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Abstract
Graph data models are an emerging approach to structure clinical and biomedical information. These models offer intriguing 
opportunities for novel approaches in healthcare, such as disease phenotyping, risk prediction, and personalized precision 
care. The combination of data and information in a graph model to create knowledge graphs has rapidly expanded in bio-
medical research, but the integration of real-world data from the electronic health record has been limited. To broadly apply 
knowledge graphs to EHR and other real-world data, a deeper understanding of how to represent these data in a standardized 
graph model is needed. We provide an overview of the state-of-the-art research for clinical and biomedical data integra-
tion and summarize the potential to accelerate healthcare and precision medicine research through insight generation from 
integrated knowledge graphs.
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Introduction

The term Knowledge Graph (KG) was originally coined 
by Google [1] as a concept for structuring information into 
graphs to enhance web search. KGs are now ubiquitous 
around us and they power the modern web from tailored 
search results to personalized recommendations. KGs have 
also gained traction in biomedicine to represent public bio-
medical knowledge, integrate immunological research data, 
and advance drug discovery [2] and in healthcare, KGs have 
been used to support applications such as clinical decision 
support systems [3]. However, the use of KGs to model and 
drive discovery from real-world data (RWD), such as data 
from the electronic health record (EHR), has been limited. 
Among the emerging literature, findings suggest that there  

is a likely benefit from augmenting healthcare data with 
external knowledge, such as biomedical KGs, for applica-
tions such as disease risk prediction [4]. In this manuscript, 
we provide a brief overview of KGs and describe recent 
successes and future applications for healthcare data.

Technical background: Graphs to knowledge 
graphs

Biomedical data have an inherent graph structure, such as 
drug-disease interactions that capture data from multiple 
domains represented as bipartite networks, or protein-protein  
interactomes which can be represented in a unipartite net-
work [5, 6]. However, traditional approaches to model and 
analyze these data are often reductionist, relying on con-
strained, tabular models without machine-readable context. 
Graphs provide the opportunity to model not just data, but 
also metadata and complex relationships between data ele-
ments. As opposed to the rows and columns used with more 
traditional approaches, graph-oriented models are repre-
sented with nodes, or vertices, and edges, or relationships. 
When data and information are joined in such a structure, 
the resulting data representation is referred to as a knowledge 
graph, which provides a computationally accessible (i.e., 
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machine-readable) representation of relationships between 
disparate biologic systems information. From these KGs, 
novel relationships can be identified and used to generate 
wisdom and actionable insights, as demonstrated in recent 
publications from the fields of computational biology and 
the life sciences [7-9]. In Fig. 1, we illustrate the applica-
tion of the data-to-wisdom pyramid [10] to graph structures, 
which demonstrates how stepwise structuring, contextual-
ization, and integration of graph-oriented data, informa-
tion, knowledge, and wisdom can be used to drive insight 
generation.

Knowledge graph applications

The use of graph models and KGs has increased with access 
to more accessible graph database software. These technolo-
gies have shown efficient query performance, offer unique 
visualization tools, and have integrated specialized analytics 
packages for data science applications [11].

In recent years, biomedical researchers have increasingly 
adopted these technologies to better model the complexity of 
biological systems. In 2019, Bukhari et al. [12] used Neo4J 
– an enterprise graph database – to build a KG from multi-
ple, variably formatted, publicly available data sources to 
support systems-based vaccinology. Related research dem-
onstrates further insights derived from novel KG analysis 
[12]. For example, Youn et al. [9] describe the construction 
of an Escherichia coli antibiotic resistance KG that integrates 
10 publicly available data sources. With this approach, the 
authors identified six novel Escherichia coli resistance genes 
that were identified via graph-based in-silico link predictions 
which were then validated biologically.

Other work has demonstrated the reduction of complex, 
graph-structured information and knowledge into simpler 
mathematical representations, termed embeddings, which 
can be used to retain the structural information encoded 
in graphs to facilitate downstream processing and analyt-
ics [13]. Embeddings build the basis for many graph-based 
data science tasks, such as prediction of edges between 

Fig. 1  Application of the Data-to-Wisdom Pyramid to biomedical 
graph data. Individual data elements can be connected within a graph 
to model information. The cross-domain aggregation of this informa-
tion embeds knowledge directly within the data model, resulting in a 

knowledge graph (KG). These graphs can be used to generate insights 
or wisdom, such as clinical decision support or knowledge-enabled 
explanations, compared to a data model that may lack the more 
detailed context and relationships that are present in a graph model.
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nodes, classification of node types, or clustering of related 
nodes [14]. Embeddings of large biomedical KGs based on 
the Unified Medical Language System (UMLS) have been 
used to predict similarity in meaning of medical concepts, a 
method that can be applied for natural language processing 
(NLP) of clinical texts [15].

Knowledge graph applications in healthcare

Graph networks have rapidly gained traction in basic and 
translational data sets and there is high potential for graph 
databases to be applied in healthcare [16]. However, less 
has been published on the use of graph representations to 
model patient data as shown in a recent systematic review by 
Schrodt et al. [3], which only identified 11 articles that used 
graphs to represent clinical data, such as laboratory results 
and comorbidities (Table 1).

The longitudinal efforts of Baranzini and colleagues have 
demonstrated how biomedical KGs, such as Hetionet [5] and 
its successor, the Scalable Precision Medicine Open Knowl-
edge Engine (SPOKE), can be used to integrate information 
such as biological processes, molecular functions, complex 
diseases, as well as macro-cellular structures, proteins, and 
pathways for use in a variety of biomedical and healthcare 
applications. In 2019, Nelson et al. [20] described the con-
nection of SPOKE with clinical electronic health record 
(EHR) data by leveraging shared concepts between the KG 
and EHR. Compared to using EHR data alone, the enrich-
ment of clinical data with KG embeddings from SPOKE 
improved the performance of a downstream machine learn-
ing-based algorithm to predict the future diagnosis of mul-
tiple sclerosis [4]. It was hypothesized that integrating the 

KG data compensated for missing and/or incomplete data in 
the EHR. While this study showed promising results in the 
detection of the prodromal phase of multiple sclerosis, the 
generalizability of their embedding approach for other EHR 
data sets and predictive tasks remains unknown.

Limitations to knowledge graph 
implementation

While KGs are an intriguing solution to layer biomedical 
knowledge on clinical data sets, there remain challenges 
related to implementation and generalizable application. 
Firstly, biomedicine is an ever-evolving field with over 
one million new publications added to PubMed each year 
– nearly one publication per minute [21]. This poses the 
challenge of how to efficiently and accurately integrate this 
newly generated knowledge into a graph model. Secondly, 
the selection of appropriate node types and vocabularies 
to model data from diverse data sources can be a time- 
consuming and imperfect process, but one that is necessary 
to connect typically disparate data sets. Thirdly, while much 
has been done to create relational common data models for 
real-world data, no such standards exist today for graph-
based data models. There is a need to integrate knowledge 
graphs with existing ontologies and linked data that have 
been implemented using semantic web technologies such 
as the Resource Description Framework (RDF). Finally, 
additional studies assessing the performance of graph-based 
clinical machine learning and artificial intelligence are 
needed to demonstrate the usefulness of knowledge graph 
models for these applications.

Table 1  Overview of biomedical and clinical use cases that can be addressed using graph and knowledge graph-based approaches

Healthcare Use Case Graph and Knowledge Graph Mechanics: Explanation and examples

Drug repurposing,
Comorbid risk prediction

Link prediction: Prediction of the likelihood of an existing edge between two nodes based on the 
entirety of the knowledge. For example, prediction of edge likelihood of drug compound and patient to 
predict personal risk of adverse reaction or links between two diseases posing a high comorbidity risk 
[7, 17].

Disease subtyping Community detection/graph clustering: Identification of highly connected regions within a real-world 
data graph that can identify patients with a high similarity, e.g., patients with a certain disease subtype 
[8].

Outcome, status, and risk prediction Node classification: Prediction of the likelihood of a patient node being assigned a label based on the 
entirety of their medical data. For example, patient node gets assigned a disease risk label [4].

Visual insights Graph layout and visualization: There have been several studies into the visualization and lay outing 
of graph-structured data, e.g., biomedical or healthcare data, for aiding human interpretability and 
pattern recognition [18].

Complex patient data queries Graph traversal: The inherent connected representation in graphs allows for the easy traversal of the 
graph to identify pieces of information that are separated by several nodes. When combining patient 
data with terminological knowledge, this allows for complex queries, e.g., identification of all patients 
based on a medical condition and its subtypes [19].
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Conclusions

The integration of EHR data into KGs represents a promis-
ing approach to enhance clinical and translational research. 
However, these efforts are still in the early stages of devel-
opment and require more in-depth testing and translation 
before they will be routinely placed into practice. The 
enrichment of EHR and other real-world data with broad 
biomedical knowledge bases is a lofty, but intriguing and 
alluring goal. As a scientific community, through the accu-
mulation and contextualization of vast amounts of informa-
tion and knowledge, we have the opportunity to create next-
generation data models that can embed knowledge to provide 
greater context for analytics and machine learning applica-
tions, drive applications that provide actionable insights, and 
advance the field of real-world evidence generation. But to 
make these data models accessible and generalizable, further 
research is needed to understand best practices regarding 
how clinical data can be transformed into graph models to 
support downstream analytic tasks. Achieving this will allow 
us to better model complex, multi-modal information borne 
out from discoveries of the past and years to come.
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