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Abstract

Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous 

host pathways to cause a chronic, multi-system inflammatory disease in humans. B. burgdorferi 
infection can lead to Lyme carditis, neurologic complications, and arthritis, due to the ability 

of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits 

type I interferon (IFN-I) responses in mammalian cells and tissues that are associated with the 

development of severe arthritis or other Lyme-related complications. However, the innate immune 

sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we 

examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. 
burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse 

and human cells in culture and we document that internalized spirochetes co-localize with the 

pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I 

responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated 

in the absence cGAS or its adaptor Stimulator of Interferon Genes (STING), which function 

to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent 

B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-

type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint 

pathology and inflammation were modestly reduced in cGAS-deficient compared to wild-type 

mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of 

mammalian IFN-I signaling and innate immune responses to B. burgdorferi.
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INTRODUCTION

Lyme disease results from infection with the spirochetal bacterium Borrelia burgdorferi 
and presents as a multi-systemic inflammatory disease causing debilitating morbidity due 

to fatigue, malaise, severe arthritis, and cardiac and neurologic complications (1–4). It is 

the most common tick-borne disease in the United States and is a significant public health 

concern, with the CDC reporting 39,000 cases per year but insurance reports indicating 

prevalence greater than 470,000 cases per year (5–7). Antibiotic treatment is highly effective 

when administered shortly after the tick bite, yet antibiotic efficacy declines as the borrelial 

infection progresses (8, 9). Lyme disease occurs in stages of localized, disseminated, and 

chronic infection as the extracellular pathogen spreads from the site of the tick bite to 

secondary tissues, including the joints, heart, and central nervous system, causing Lyme 

arthritis, carditis, and neuroborreliosis respectively (1–3, 8). The development of arthritis, a 

characteristic symptom of late Lyme disease in North America, is associated with a robust 

innate immune response that includes induction of type I interferon (IFN-I) cytokines (10–

12).

B. burgdorferi elicits a robust innate immune response, resulting in the secretion of pro-

inflammatory cytokines and chemokines (13–20). In addition, B. burgdorferi triggers IFN-I 

responses in a wide array of human cells, mouse cells, and infected tissues (11–13, 19, 

21–28). Evidence suggests that innate IFN-I signaling plays key roles in several aspects of 

B. burgdorferi pathology (29–33). Notably, IFN-I and resulting interferon-stimulated gene 

(ISG) signatures are linked to the development of more severe arthritis in experimental 

models, and also correlate with lingering neurocognitive symptoms of Lyme disease 

(12, 30, 32, 34). In addition, a recent study from Lochhead and colleagues observed 

that a robust interferon gene signature correlates with decreased expression of tissue 

repair genes in synovial lesion biopsies from patients with postinfectious, B. burgdorferi-
induced Lyme arthritis (35). It is well-appreciated that innate immune sensing of the 

abundant B. burgdorferi lipoproteins via Toll-like receptor 2 (TLR2) triggers production 

of pro-inflammatory cytokines and chemokines in vitro and in vivo (14, 36–38). However, 

lipoprotein binding to TLR2 is not a robust inducer of IFN-I responses in most mouse 

and human cell types (39, 40). Studies using human cells have implicated nucleic acid 

sensing TLRs (TLR 7, 8, and 9) as regulators of IFN-I induction in human immune cells 

challenged with B. burgdorferi in vitro (13, 18, 19). In contrast, other reports have shown 

that B. burgdorferi can engage IFN-I responses in non-phagocytic fibroblasts and endothelial 

cells, which do not express a full complement of TLRs (25, 41). Moreover, B. burgdorferi-
related ISG induction in murine macrophages is independent of the two primary TLR 

adaptor proteins MyD88 and TRIF (22, 23). Thus, TLR-mediated sensing of B. burgdorferi 
pathogen-associated molecular patterns does not appear to be the predominant trigger of 

IFN-I responses in mammalian cells during infection.

Innate immune pathways that sense cytosolic nucleic acids, such as the RIG-I-like receptor 

(RLR)-Mitochondrial Antiviral Signaling (MAVS) or Cyclic GMP-AMP synthase (cGAS)-

Stimulator of Interferon Genes (STING) pathway, have emerged as key regulators of 

IFN-I production in both immune and non-immune cells (42–49). Cyclic GMP-AMP 

synthase (cGAS) is an intracellular DNA sensor that localizes to the mammalian cell 
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cytoplasm and nucleus. Upon binding intracellular pathogen DNA, micronuclei, or 

mitochondrial DNA, cGAS generates the non-canonical cyclic dinucleotide, 2’3’-cyclic 

guanosine monophosphate-adenosine monophosphate (cGAMP), which binds STING. This 

results in the recruitment and activation of Tank-binding Kinase 1 (TBK1), leading to 

the phosphorylation of Interferon Regulatory Factor 3 (IRF3) for the induction of type 

I interferons (IFNα, β) and ISGs (42–44). Although initially identified as an antiviral 

host defense pathway, the cGAS-STING pathway is also critical for induction of robust 

IFN-I responses to intracellular bacteria such as Mycobacterium tuberculosis and Listeria 
monocytogenes (45, 50, 51). Moreover, recent work has shown that the cGAS-STING 

pathway is essential for IFN-I production in response to multiple extracellular pathogens, 

including Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus 
(52, 53). B. burgdorferi, predominantly an extracellular pathogen, is readily taken up by 

phagocytic cells and associates with endothelial cells and fibroblasts, which are key sources 

of IFN-I in the Lyme disease joint (54–62). B. burgdorferi also produces cyclic dinucleotides 

c-di-GMP and c-di-AMP, which can directly engage STING (63–66). Thus, there are several 

potential routes by which B. burgdorferi infection could trigger the cGAS-STING-IFN-I 

pathway.

In this study, we tested the hypothesis that B. burgdorferi infection induces IFN-I 

through the cGAS-STING pathway. We exposed phagocytic and non-phagocytic cells 

lacking various components of the cytosolic nucleic acid sensing machinery to viable and 

sonicated B. burgdorferi and evaluated IFN-I and ISG expression after exposure. We also 

assessed the degree of association of B. burgdorferi with cultured fibroblasts and examined 

co-localization of cGAS with intracellular spirochetes. Furthermore, we performed an 

infectivity study with bioluminescent B. burgdorferi in mice deficient in cGAS or STING 

to assess borrelial load by in vivo imaging and joint inflammation using histopathology. 

Our results reveal that B. burgdorferi engages IFN-I responses in a cGAS-STING dependent 

manner without significantly altering infection kinetics or borrelial load in tissues.

MATERIALS AND METHODS

Mouse and B. burgdorferi strains

C57BL/6J (strain 000664), cGAS deficient (cGASKO, strain 026554), STING deficient 

(STINGKO, strain 017537), IFNAR deficient (IFNARKO, strain 028288) and MAVS 

deficient (MAVSKO, strain 008634) were obtained from the Jackson Laboratory. MAVSKO 

mice were backcrossed to C57BL/6J mice for 10 generations before generation of primary 

cell lines. Mice were group-housed in humidity-controlled environments maintained at 

22°C on 12-hour light–dark cycles (600–1800). Food and water were available ad libitum. 

All animal experiments were conducted in accordance with guidelines established by 

Department of Health and Human Services Guide for the Care and Use of Laboratory 

Animals and the Texas A&M University Institutional Animal Care and Use Committee.

Low-passage B. burgdorferi strains B31-A3 and ML23 pBBE22luc were cultured in BSKII 

medium with 6% normal rabbit serum (NRS) (Pel-Freeze Biologicals, Rogers, AR) and 

grown to mid-log phase at 37°C at 5% CO2(67–71). ML23 pBBE22luc cultures were 

supplemented with 300 μg/ml kanamycin.
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Cell culture and B. burgdorferi infection

Primary mouse embryonic fibroblasts (MEFs) were generated from WT, cGASKO, 

STINGKO, IFNARKO, and MAVSKO E12.5 to E14.5 embryos. Cells were grown in DMEM 

(D5756, Millipore Sigma) containing 10% low endotoxin FBS (97068-085, VWR) and 

cultured for no more than four passages prior to experiments. SV40 immortalized cGASKO 

MEFs reconstituted with HA-tagged mouse cGAS were previously reported(72). Primary 

bone marrow-derived macrophages (BMDMs) were generated as described (73). Briefly, 

bone marrow cells were collected from the femur and tibia of mice and differentiated into 

macrophages in DMEM containing 10% low endotoxin FBS, and 20% (v/v) conditioned 

media harvested from L929 cells (CCL-1, ATCC). Cells were plated in Petri plates 

and maintained in L929-conditioned media for 7 days. The day before experiments, 

macrophages were plated in tissue culture plates and maintained in 5% L929. To generate 

immortalized mouse macrophages (iBMDMs), BMDMs were infected with J2 recombinant 

retrovirus (encoding v-myc and v-raf oncogenes) as described (74). iBMDMs were 

passaged for 3 to 6 months and were slowly weaned off of L929 conditioned media 

until they stabilized into cell lines. Human foreskin fibroblasts (HFF, SCRC-1041, ATCC) 

were immortalized using a human telomerase-expressing retrovirus (pWZL-Blast-Flag-HA-

hTERT, 22396, Addgene).

Bacteria were prepared as previously described (61) with the following exceptions. B. 
burgdorferi was grown to mid-exponential phase, centrifuged at 6600 x g for 8 minutes, 

washed twice in PBS, and resuspended in DMEM (D5796, Millipore Sigma) with 10% FBS 

(VWR, 97068-085). Spirochetes were enumerated using dark-field microscopy and diluted 

to the appropriate MOI. Where indicated, plates were spun following the addition of bacteria 

to mammalian cells for 5 minutes at 300 x g. Small molecule inhibitors were added to 

MEFs one hour prior to B. burgdorferi infection. cGAS inhibitor RU.521 (HY-114180, 

MedChemExpress) and STING inhibitor H-151 (HY-112693, MedChemExpress) were 

added at 10 mM and 0.5 mM, respectively (75, 76). MEFs or BMDMs were transfected 

with 2 μg/ml Interferon Stimulatory DNA (ISD, tlrl-isdn, InvivoGen) complexed with 

Lipofectamine 2000 (11668019, ThermoFisher) in Opti-MEM media (11058021, Gibco) 

for 5-20 minutes (73).

Quantitative PCR and RT-PCR

RNA was isolated from mammalian cells using the Quick-RNA Micro Prep Kit (R1051; 

Zymo Research) according to the manufacturer’s instructions. Between 300-500 ng of RNA 

was standardized across samples from each experiment and converted to cDNA with the 

qScript cDNA Synthesis Kit (95047, QuantaBio). Quantitative PCR (qPCR) was performed 

on cDNA using the PerfecTa SYBR Green FastMix (95072, Quantabio) and primers listed 

in Table I. Each biological sample was assayed in triplicate. Relative expression was 

determined for each triplicate after normalization against a housekeeping gene (Bactin or 

Gapdh) using the 2−ΔΔCT method. DNA contamination of RNA samples was evaluated in a 

single, no RT reaction for each primer set.
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Immunoblotting

Protein was collected from cells lysed in 1% NP-40 buffer (50 mM Tris pH 7.5, 0.15 M 

NaCl, 1 mM EDTA, 1% NP-40 and 10% glycerol) supplemented with protease inhibitor 

(04693159001, Roche) and spun for 10 minutes at 17,000 x g at 4°C. The supernatant 

was collected and stored at −80°C. Protein lysates were quantified using the micro-BCA 

assay (23235, ThermoFisher Scientific, Waltham, MA). Immunoblotting was performed 

as described in (77). Briefly, between 20-30 mg protein was run on 10-20% SDS–PAGE 

gradient gels and transferred onto 0.22 μM PVDF membranes (1620177, Bio-Rad). After air 

drying to return to a hydrophobic state, membranes were incubated in primary antibodies 

(Table II) at 4 °C overnight in 1X PBS containing 1% casein, HRP-conjugated secondary 

antibody at room temperature for 1 h, and then developed with Luminata Crescendo Western 

HRP Substrate (WBLUR0500, Millipore).

Immunofluorescence microscopy

Cells were seeded on 12- or 18-mm sterile coverslips, allowed to adhere overnight, and 

infected as described above. At the conclusion of infection, cells were washed with DMEM 

and then 1X PBS, fixed with 4% paraformaldehyde for 15 minutes at room temperature, 

and washed twice with 1X PBS for 5 minutes each. Cells were permeabilized with 0.1% 

Triton X-100 in PBS for 5 minutes at RT, washed twice with 1X PBS and blocked for 30 

minutes in PBS containing 5% FBS. Each coverslip was stained with primary (Table II) and 

secondary antibodies for 1 hour each. Cells were washed in 1X PBS with 5% FBS three 

times after each stain for 5 minutes each. After the last wash, cells were incubated with 

CellMask Green (H32714, Invitrogen) for 30 minutes at 1:500 dilution in 1X PBS. Then, 

cells were washed 2 times more for 5 minutes each with 1X PBS. After the last wash, cells 

were incubated with 4’,6-diamidino-2-phenylindole (DAPI, 62247, ThermoFisher Scientific) 

for 2 minutes at 1:2000 dilution in 1X PBS. Cells were washed 2 times more for 5 minutes 

each with 1X PBS, and coverslips were mounted with ProLong Diamond Antifade Mountant 

(P36961, Invitrogen) and allowed to dry overnight.

Images in Figures 2E and 3A were captured with a LSM 780 confocal microscope 

(Zeiss) with a 63× oil-immersed objective. Z-stack images were processed using Zeiss 

ZEN 3.3 software. Images in Figure 3F and Supplemental Figure 1A were taken with 

an ECLIPSE Ti2 microscope (Nikon) with a 60x oil-immersed or 40X dry objective, 

respectively, and NIS-Elements AR 5.21.02 software. Images in Figure 3F were imported 

into Huygens Essential software (v21.4.0) and deconvolved using the ‘aggressive’ profile in 

the Deconvolution Express application. Images in Supplemental Figure 1E were captured 

with an Olympus FV3000 confocal laser scanning microscope and a 60X oil-immersed 

objective.

For quantification of B. burgdorferi associated with cultured MEF and HFF cells 

(Supplemental Figure 1A), tiled images from infected cells at 24 hours post infection (hpi) 

were taken with 40X objective. From each field, the number of cells with more than one 

B. burgdorferi present the cell area, defined by positive CellMask staining, was annotated. 

B. burgdorferi positive cells were divided by the total number of cells per field, defined by 

counting DAPI positive nuclei, and multiplied by 100 to calculate the percentage of cells 
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with B. burgdorferi associated. Four fields for each cell line 6 and 24 hours post infection 

were quantified from duplicate biological samples, and the average of each cell line across 

replicates and fields was plotted.

Mouse infection with B. burgdorferi with in vivo bioluminescent imaging

Bioluminescent images of mice were collected as previously described (70, 78). Groups of 

5 WT, 5 cGASKO, and 5 STINGKO male mice 6-11 weeks old were subcutaneously injected 

with 100 μl of 105 ML23 pBBE22luc. Prior to imaging, 5 mg of D-luciferin (Goldbio, St. 

Louis, MO) was dissolved in PBS and administered to all except one mouse per group via 

intraperitoneal injection and anesthetized with isoflurane for imaging. Mice were imaged at 

1 hour and 1, 4, 7, 10, 14, 21, and 28 days post-infection (dpi) using the Perkin Elmer IVIS 

Spectrum live imaging system. Bioluminescence from treated mice were normalized to the 

untreated mouse from each group. At 28 dpi, inguinal lymph nodes and skin flanks were 

collected and transferred to BSKII with 6% NRS for outgrowth assays.

Histopathology

Samples of joints and hearts were collected from each mouse following euthanasia at 28 

and 35 dpi, fixed by immersion in 10% neutral buffered formalin at room temperature for 

48 hours, and stored in 70% ethanol before embedding in paraffin, sectioning at 5-6 μm, 

and staining with hematoxylin and eosin by AML Laboratories, Inc. (Jacksonville, Florida). 

The tissue sections were examined using brightfield microscopy in a blinded manner by 

a board-certified anatomic veterinary pathologist and ordinally scored for the degree of 

mononuclear infiltration. Score of 1 represented minimal infiltration (<5 cells/400X field) 

and increased to 4 for abundant infiltration (>30cells/400X field). Tissue sections were also 

scored for distribution of mononuclear inflammatory cells as focal (1), multifocal (2), or 

diffuse (3).

Statistical analyses

Statistical analysis was performed in GraphPad Prism (GraphPad Software, Inc., La Jolla, 

CA). Statistical significance was determined by p ≤ 0.05. Specific tests are detailed in the 

figure legends. Error bars in figures represent standard error of the mean (SEM) based 

on the combined triplicate biological samples for all cell culture studies. All cell culture-

based results (Figures 1–3, Supplemental Figures 1–2) are representative of at least three 

independent experiments. Four biological replicates were utilized in in vivo bioluminescence 

imaging (Figure 4) to determine statistical significance.

RESULTS

Viable B. burgdorferi elicits a robust type I interferon response in mouse macrophages and 
fibroblasts.

We first evaluated the ability of immortalized bone marrow-derived macrophages 

(iBMDMs) and embryonic fibroblasts (MEFs) derived from C57BL/6J mice to upregulate 

interferon stimulated gene (ISG) and inflammatory cytokine transcripts when co-incubated 

with viable or sonicated B. burgdorferi B31-A3 at a MOI 20 (Figure 1). Consistent with 

earlier reports (19, 60), both viable and sonicated B31-A3 were able to induce interferon 
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beta (Ifnb1) and ISGs (C-X-C motif chemokine ligand 10 (Cxcl10) and guanylate-binding 

protein 2 (Gbp2)), as well as pro-inflammatory cytokine interleukin-6 (Il6) expression, 

in iBMDMs (Figure 1A–B). Viable B. burgdorferi more potently induced ISGs and Il6, 

inducing expression levels 4-10 fold higher than sonicated bacteria. Likewise, we found 

that B. burgdorferi elicited ISGs and tumor necrosis factor alpha (Tnfa) in primary MEFs, 

with live spirochetes triggering more robust responses compared to sonicated bacteria 

(Figure 1C–D). Collectively, these data indicate that live B. burgdorferi engages robust 

IFN-I-associated ISG expression in both BMDMs and non-phagocytic MEFs, which lack a 

full repertoire of TLRs and other pattern recognition receptors (41).

B. burgdorferi engages the cGAS-STING pathway to induce type I interferon responses in 
murine macrophages.

Lipoprotein rich B. burgdorferi predominately engage TLR2, but can also trigger other 

TLRs to induce inflammatory cytokines and interferons (18, 19, 24, 36). However, a role for 

cytosolic DNA sensing in the innate immune response to B. burgdorferi remains unknown. 

To examine this directly, we co-cultured primary BMDMs from wild-type (WT), cGASKO, 

or STINGKO mice on a C57BL/6J background with B. burgdorferi B31-A3 and assessed 

ISG and cytokine transcript induction by qRT-PCR (Figure 2). We first confirmed that 

cGASKO BMDMs were hyporesponsive to immunostimulatory DNA (ISD) delivered into 

the cytosol by transfection (73). As expected, the induction of ISGs Cxcl10 and Gbp2 in 

cGASKO BMDMs was significantly reduced relative to WT macrophages (Figure 2A). After 

6 hours of co-culture with B31-A3, the expression of ISGs Cxcl10 and Gbp2, as well as 

Ifnb1 transcripts, were significantly reduced in cGASKO BMDMs compared to WT (Figure 

2B). In contrast, the levels of Il-6 and Tnfa transcripts were similar in both WT and cGAS−/− 

BMDMs (Figure 2C). These results indicate that the cGAS pathway is not a robust inducer 

of pro-inflammatory genes in BMDMs exposed to B. burgdorferi and are consistent with 

the notion that TLR2 or other TLRs sense B. burgdorferi ligands to engage nuclear-factor 

kappa-B (NF-κB)-dependent cytokines. Similar results were obtained from protein analysis 

of cGASKO and STINGKO macrophages 9 hours after incubation with B31-A3, with notable 

reductions in ISGs interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and 

Z-DNA binding protein 1 (ZBP1) in both cGAS- and STING-deficient BMDMs (Figure 

2D).

Finally, confocal imaging revealed that B. burgdorferi are internalized by BMDMs after 

a 3 hour incubation (Figure 2E). Antibody staining against the Outer Surface Protein A 

(OspA) of B. burgdorferi showed coiled and degraded DAPI positive spirochetes in the 

macrophage cytoplasm, as well as punctate, DAPI negative OspA staining, indicative of 

bacterial destruction. B. burgdorferi OspA also co-localized with the cytosolic autophagy 

marker p62/Sequestosome-1 (SQSTM1), suggesting spirochete degradation via macrophage 

autophagy and/or LC3-associated phagocytosis pathways (79–81). Collectively, these data 

indicate that B. burgdorferi are internalized by murine macrophages and trigger the cGAS-

STING-IFN-I signaling axis.

Farris et al. Page 7

J Immunol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. burgdorferi engages the cGAS-STING pathway in fibroblasts.

To broaden our findings beyond murine macrophages, we exposed MEFs and telomerase 

immortalized human foreskin fibroblasts (HFF) to B. burgdorferi B31-A3. We observed that 

OspA positive B. burgdorferi associated with approximately 15% of MEFs (Supplemental 

Figure 1A–B) and 33% of HFFs (Supplemental Figure 1C–D) after co-culture, consistent 

with a prior study (54). Confocal immunofluorescent imaging with Z-stack reconstitution 

revealed cell-associated B. burgdorferi in the same focal plane with mitochondria (Figure 

3A), suggestive of spirochete internalization. Additional imaging analysis revealed that 

coiled and degraded spirochetes strongly co-localized with the intracellular autophagy 

marker p62, further documenting that B. burgdorferi can access the fibroblast cytoplasm 

(Supplemental Figure 1E). Similar to our results in MEFs, exposure of HFFs to live B. 
burgdorferi increased expression levels of ISGs (IFI44L, IFNB1) and the pro-inflammatory 

cytokine gene TNFA (Figure 3B). Although the synthetic TLR2 ligand PAM3CSK4 (Pam3) 

induced TNFA levels similar to live B31-A3, we did not observe ISG induction, suggesting 

that B. burgdorferi lipoprotein engagement of TLR2 is not responsible for IFN-I responses 

in HFFs. Taken together, these results demonstrate that B. burgdorferi association and 

internalization within a minority of cultured cells is sufficient to induce robust IFN-I 

responses.

To next examine whether cGAS contributes to IFN-I responses in fibroblasts exposed to B. 
burgdorferi, primary WT and cGASKO MEFs were co-cultured with B31-A3 and subjected 

to qRT-PCR analysis for ISG and pro-inflammatory transcripts. We first confirmed that 

cGASKO MEFs were hyporesponsive to immunostimulatory DNA (ISD) delivered into 

the cytosol by transfection (Figure 3C). After co-culture with B. burgdorferi, we noted 

that the induction of ISG (Cxcl10 and Gbp2) and Ifnb1 transcripts was significantly 

reduced or entirely abrogated in cGASKO MEFs relative to WT controls (Figure 3D). 

Although Il6 transcripts were similar between B. burgdorferi exposed WT and cGASKO 

MEFs, Tnfa expression was significantly reduced in the absence of cGAS (Figure 3E). 

Immunofluorescence microscopy revealed that B. burgdorferi associated with MEFs after 

a 6 hour incubation, similar to results in BMDMs and HFFs (Figure 3F). Antibody 

staining against the OspA lipoprotein revealed intact, DAPI positive spirochetes in the MEF 

cytoplasm, as well as a punctate OspA foci that were DAPI negative. Consistent with a 

role for cGAS in sensing internalized B. burgdorferi DNA, we observed co-localization of 

HA-tagged cGAS with coiled spirochetes staining positive for both OspA and DAPI (Figure 

3F). To further document a requirement for the cGAS-STING pathway in the IFN-I response 

to B. burgdorferi, we employed RU.521, a specific cGAS inhibitor, and H-151, a specific 

STING inhibitor, to block the pathway during co-culture. Both inhibitors were effective at 

reducing ISG transcripts (Cxcl10 and Gbp2) induced by transfection of ISD (Figure 3G). 

MEFs exposed to cGAS and STING inhibitors exhibited reduced ISG expression relative 

to vehicle treated MEFs, with no effects on Tnfa induction (Figure 3H). Taken together, 

these data indicate that B. burgdorferi associates with fibroblasts in culture, leading to the 

cGAS-mediated sensing of borrelial DNA from lysed or damaged spirochetes.

Additional experiments in STINGKO MEFs revealed markedly reduced Gbp2 and Ifnb1 
expression, but little change in pro-inflammatory cytokine transcripts, after challenge with 
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B. burgdorferi (Supplemental Figure 2 A–B). MEFs deficient in the type I interferon 

receptor (IFNAR) also exhibited impaired expression of the ISG Gbp2, but not cytokine 

transcripts, suggesting that ISG induction in MEFs is dependent on autocrine and/or 

paracrine signaling via IFNAR. In contrast, B. burgdorferi infection of Mitochondrial 

Antiviral Signaling protein null MEFs (MAVSKO), which cannot signal in response to 

intracellular dsRNA, triggered levels of Gbp2 and Ifnb1 mirroring WT cells (Supplemental 

Figure 2A). This indicates that MEFs co-cultured with B. burgdorferi respond to DNA, not 

RNA, ligands to induce IFN-I. Expression of pro-inflammatory cytokine transcripts Il6 and 

Tnfa were unchanged or modestly altered in STINGKO, MAVSKO, and IFNARKO MEFs, 

demonstrating all MEF lines remained responsive to B. burgdorferi lipoprotein engagement 

of TLR2 during co-incubation (Supplemental Figure 2B). Moreover, qRT-PCR to detect 

internal levels of borrelial flagellar gene, flaB, within host cells revealed roughly equivalent 

levels of flaB among WT and mutant MEF lines (Supplemental Figure 2C). This indicates 

that altered ISG expression in STING and IFNAR deficient cells is not due to changes in the 

ability of viable B. burgdorferi to associate with these MEFs.

cGAS-STING modulates inflammation during B. burgdorferi infection in vivo.

To determine roles for the cGAS-STING pathway in borrelial dissemination, tissue 

colonization, and inflammation during mammalian infection, bioluminescent B. burgdorferi, 
ML23 pBBE22luc, was monitored in real time by in vivo imaging in C57BL/6 WT, 

cGASKO, and STINGKO mice (Figure 4). Mice were injected with D-luciferin prior to 

imaging and one mouse in each group was not injected to serve as a bioluminescence 

background control (Figure 4A). The absence of cGAS or STING did not alter the kinetic 

dissemination of B. burgdorferi or the borrelial load as observed in the images and by 

quantitative analysis of bioluminescence emission (Figure 4A–B). Outgrowth from infected 

tissues confirmed that all genotypes were colonized with viable B. burgdorferi 28 days 

post infection (Figure 4C). To investigate whether the cGAS-STING pathway impacts the 

development of arthritic phenotypes, tibotarsal joints from WT and cGASKO mice were 

collected for histopathology. Consistent with prior reports (82), B. burgdorferi induced 

mild arthritis in WT C57BL/6J mice at 28 days post infection (Supplemental Figure 3A). 

Interestingly, H&E staining revealed that the joints of cGASKO mice exhibited reduced 

synovial papillary hyperplasia, immune cell infiltration, and overall joint pathology scores, 

suggesting a trend toward reduced inflammation the 28 day timepoint. These results suggest 

that the cGAS-STING pathway may contribute to the development of inflammation during 

mammalian infection, without impacting the ability of B. burgdorferi to readily disseminate 

and colonize secondary tissues.

DISCUSSION

B. burgdorferi elicits robust innate and adaptive immune responses that involve induction 

of both IFN-I (IFN-α and β) and IFN-II (IFN-γ) cytokines that drive expression of an 

overlapping family of interferon-stimulated genes (ISGs) (12, 31, 35, 83, 84). Synovial 

tissue from patients with post-infection Lyme arthritis expressed ISGs that are associated 

with both type I and type II interferons (25, 35, 35, 85). Antibody-mediated IFNAR 

blockade results in a significant reduction in joint inflammation in mice (12), and the 
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inhibition of IFN-γ delays sustained ISG expression and inflammation during B. burgdorferi 
infection (12, 86). A number of prior studies have focused on identifying the signaling 

mechanisms responsible for IFN-I and ISGs elicited by B. burgdorferi. Both in vitro 

and in vivo studies have demonstrated that TLR adaptors MyD88 and TRIF are not the 

primary contributors to IFN-I induction (12, 13, 22, 87–90). Specifically, in the absence of 

TLR2 or TLR5, innate immune receptors that sense lipoproteins or flagella of degraded B. 
burgdorferi, respectively, the induction of ISGs and joint swelling is similar to WT mice 

(12, 87–89). Studies using human cells have implicated nucleic acid sensing, endosomal 

localized TLRs (TLR 7, 8, and 9) as regulators of IFN-I induction in human peripheral 

blood mononuclear cells (PBMCs) challenged with B. burgdorferi ex vivo (13, 18, 19, 

90). However, TLR9 inhibition does not impair ISG induction in BMDMs exposed to B. 
burgdorferi, in contrast to PBMCs (19, 22, 85). Thus, it is likely that multiple innate immune 

pathways are responsible for IFN-I induction during B. burgdorferi infection. Differences in 

IFN-I and inflammatory responses across independent studies might also be explained by the 

use of distinct borrelial strains that vary in invasion and inflammation (11, 91, 92).

Fibroblast and endothelial cells, which do not express a full complement of TLRs, are 

necessary for B. burgdorferi induced IFN-I responses in joints (25, 41). Thus, TLR 

detection of B. burgdorferi nucleic acids is likely not the predominant pathway governing 

IFN-I responses during B. burgdorferi infection in the mammalian host. Therefore, we 

hypothesized that B. burgdorferi might engage an intracellular innate immune pathway 

leading to IFN-I. Using primary fibroblasts and macrophages from a panel of C57BL/6J 

mice lacking intracellular nucleic acid sensors or downstream adaptors, we find that the 

DNA sensing, cGAS-STING pathway is critically required for robust induction of ISGs after 

exposure to live B. burgdorferi. This finding was confirmed through small molecule inhibitor 

studies, as we observed reduced ISG responses to B. burgdorferi when cGAS or STING 

were inhibited in MEFs. In contrast, we show that deficiency of the main RIG-I-like receptor 

adaptor MAVS does not impact expression of ISGs or pro-inflammatory cytokine transcripts 

in fibroblasts, indicating that intracellular sensing of B. burgdorferi RNA is not a major 

contributor to IFN-I responses in cultured fibroblasts.

The phenomenon of host cell internalization by B. burgdorferi has not been observed 

during experimental infection in vivo; however, prior studies have shown that B. burgdorferi 
can become internalized into both phagocytic (macrophages, monocytes, and dendritic 

cells) and non-phagocytic (endothelial, fibroblast, and neuroglial cells) cells in culture 

(54, 57–62, 93–95). Our immunofluorescence microscopy analyses revealed borrelial OspA 

staining associated with a proportion of cultured mouse and human fibroblasts after short 

incubations with B. burgdorferi B31-A3. In both macrophages and fibroblasts, we observed 

OspA colocalization with the intracellular autophagy adaptor p62, which substantiates 

the notion that spirochetes interact with mammalian cells and can become internalized 

into the cytoplasm. Recent work has revealed that the autophagy machinery regulates 

the cGAS-STING pathway, as p62 is found in close proximity to TBK1, a key kinase 

necessary for IFN-I induction by STING (96). In addition, phosphorylation of p62 by 

TBK1 is important for the negative regulation and turnover of STING (97). Activation of 

cGAS by the obligate intracellular pathogen Mycobacterium tuberculosis can drive selective 

autophagy for clearance of intracellular bacteria (45). Interestingly, we observed coiled and 
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degraded B. burgdorferi in BMDMs and MEFs colocalizing with p62, suggesting that the 

autophagy could be a mechanism to turnover internalized spirochetes. Autophagy has also 

been linked to inflammatory cytokine responses during B. burgdorferi infection in vitro 

(79). Therefore, internalization of B. burgdorferi and autophagic targeting may serve to fully 

engage intracellular signaling leading IFN-I or other innate immune responses.

The cGAS-STING pathway is a major inducer of IFN-I in response to both exogenous, 

pathogen-derived DNA, as well as host mitochondrial and nuclear DNA (45, 51, 52, 72, 

98–100). cGAS non-discriminately binds double stranded DNA and produces cGAMP that 

binds and activates STING on the ER. This leads to recruitment and phosphorylation of 

the kinase TBK1, which phosphorylates and induces nuclear translocation of transcription 

factors IRF3 or 7 (101). Miller et al demonstrated that B. burgdorferi engages IFN-

I response genes in an IRF3-dependent manner, further supporting that the signaling 

machinery downstream of cGAS-STING and other intracellular nucleic acid sensors is 

required for ISG induction (12). Multiple intracellular bacterial pathogens, including 

Mycobacterium tuberculosis, Listeria monocytogenes, and Chlamydia trachomatis, engage 

the cGAS-STING axis to induce IFN-I and influence pathogenesis (45, 50, 102–105). 

More recently, extracellular bacterial pathogens Pseudomonas aeruginosa and Group B 

Streptococcus (GBS) have been shown to trigger IFN-I responses through cGAS-STING 

in macrophages and dendritic cells (52, 106). The mechanisms by which B. burgdorferi 
and other extracellular bacteria engage cGAS remain unclear. However, we have observed 

recruitment and co-localization of cGAS with intracellular borrelia in MEFs, suggesting that 

internalized spirochetes may shed DNA or undergo host-induced membrane damage that 

liberates bacterial genomic material for detection by cGAS. Bacterial pathogens can also 

cause host cell stress, resulting in the release and accumulation of nuclear or mitochondrial 

DNA (mtDNA) (107, 108). Mitochondrial stress and mtDNA release, in particular, is 

linked to innate immune responses through the cGAS-STING axis and is associated 

with autoimmune disorders (i.e. Lupus and rheumatoid arthritis) and other conditions 

characterized by elevated IFN-I (98). Thus, it is possible that the IFN-I response induced 

by B. burgdorferi is at least partially dependent on host mtDNA or nuclear DNA sensing. It 

is likely that B. burgdorferi engages distinct mechanisms in phagocytic and non-phagocytic 

cells to elicit IFN-I responses via the cGAS-STING pathway, and future work is required to 

reveal the molecular mechanisms involved.

An IFN-I response occurs early in mammalian infection resulting in the development 

of inflammation and arthritis that persist in part due to IFN-γ during later stages of 

disease (32, 35, 83, 84). We therefore investigated how absence of cGAS and STING 

impacted the kinetics of borrelial infection in mice using in vivo imaging to track 

bioluminescent B. burgdorferi in real time through the progression of disease (70, 109). 

Bioluminescent B. burgdorferi was able to successfully disseminate and colonize secondary 

tissues independently of cGAS or STING. Joint inflammation also showed a moderate, 

although not statistically significant, reduction at 28 dpi in cGASKO mice, suggesting that 

cGAS-STING signaling to IFN-I or other inflammatory response pathways might contribute 

to arthritic phenotypes during B. burgdorferi infection. It is important to note that the 

absence of cGAS did not eliminate inflammation entirely, indicating that B. burgdorferi 
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associated arthritis is multifactorial and involves additional innate and adaptive immune 

pathways as have been reported by others (13, 17, 19, 20, 90).

While this study is impactful in that it is the first to link the cGAS-STING pathway to 

B. burgdorferi induced IFN-I responses, it is not without limitations. C3H is the preferred 

model for borrelial infection because this background develops inflammation and pathologic 

disease at a significantly higher level than C57BL/6 or Balb/c mice (34, 82). An elegant 

study identified the Bbaa1 locus in C3H mice responsible for IFN-I responses observed 

during borrelial infection and showed that introduction of this locus into C57BL/6 mice 

yielded similar inflammatory responses to C3H (29). Our study employed WT, cGAS, 

and STING knockout strains on a pure C57BL/6 background as they are commercially 

available and well-characterized. We employed highly invasive and inflammatory RST1 B. 
burgdorferi B31-A3 for our studies and were able to observe IFN-I induction even in cells 

from the C57BL/6 background. These responses were markedly attenuated or lost when 

using sonicated B. burgdorferi B31-A3. Other studies have revealed weak or absent ISG 

expression during in vitro challenge with B. burgdorferi, although most utilized sonicated 

bacteria or less inflammatory RST3 strains (12, 22, 82, 87). This indicates that the C57BL/6 

background is not devoid of IFN-I responsiveness to borrelial infection. Our work and 

previous studies show C57BL/6 mice and cell lines do produce measurable IFN-I and 

inflammatory responses to borrelial infection, and therefore we propose it is an appropriate 

model for this initial characterization of cGAS-STING in the innate immune response to B. 
burgdorferi (12). However, the development of cGAS or STING knockout lines on the C3H 

background will be necessary to fully characterize the role of this innate immune pathway in 

B. burgdorferi infection dynamics, tissue-specific inflammation, and arthritic phenotypes in 

vivo.

In conclusion, our study is the first to show that B. burgdorferi triggers the intracellular 

cGAS-STING DNA sensing pathway to shape IFN-I responses in cultured cells. Future 

studies are needed to investigate the how borrelial cells initiate IFN-I responses through 

this pathway by characterizing the source of DNA that binds to cGAS (i.e., bacterial or 

host) and determining whether borrelial internalization is required. Loss of cGAS or STING 

does not appear to alter B. burgdorferi dissemination or its ability to colonize secondary 

tissues, but studies in C3H mice lacking this innate immune pathway may reveal differential 

bacterial kinetics and/or inflammatory responses that do impact the course of infection. 

Additional work to clarify these open questions may support the development cGAS- 

and/or STING-based immunotherapeutics that may be effective against active infection or 

persistent symptoms of B. burgdorferi, such as Lyme arthritis.
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KEY POINTS

• B. burgdorferi triggers type I interferon responses in macrophages and 

fibroblasts

• Coiled spirochetes are observed in the cytosol and co-localize with cGAS

• cGAS and STING mediate B. burgdorferi-induced type I interferon responses
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Figure 1: Viable B. burgdorferi induce robust proinflammatory and type I interferon responses in 
mouse macrophages and fibroblasts.
Immortalized mouse bone marrow-derived macrophages (iBMDMs) or murine embryonic 

fibroblasts (MEFs) were co-cultured with viable or sonicated B. burgdorferi strain B31-A3 

at a MOI of 20. (A) Fold changes in iBMDM transcripts encoding interferon-stimulated 

genes (ISGs) (Cxcl10 and Gbp2), Ifnb1, or (B) the pro-inflammatory cytokine Il6 were 

analyzed by qRT-PCR after 6 hours of co-culture. (C) Fold changes in MEF transcripts 

encoding ISGs (Cxcl10, Gbp2 and Ifit3) and the (D) inflammatory cytokine Tnfa were 

analyzed by qRT-PCR after 24 hours of co-culture. Error bars represent ± SEM of biological 
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triplicate samples. Significance was determined by one-way ANOVA Tukey post hoc for all 

panels. *** p < 0.001, **p < 0.01, * p < 0.05, ns, not significant.
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Figure 2: cGAS is required for robust ISG expression in mouse macrophages exposed to live B. 
burgdorferi.
(A) qRT-PCR of ISG transcripts (Cxcl10, Gbp2) from wild-type (WT) and cGAS knockout 

(cGASKO) bone marrow-derived macrophages (BMDMs) 6 hours after transfection with 

immunostimulatory DNA (ISD) or mock transfected. (B-C) qRT-PCR of transcripts 

encoding ISGs (Cxcl10, Gbp2) and Ifnb1 (B) or inflammatory cytokines (Il6 and Tnfa) 

(C) in WT and cGASKO BMDMs exposed to live B. burgdorferi strain B31-A3 for 6 hours 

at MOI 20. Fold expression values in A, B, C are plotted relative to WT mock samples. (D) 

Western blots of WT, cGASKO, and STING deficient (STINGKO) BMDMs mock infected 

or exposed to B31-A3 at a MOI 20 for 9 hours. Each lane represents a biological duplicate 

representative of three independent experiments. Non-specific band indicated by *. (E) WT 

BMDMs were co-cultured with strain B31-A3 at MOI 20 for 3 hours on coverslips. Cells 

were fixed and stained with antibodies against Borrelial outer surface protein A (OspA), 

autophagy marker p62, mitochondrial heat shock protein 60 (HSP60), counterstained with 

DAPI, and subjected to confocal microscopy. Arrow indicates B. burgdorferi DNA stained 

with DAPI. Error bars in A, B, C represent ± SEM of triplicate biological samples. One-way 

ANOVA Tukey post hoc was used in A, B, C to determine significance. ***p < 0.001, ns, 

not significant.
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Figure 3: cGAS governs ISG expression in fibroblasts exposed to live B. burgdorferi.
(A-B) Telomerase immortalized human foreskin fibroblasts (HFFs) were co-cultured with B. 
burgdorferi at a MOI of 20. (A) After 6 hours of incubation, cells were fixed and stained 

with antibodies against Borrelial outer surface protein A (OspA) and mitochondrial heat 

shock protein 60 (HSP60), counterstained with DAPI, and subjected to confocal microscopy. 

Z-stack image reconstitution was performed to localize internalized B. burgdorferi with 

mitochondria. (B) After 9 and 24 hours of co-culture with B31-A3 or stimulation with the 

Toll-like receptor ligand PAM3CSK4, RNA was extracted for qRT-PCR analysis of ISG 
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(IFI44L and IFNB1) and inflammatory cytokine (TNFA) transcripts. (C) qRT-PCR of ISG 

(Cxcl10, Gbp2) and Ifnb1 transcripts from wild-type (WT) and cGAS knockout (cGASKO) 

murine embryonic fibroblasts (MEFs) 6 hours after transfection with immunostimulatory 

DNA (ISD) or mock transfected. (D-E) qRT-PCR of transcripts encoding ISGs (Cxcl10, 
Gbp2) and Ifnb1 (D) or inflammatory cytokines (Il6 and Tnfa) (E) in WT and cGASKO 

MEFs exposed to live B. burgdorferi strain B31-A3 for 6 hours at MOI 20. (F) Immortalized 

cGASKO MEFs stably reconstituted with HA-tagged cGAS were co-cultured with strain 

B31-A3 at MOI 20 for 6 hours on coverslips. Cells were fixed and stained with antibodies 

against Borrelial outer surface protein A (OspA), HA (cGAS-HA), and mitochondrial heat 

shock protein 60 (HSP60), then counterstained with DAPI, and subjected to fluorescence 

microscopy. (G-H) WT MEFs were treated with the cGAS inhibitor RU.512 or the STING 

inhibitor H-151 for one hour prior to ISD transfection (G) or addition of B. burgdorferi 
B31-A3 (H). After 24 hours of incubation, qRT-PCR analysis of ISG (Cxcl10 and Gbp2) 

or inflammatory cytokine (Tnfa) transcripts was run. Fold expression values in B-E and 

G-H are plotted relative to WT mock samples, and error bars represent ± SEM of triplicate 

biological samples. One-way ANOVA Tukey post hoc was used to determine significance. 

***p < 0.001, **p < 0.01, *p < 0.05, ns, not significant.
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Figure 4: B. burgdorferi infection kinetics and tissue colonization are similar among WT, cGAS, 
and STING deficient mice.
WT, cGASKO, and STINGKO mice on the C57BL/6J background were infected with 105 

ML23 pBBE22luc B. burgdorferi (n = 10/strain, 30 mice total). (A) Mice were selected 

randomly and treated with D-luciferin at 1, 4, 7, 10, 14, 21, and 28 days post infection for 

in vivo imaging. For each mouse genotype, the mouse in the first column did not receive 

D-luciferin to serve as a background control. All images were normalized to the 3.4×103 

to 5.53×105 radiance (p/s/cm2/sr) and displayed on the same color spectrum scale (right). 
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(B) Quantification of bioluminescence in p/s. (C) Qualitative assessment of dissemination 

through tissue outgrowth. At days 28, 5 mice per strain were sacrificed after completion 

of imaging. An inguinal lymph node and skin flank were collected for in vitro cultivation. 

Percent of positive cultures is indicated by the y-axis. There was no significant difference in 

bioluminescence or tissue outgrowth across all mouse genotypes.
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Table I:

Oligonucleotide sequences used in this study.

Gene Forward Primer Sequence Reverse Primer Sequence

Mouse

Bactin 5’-TTCTTTGCAGCTCCTTCGTT-3’ 5’-ATGGAGGGGAATACAGCCC-3’

Cxcl10 5’-CCAAGTGCTGCCGTCATTTTC-3’ 5’-GGCTCGCAGGGATGATTTCAA-3’

Gapdh 5’-GACTTCAACAGCAACTCCCAC-3’ 5’-TCCACCACCCTGTTGCTGTA-3’

Gbp2 5’-CAGCATAGGAACCATCAACCA-3’ 5’-TCTACCCCACTCTGGTCAGG-3’

Ifit3 5’-CAGCATAGGAACCATCAACCA-3’ 5’-TCTACCCCACTCTGGTCAGG-3’

Ifnb1 5’-CCCTATGGAGATGACGGAGA-3’ 5’-CCCAGTGCTGGAGAAATTGT-3’

Il6 5’-TGATGCACTTGCAGAAAACA-3’ 5’-ACCAGAGGAAATTTTCAATAGGC-3’

Tnfa 5’-CCACCACGCTCTTCTGTCTAC-3’ 5’-AGGGTCTGGGCCATAGAACT-3’

Human

GAPDH 5’-AGCCACATCGCTCAGACA-3’ 5’-GCCCAATACGACCAAATCC-3’

IFNB1 5’-CTTTCGAAGCCTTTGCTCTG-3’ 5’-CAGGAGAGCAATTTGGAGGA-3’

IFI44L 5’-CAATTTAAGCCTGATCTAACCCC-3’ 5’-CAGTTGCGCAGATGATTTTC-3’

TNFA 5’-CTGCTGCACTTTGGAGTGAT-3’ 5’-AGATGATCTGACTGCCTGGG-3’

B. burgdorferi 

flaB 5’-CAGCTAATGTTGCAAATCTTTTCTCT-3’ 5’-TTCCTGTTGAACACCCTCTTGA-3’
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Table II:

Primary antibodies used in this study.

Antibody Source Catalogue number Dilution

αTubulin DSHB 12G10 1:5,000

cGAS Cell Signaling 31659 1:1,000

HA Proteintech 51064-2-AP 1:500

HSP60 Santa Cruz sc-1052 1:5,000

IFIT1 gift from G.Sen at Cleveland Clinic 1:1,000

OspA Capicorn BOR-018-48310 1:1,000,000

p62 Proteintech 18420-1-AP 1:500

STING Proteintech 19851-1-AP 1:1,000

ZBP1 Adipogen AG-20B-0010 1:1,000
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