQP4 and high AQP4 groups, consistent with the
result of an earlier study [22].
Previous studies have shown that AQP4 regulates water

homeostasis in the brain [31, 32], potentially associated with
blood-brain barrier permeability and cerebral edema. Cerebral
edema comes with radiotherapy [33, 34], leading to a poor
prognosis. On the other hand, Blood-brain barrier permeability
can affect chemotherapy efficiency [35–37], leading to a poor
prognosis. Thus, we continued to investigate its correlation with
radiotherapy and chemotherapy prognosis. We acquired data
from glioma individuals who went through radiotherapy (n= 184)
and chemotherapy (n= 93) from the TCGA dataset (Supplemen-
tary Table S2) for subsequent analysis. Median OS was used as a
cut-off where individuals with larger values were assigned to the
Longer OS group and the others to the Shorter OS group. We
compared AQP4 expression levels between two groups and found
that individuals with shorter OS in the chemotherapy group
showed higher AQP4 expression levels than those with higher OS
(Fig. 3c, Supplementary Table S3). On the other hand, this
difference was not significant in the radiotherapy group, suggest-
ing that AQP4 was more meaningful for cases that went through
chemotherapy rather than radiotherapy.

AQP4 related differentially expressed genes are associated
with glioma immune microenvironment
We next focused on AQP4-related genes, trying to discover events
that would potentially influence the prognosis of glioma.
“FindAllMarkers” function of the Seurat R package was used to
perform the Wilcoxon Rank Sum test to identify differentially
expressed genes (DEGs) that were upregulated in each group
(Supplementary Table S4). Gene ontology analysis showed that
genes upregulated in the high AQP4 group are relevant to
immune-related entries (Supplementary Fig. S2). Eventually, we
targeted four over-expressed genes (Fig. 4a, logged fold change
>0.25) in the high AQP4 group: CD74, HES1, CALD1, and HEBP2.
The average expression of each DEG was also calculated in non-
log space by Seurat’s “AverageExpression” function, showing the
notable difference between the two groups (Fig. 4b, c). A recent
study showed that brain tumors utilize CD74 activation to escape
pro-inflammatory M1 conversion [38], indicating that CD74 is
closely related to the glioma immune microenvironment. HES1
has been proven regulated by the NOTCH signaling pathway [39],
along with the Hedgehog and Wnt signaling pathways [40], which
are common pathways of tumor cells and also related to immune
response [41]. CALD1 is a cytoskeleton-associated protein that has
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been revealed to be related to neoplastic angiogenesis [42], and
immune infiltrates in gastric cancers [43]. As for HEBP2, there is
not enough evidence showing its correlation with tumor cells, but
it is believed that its related pathways are innate immune system
[44]. All four selected DEGs were either related to the micro-
environment or the immune system, which is thought-provoking

that these DEGs and AQP4 may be associated with the glioma
immune microenvironment.
Thus, we extracted macrophages from initially clustered scRNA-

seq data (Fig. 1c, cluster “Macrophages”), split them into two
groups by the same standard of tumor cells, and constructed a
single-cell pseudo-time trajectory via Monocle 3 R package.

Fig. 1 scRNA-seq result of 13 individual glioma samples. a The UMAP plot showed 53059 profiled cells from glioma samples. Different
samples were labeled with different colors. b Unsupervised clustering results distinguished with different colors. c Cell types are marked with
different colors. d Dot plot demonstrated three top expressed genes of each cluster. The color of dots represents the mean level of a specific
gene, and the size of dots represents the number of cells expressing this gene.
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Dimension reduction and batch effect removal was performed
before ordering cells based on progression states. The root state
of the pseudo-time trajectory was manually set with markers
referencing the work of Nestorowa et al. [45], inferring they hold
the characteristic of progenitors. We noted that the pseudo-time
trajectory pattern of the DEGs was almost identical, except that

the CD74 expression level in the low AQP4 macrophage group
was slightly lower than in the high AQP4 macrophage group (Fig.
5a, b). Next, we analyzed the average expression of M1 and M2
polarized macrophage markers to evaluate the polarization profile
related to the tumor immune microenvironment. Interestingly, we
noticed that macrophages of the high AQP4 group tended to
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Fig. 3 Landscape of AQP4 expression in TCGA dataset. a AQP4 expression profile across all tumor samples and paired normal samples.
Tumor samples (T) are indicated by red, and normal tissue samples are green, using a normalization method that calculates transcripts per
million (TPM). b The TCGA LGG (n= 518) and GBM (n= 163) dataset, as well as GTEx normal brain tissues data (n= 207) showing AQP4, was
upregulated in tumor samples. c The AQP4 Kaplan–Meier survival analysis shows OS of all gliomas (left), GBMs (middle), and LGGs (right).
d Boxplot displaying AQP4 expression levels of longer and shorter OS groups in samples went through chemotherapy (left) and radiotherapy
(right).
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polarize in the direction of M2 macrophages, while those of the
low AQP4 group showed no apparent tendency (Fig. 5c). This
result was corroborated by flow cytometry analysis (Supplemen-
tary Fig. S3). We retrieved the functional protein association
network to explore further the potential proteins interacting with
AQP4 (Fig. 5d, Supplementary Table S5). Four DEGs were
presented in the network, consistent with the result we derived
with Seurat, demonstrating that AQP4 is associated with DEGs. In
addition, we observed that many genes that upregulated in M2
polarized macrophages were also revealed in this network.

AQP4 expression level is associated with the distribution of
glioma cellular states
Next, we focused on the association between AQP4 and the
progression of gliomas. Tumor cells of high AQP4 and low AQP4
groups were separately pooled, dimension reduced, and normal-
ized via Monocle 3 R package. The pseudo-time trajectory was
performed based on the same protocol we used in Fig. 5a. We
chose OLIG2 as a root-state marker, as it had long been treated as
stem cells of malignant glioma [46–48], and ordered cells to
visualize the development of glioma cells (Fig. 6a). Similarly, we
constructed a pseudo-time trajectory pattern of the DEGs in tumor
cells (Fig. 6b). Notably, DEGs are hardly expressed at the start point
of the pseudo-time trajectory, i.e., cells with proliferation potential,
implying that DEGs in the low AQP4 group tend to upregulate in

cells with invasion potential. We asked whether this difference is
related to the diversity of the microenvironment. A previous study
reported that GBM malignant cells contain four different cellular
states, which are plastic depending on the variety of microenvir-
onment [49]. Based on this, the tumor cells of GBM samples were
pooled to examine different cellular state proportions. Following
the integrative model of GBM reported by Neftel et al. [49], we
used their published algorithm to highlight oligodendrocyte-
progenitor-like (OPC-like), neural-progenitor-like (NPC-like),
astrocyte-like (AC-like), and mesenchymal-like (MES-like) cells
(Fig. 6c). Different cellular states landscape was revealed in two
groups: Most cells in GBMs of the high AQP4 group tended to be
MES-like and AC-like cells while those of the low AQP4 group did
not, suggesting AQP4 expression level may be associated with
GBM cellular states proportions.

DISCUSSION
AQP4 is a glial water channel protein that regulates water
homeostasis in the brain. It has been identified that alterations of
the AQP4 aggregation state can influence plasma membrane
dynamics, offering the potential for metastasis of glioma and
changes of the tumor microenvironment. However, few previous
studies have put AQP4 and the glioma immune microenvironment
together, and neither have they utilized single-cell sequencing
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analysis to reveal the AQP4 expression profile in malignant
gliomas. We performed AQP4-related analyses of different types of
cells in malignant glioma samples using single-cell transcriptome
analysis. Our findings discovered for the first time that AQP4 can
alter the polarization tendency of tumor-associated macrophages
(TAMs), associated with the immune microenvironment of glioma,
consequently causing alterations in glioma cellular states.
AQP4 is generally highly expressed in brain tissues, which is

determined by the properties of AQP4 and has been widely
confirmed by studies [18, 19]. We further validated that its
expression level is even higher in gliomas compared with normal
brain tissues. We found that increased expression of AQP4 can
lead to reduced OS in malignant gliomas, resulting in a poor
prognosis. Previous studies have shown that high levels of AQP4
expression are not associated with OS in GBMs [22]. Consistently,
our study found that high levels of AQP4 expression are not
associated with OS in GBM, either. However, AQP4 expression

levels were strongly correlated with OS of LGGs, i.e., LGGs with
high levels of AQP4 expression may have shorter OS and are more
likely to be led to poor prognosis. We speculate that this is
because GBM itself has an extremely short overall survival, and the
influence of AQP4 is on the mild side.
Since AQP4 is crucial in the glymphatic system and able to

maintain water homeostasis in brain tissue [18, 19], we suspect
that there may also be a correlation between AQP4 and edema
and drug delivery. In the treatment of glioma, radiotherapy may
lead to edema, and the effect of chemotherapy is dependent on
drug delivery. Out of this, we further investigated the relationship
between AQP4 and the difference in OS of individuals under
radiotherapy and chemotherapy. We found that the level of AQP4
expression could differentially affect the OS after chemotherapy,
but not that of radiotherapy. We theorized that this might be
related to the regulation of permeability of the blood-brain barrier
by AQP4. Previous studies have shown that enhanced
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phosphorylation of AQP4 can reduce water permeability and
decrease the invasiveness of tumor cells. Still, its association with
chemotherapeutic drug delivery has not been analyzed, and the
relationship with prognosis has not been elucidated. Therefore,
more validation studies are needed to address this issue.
By performing differential expression analysis on our malignant

glioma samples, we identified four DEGs, CD74, HES1, CALD1, and
HEBP2, significantly upregulated in the AQP4 high expression
group. All four DEGs were more or less associated with the tumor
microenvironment and the immune system [38–42, 50]. Since all
four DEGs with similar expression patterns to AQP4 were

associated with the tumor microenvironment and the immune
system, we suspected that AQP4 itself might be related to the
immune microenvironment of glioma. Accordingly, we performed
further analysis for TAMs in our samples. We found that the TAMs
in the high AQP4 group tended to become M2 macrophages,
whereas the TAMs in the low AQP4 group did not demonstrate a
significant polarization tendency. In the protein interaction
network, many M2 macrophage markers were noticed, along
with a few markers of M1 macrophages linked to AQP4, too.
However, some markers of M1 macrophages in the network were
linked with those of M2 macrophages in this network. IL-6, for
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Fig. 6 Pseudo-time trajectory analysis revealed different regulation patterns in tumor cells. a Pseudo-time trajectory of all glioma. Left: the
trajectory of the high AQP4 group. Right: the trajectory of the low AQP4 group. Purple: early stages. Yellow: late stages. b Pseudo-time
trajectory of DEGs of glioma cells in high AQP4 (left) and low AQP4 group (right). Different from the high AQP4 group, DEGs of the low AQP4
group did not upregulate at an early stage. c Two-dimensional plot visualization of different cell state scores. Red dots highlight high AQP4
populations. Blue dots represent low AQP4 populations.
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example, is upregulated in M1 macrophages but was also
reported to be able to influence the balance between M1 and
M2 macrophages and contribute to inducing M2 macrophage
polarization [51, 52], explaining the noticeable M2 type bias of
macrophages in the high AQP4 group. A previous study has
demonstrated that AQP4 blockade alleviated irradiated lung
damage and inhibited activation of M2 macrophages [53].
However, similar studies related to brain tumors are absent at
this moment. With trajectory analysis, we noticed that in the low
AQP4 group, the expression of CD74 is upregulated earlier than
AQP4, indicating that CD74 may play an upstream regulating role
for AQP4. Plus, CD74 is a receptor of macrophage migration
inhibitory factor (MIF). Several studies have shown that MIF/CD74
impedes microglial M1 polarization [54–56]. We suspect that AQP4
has the ability to indicate the polarization propensity of
macrophages and thus the glioma immune microenvironment.
As cellular states of GBMs are plastic depending on the diversity

of the microenvironment [49], we further examined the cellular
states of GBMs in our single-cell samples. Our results show that
samples with higher AQP4 expression levels tended to be MES-like
and AC-like states. It has been proven that MES-like and AC-like
cells express major histocompatibility complex significantly
higher, indicating the interaction between immune cells and
MES-like cells (as well as AC-like cells) [57]. Furthermore, the
previous study also revealed that macrophages induce a transition
of tumor cells into MES-like states, and MES-like cells are also
related to a mesenchymal program in macrophages [57]. Thus, we
assume the alteration of AQP4 expression levels may involve the
interaction between the immune microenvironment and tumor
cell states, impacting glioma’s malignancy by transitioning into
MES-like states. However, our study does not yet have enough
data to decipher the effects of AQP4 on the growth and
development of glioma cells or TAMs, and more extensive work
is warranted for further investigation.
In summary, our study provides a novel perspective to

investigate the impacts of AQP4. We identified the crucial role
that AQP4 plays in the immune microenvironment of malignant
gliomas, suggesting that AQP4 has the potential to be a
breakpoint in malignant glioma for future discovery of the
immune microenvironment of glioma.

MATERIAL AND METHODS
Glioma samples collection and processing
The fresh glioma samples were obtained during the surgeries in size of
1 cm × 1 cm × 1 cm. All samples were resected from tumor core area.
Detailed sample information is listed in Supplementary Table S1. The usage
of samples was approved by the Institutional Review Board at Nanjing
Brain Hospital Affiliated to Nanjing Medical University. Informed consent
was signed by each patient. Samples were stored in GEXSCOPE™ Tissue
Preservation Solution (Singleron Biotechnologies, Nanjing, China) at 4 °C
and transported to the laboratory within 6 h. The specimens were rinsed
with Hanks Balanced Salt Solution (HBSS) three times and split into
1–2mm pieces. The pieces were then digested with 2ml of GEXSCOPE™
Tissue Dissociation Solution (Singleron Biotechnologies) at 37 °C for 15min
with sustained agitation. Then, the samples were filtered through 40 µm
sterile strainers and centrifuged at 1000 rpm for 5min, 4 °C. Afterward, the
supernatants were discarded. The cell pellets were suspended in 1ml
phosphate-buffered saline (PBS; HyClone). 2 ml GEXSCOPE™ Red Blood Cell
Lysis Buffer (Singleron Biotechnologies) was added to cell suspension at
25 °C for 10min to remove the red blood cells. Subsequently, the solution
was centrifuged at 1000 rpm for 5min and suspended in PBS. Samples
were counted with a TC20 automated cell counter (Bio-Rad).

Single-cell RNA library construction and sequencing
Single-cell suspension was of 1 × 105 cells/ml in PBS and loaded onto a
microfluidic chip according to the Singleron GEXSCOPE™ Single Cell RNA-
seq Library Kit (Singleron Biotechnologies). Single-cell RNA libraries were
constructed following the GEXSCOPE™ protocol [58]. After construction,
the libraries were initially quantified using a Qubit 2.0 Fluorometer and

diluted to 1.5 ng/µl. All libraries were more than 2 nM, examined by qRT-
PCR, and pooled for sequencing. The pools were sequenced on the
Illumina HiSeq X10 platform with 150 bp paired-end reads.

Single-cell RNA library pre-processing
Raw reads were processed to generate gene expression profiles using the
standard internal pipeline based on the Cell Ranger toolkit (version 2.1.1).
The raw base call (BCL) files were used to generate the FASTQ files with the
“mkfastq” command. After read 1 without poly T tails were removed, cell
barcode and unique molecular identifiers (UMIs) were extracted. Adapters
and poly-A tails were trimmed (fastp V1) before aligning the read 2 to
GRCh38 Ensemble build 92 genomes (fastp 2.5.3a and featureCounts 1.6.2).
Reads with the same cell barcode, UMIs, and genes were grouped to
calculate the number of UMIs per gene per cell. The UMI count tables of
each cellular barcode were used for further analysis.

Single-cell RNA-seq data quality control and preparation
All the scRNA-seq data were loaded and merged into one object with
Seurat [59, 60]. The following standards ruled out Low-quality cells: low
feature counts (<200), high feature counts (>5000), and high mitochondrial
content (>30%). The built-in SCTransform algorithm processed the Seurat
object to perform sample integration, gene normalization, and data
scaling. The “RunPCA” function was used to reduce dimension.

Cell clusters annotation
Unbiased cell type recognition was performed by SingleR [61] with two
comprehensive human reference data sets, one from the Human Primary
Cell Atlas [62] and one from the Blueprint [63] and ENCODE [64] projects.
Cell type recognition was also verified by known cluster-specific
differentially expressed genes.

Copy number variations inference
Copy number variations were inferred by inferCNV [28]. 10X counts matrix
was extracted from the Seurat object and input to the “CreateInfercnvOb-
ject” function, along with the annotation file extracted from the Seurat
object metadata and the genome position reference data set obtained
from the GENCODE project (version 36). Then, the inferCNV object was
processed with the “infercnv::run” function with dynamic threshold
denoising to infer copy number variations.

Pseudo-time trajectory inference
We use monocle3 to perform pseudo-time trajectory inference. Briefly, we
transformed the Seurat object into the monocle3 required “cell_data_set”.
The batch effect was removed with cell alignment by the “align_cds”
function. Dimension was reduced by the “reduce_dimension” function
using UMAP. The pseudo-time trajectory was inferred by the “learn_graph”
and “order_cells” functions using DDRThree. We chose cells with the most
OLIG2 expression level as the “root_state”.

Statistical analysis
Statistical analysis was performed on the IBM SPSS® software platform. The
statistical significance threshold was set to p < 0.05. All significance was
performed by t-test.

General gene expression profile and survival analysis
We use GEPIA2 platform [65] to analyze the RNA sequencing expression
data of glioma and normal samples from the TCGA and the GTEx projects,
respectively. Gene expression profile across samples was calculated by the
“General Information” pipeline. Overall survival Kaplan–Meier curve plot
was generated by the “Survival Analysis” pipeline.

Functional protein association network analysis
The protein interaction network was built based on STRING database v11 [66].
The TSV format network files were imported to Cytoscape v3.8.2 [67] and
processed by network analyses. The network was visualized with an organic
layout. The size of nodes was adjusted according to the degree of connectivity.

Immunofluorescence
The samples were collected from formalin-fixed paraffin-embedded
sections of primary GBMs. First, the sample slides were incubated with
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the first primary antibody against AQP4 (#16473-1-AP; Proteintech; 1:200)
overnight at 4 °C. Then, the samples were incubated with the first
corresponding secondary antibody for 50min at room temperature away
from light. Next, the samples were incubated with the second primary
antibody CD74 (#GB12179; Servicebio; 1:200) overnight at 4 °C and with
the second corresponding secondary antibody for 50min at room
temperature away from light. DAPI is used for counterstaining to display
nuclei. The same protocol was applied to AQP4(#16473-1-AP; Proteintech;
1:2000) and the rest of DEGs: HES1 (#GB112254; Servicebio; 1:5000), HEBP2
(#A71824-050; Epigentek; 1:1000), CALD1 (#HPA017330-S; Atlas antibodies;
1:2000). At last, the sample slides were imaged using Nikon Imaging
System. Multispectral images were processed and analyzed using
3DHISTECH CaseViewer software.

DATA AVAILABILITY
The scRNA-seq datasets presented in this study can be found in GEO repositories at:
https://www.ncbi.nlm.nih.gov/geo/, GSE135045 and GSE167960.
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