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Abstract

Aims Heart failure (HF) with preserved ejection fraction (HFpEF) is a complex syndrome with a poor prognosis. Phenotyping
is required to identify subtype-dependent treatment strategies. Phenotypes of Japanese HFpEF patients are not fully
elucidated, whose obesity is much less than Western patients. This study aimed to reveal model-based phenomapping using
unsupervised machine learning (ML) for HFpEF in Japanese patients.
Methods and results We studied 365 patients with HFpEF (left ventricular ejection fraction >50%) as a derivation cohort
from the Nara Registry and Analyses for Heart Failure (NARA-HF), which registered patients with hospitalization by acute de-
compensated HF. We used unsupervised ML with a variational Bayesian–Gaussian mixture model (VBGMM) with common
clinical variables. We also performed hierarchical clustering on the derivation cohort. We adopted 230 patients in the
Japanese Heart Failure Syndrome with Preserved Ejection Fraction Registry as the validation cohort for VBGMM. The
primary endpoint was defined as all-cause death and HF readmission within 5 years. Supervised ML was performed on the
composite cohort of derivation and validation. The optimal number of clusters was three because of the probable
distribution of VBGMM and the minimum Bayesian information criterion, and we stratified HFpEF into three phenogroups.
Phenogroup 1 (n = 125) was older (mean age 78.9 ± 9.1 years) and predominantly male (57.6%), with the worst kidney
function (mean estimated glomerular filtration rate 28.5 ± 9.7 mL/min/1.73 m2) and a high incidence of atherosclerotic
factor. Phenogroup 2 (n = 200) had older individuals (mean age 78.8 ± 9.7 years), the lowest body mass index (BMI;
22.78 ± 3.94), and the highest incidence of women (57.5%) and atrial fibrillation (56.5%). Phenogroup 3 (n = 40) was the
youngest (mean age 63.5 ± 11.2) and predominantly male (63.5 ± 11.2), with the highest BMI (27.46 ± 5.85) and a high
incidence of left ventricular hypertrophy. We characterized these three phenogroups as atherosclerosis and chronic kidney
disease, atrial fibrillation, and younger and left ventricular hypertrophy groups, respectively. At the primary endpoint,
Phenogroup 1 demonstrated the worst prognosis (Phenogroups 1–3: 72.0% vs. 58.5% vs. 45%, P = 0.0036). We also success-
fully classified a derivation cohort into three similar phenogroups using VBGMM. Hierarchical and supervised clustering suc-
cessfully showed the reproducibility of the three phenogroups.
Conclusions ML could successfully stratify Japanese HFpEF patients into three phenogroups (atherosclerosis and chronic kid-
ney disease, atrial fibrillation, and younger and left ventricular hypertrophy groups).
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Introduction

Heart failure (HF) with preserved ejection fraction (HFpEF) has
a complex aetiology and has been increasing in multiple eth-
nicities with a variety of lifestyles and related phenotypes.1

Most previous studies have failed to show effective treatment
for HFpEF other than sodium–glucose cotransporter 2 (SGLT2)
inhibitors; thus, a ‘one size fits all’ concept is not acceptable in
HFpEF management.2,3 Many cardiologists have recognized
the need for subgroup-dependent therapies.4,5

Recently, phenotyping using machine learning (ML), which
makes it possible to clarify complex phenotypes from data
patterns in multi-dimensional datasets, has been applied in
this field.6 Prior studies have succeeded in stratifying HFpEF
into several phenotypes in multiple cohorts that included a
small number of Asian but not Japanese patients.7–12

The distribution of patient population characteristics was
significantly different between Western and Eastern coun-
tries, especially in terms of mean body mass index (BMI)
and the incidence of obesity. In the recent HFpEF worldwide
registry, the Asian patient population demonstrated lower
BMI, a frequent incidence of atrial fibrillation (AF), poor kid-
ney function, and a history of HF admission.13 The difference
in obesity and disease distribution might result in differences
in phenotyping results and cardiovascular event rates. There-
fore, we considered that HFpEF phenomapping in Japanese
and Asian populations is needed to understand their pathol-
ogy and optimal treatment.

This study aimed to develop model-based phenotyping
using unsupervised clustering for HFpEF in Japanese people.

Methods

Study population

This study included two HF cohorts: the Nara Registry and
Analyses for Heart Failure (NARA-HF) study and the Japanese
Heart Failure Syndrome with Preserved Ejection Fraction Reg-
istry (JASPER). The NARA-HF study was used as a derivation
model, JASPER, and the composite cohort combining
NARA-HF and JASPER was used as a validation cohort.

The NARA-HF study is a dynamic prospective cohort study
that conformed to the principles outlined in the Declaration
of Helsinki and was approved by the ethics committee of Nara
Medical University (Approval No. 624). All participants pro-
vided written informed consent. All 1448 patients recruited
met the Framingham criteria for emergency admission due
to acute decompensated HF (ADHF) (either acute new-onset
or acute-on-chronic HF) between January 2007 and December
2018. The inclusion and exclusion criteria have been previ-
ously reported.14 For the HFpEF cohort, we excluded patients
with left ventricular ejection fraction (LVEF) <50% at dis-

charge (n = 852). From the remaining 596 patients, we ex-
cluded 231 patients because of in-hospital death (n = 24),
haemodialysis at discharge (n = 78), right HF (n = 12), constric-
tive pericarditis (n = 1), adult congenital heart disease (n = 9),
severe valvular disease (n = 71), and estimated glomerular fil-
tration rate (eGFR)<15 mL/min/1.73 m2 (n = 36). The remain-
ing 365 patients satisfied the European Society of Cardiology
guideline definition of HFpEF at admission.15 Finally, 365
HFpEF patients from NARA-HF cohort were analysed who
had discharge data and 5 year mortality rates (Figure 1).

The details of JASPER have been previously described.16 A
total of 534 hospitalized patients with HFpEF from 15 univer-
sity or teaching hospitals were registered from November
2011 to March 2015. Patients with missing variables
(n = 230) and an eGFR < 15 mL/min/1.73 m2 at discharge
(n = 31) were excluded. Finally, we selected 273 patients for
the validation cohort (Figure 1).

We calculated eGFR using the following formula: eGFR
(mL/min/1.73 m2) in men = 194 * serum creatinine level
(mg/dL)�1.094 * age�0.287 and eGFR (mL/min/1.73 m2) in
women = (194 * serum creatinine level (mg/
dL)�1.094 * age�0.287) * 0.739.17

Clinical phenogroup assignment

A variational Bayesian–Gaussian mixture model (VBGMM)
was used to determine clusters of clinical phenotypes.
VBGMM is a statistical technique used in the ML domain
for an unknown number of clusters.18 The core idea is based
on VBGMM, which allows the computation of the posterior
distribution of the Gaussian clusters for each instance. In con-
trast to other ML learning algorithms, in which the number of
clusters is predefined, the proper number is estimated via the
sparseness of the Dirichlet before the mixture weights.19 We
adopted VBGMM because this method has been recom-
mended when the number of clusters is unknown or when
the number of data is <10 000 in the ML domain. The second
advantage is that redundant clusters are identified due to the
small expected values of the mixing coefficients and are
therefore eliminated from the original cluster. Therefore, re-
dundant clusters are less likely to be generated, and cluster-
ing with less noise might be possible.19 In medical biology,
VBGMM is currently used in image recognition and is known
to represent clusters.19–22

The VBGMM algorithm used 18 singular-value continuous
and 6 binary discrete variables. These clinical variables were
selected because of their general clinical use and ease of rou-
tine practice, considering known associations with adverse
outcomes in HFpEF, a missing values rate of <20%, and a cor-
relation coefficient of <80%. The selected variables were
documented in Supporting Information, Table S1.

In this study, the optimal number of clusters was three as
suggested by the VBGMM in the probability distribution
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derived from automatic relevance determination (Supporting
Information, Figure S1A). To validate the probability distribu-
tion of VBGMM, the Bayesian information criterion (BIC) was
calculated. The minimum BIC score of between two and nine
clusters also predicted that the optimal number of clusters
was three (Supporting Information, Figure S1B). Additionally,
we performed principal component analysis (PCA), a
singular-value decomposition (SVD) identifying an orthogonal
change in the dataset. PCA is a traditional dimensionality re-
duction method frequently used in the ML domain.
Supporting Information, Figure S2 plots the two-dimensional
space of the first two principal components and is colour
coded by three phenogroups. PCA illustrated some overlaps
between the three phenogroups. Therefore, we decided that
the optimal number of phenogroups was three.

To validate the results of the phenomapping of NARA-HF,
we performed three different validations: (i) matching the
rate of stratification using another unsupervised ML algo-
rithm, (ii) applying VBGMM to another HFpEF cohort as an
external validation, and (iii) ensuring the reproducibility with
supervised ML.

(i) We applied hierarchical clustering to NARA-HF as an-
other unsupervised ML algorithm. Hierarchical clustering is
a representative unsupervised algorithm and has been used
in previous HFpEF phenomapping.7,12,23 The advantage of hi-
erarchical clustering is that it does not require a pre-specified
number of clusters. Only the 18 standardized continuous var-
iables from the 24 used in VBGMM were selected to apply hi-
erarchical clustering. We stratified NARA-HF patients into
three phenogroups by hierarchical clustering with Ward’s
method based on the dendrogram (Supporting Information,
Figure S3). The three phenogroups were labelled as
Phenogroups A–C. The matching rate between VBGMM and
hierarchical clustering was analysed.

(ii) VBGMM was also adopted using JASPER as the deriva-
tion, divided into three phenogroups, and their characteris-
tics were confirmed.

(iii) We applied the supervised ML method as a random
forest (RF) method, which is generally used in the ML classi-
fication domain. The RF method builds decision trees and
uses their majority vote for classification. The RF algorithm
was trained by the NARA-HF cohort and VBGMM
phenomapping labels (RF-NARA). To validate the reproduc-
ibility of the NARA-HF phenomapping, NARA-HF and JASPER
combined cohorts were used as the composite cohort and
used as the test dataset, classified using RF-NARA and
VBGMM, and the three phenotypes mapped by VBGMM
were compared with those conducted by RF-NARA by accu-
racy score and F1-measure score, calculated by
(2 × precision × recall)∕(precision + recall).

VBGMM, hierarchical clustering, and RF were performed in
Python (Version 3.6.5), scikit-learn package 0.19.1, NumPy
package 1.14.3, pandas 0.23.0, scipy, and matplotlib 2.2.2 in
the Jupyter Notebook (4.4.0). Before analysis, continuous
missing values were imputed for ML using SVD in JMP
14.3.0 because the ML algorithm did not accept missing
values. All missing data were considered missing at random.
Given a matrix with missing values, the missing entries were
imputed using a low-rank SVD approximation. SVD provides
better imputation for small and large datasets compared with
other algorithms.24

Outcomes of interest

In the NARA-HF study, the primary endpoint was defined as
all-cause death and HF readmission within 5 years after regis-
tration. As a secondary outcome, cardiovascular death was

Figure 1 Study flow. HFpEF, heart failure with preserved ejection fraction; JASPER, Japanese Heart Failure Syndrome with Preserved Ejection Fraction
Registry; LVEF, left ventricular ejection fraction; NARA-HF, Nara Registry and Analyses for Heart Failure.
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defined as death due to HF, myocardial infarction, sudden
death, stroke, or vascular diseases such as aortic dissection.
We defined all-cause mortality as the primary endpoint be-
cause the cardiovascular death in elderly HF patients was hard
to distinguish from other causes of death affected by their co-
morbidities.We checked themedical records to determine vital
status and cause of death. When this information was unavail-
able in themedical records, we contacted patients or their fam-
ilies. If the patient had died, we interviewed his or her family
about the institute where he or she died. We then asked the
physician and confirmed the patient’s cause of death. In the val-
idation cohort of JASPER, we defined the primary and second-
ary endpoints as described above for 2 years because of
differences in study design and mean follow-up duration.

Statistical analysis

Statistical analyses were performed using JMP Version 14.3.0
(SAS Institute, Cary, NC, USA). All values are expressed as
mean ± standard deviation or as median with an
inter-quartile range for continuous variables and counts and
percentages for categorical variables. Continuous variables
were compared using parametric one-way analysis of vari-
ance or the non-parametric Kruskal–Wallis test based on
the normality of a variable’s distribution. Categorical data

were evaluated using Pearson’s χ2 test. Statistical significance
was set at P < 0.05.

Results

Classification of heart failure with preserved
ejection fraction in derivation study

We divided the derivation cohort into three phenogroups
(1–3) on the basis of the VBGMM probability distribution,
the minimum BIC, and PCA plot (Supporting Information,
Figures S1–S3).

A comparison of the baseline characteristics in NARA-HF
among the three clusters is shown in Tables 1 and 2.
Phenogroup 1 was older (mean age 78.9 ± 9.1 years) and pre-
dominantly male and had a high incidence of hypertension,
diabetes mellitus (DM), hyperlipidaemia, old myocardial in-
farction, and anaemia at discharge. Also, Phenogroup 1
showed the highest levels of brain natriuretic peptide (BNP)
and C-reactive protein (CRP) among the three phenotypes.
This phenogroup also had worse kidney function. The feature
of Phenogroup 1 is characterized by atherosclerotic vascular
diseases and related organ damage such as old myocardial in-
farction and chronic kidney disease (CKD). Phenogroup 2 had

Table 1 Baseline characteristics comparison between the three phenogroups in the derivation study

Phenogroup 1
(n = 125)

Phenogroup 2
(n = 200)

Phenogroup 3
(n = 40) P value

Demographics on admission
Age (years) 78.9 ± 9.1 78.8 ± 9.7 63.5 ± 11.2 <0.0001
Male, n (%) 72 (57.6) 85 (42.5) 23 (57.5) 0.0164

Clinical characteristics on admission
BMI at admission (kg/m2) 23.40 ± 3.60 22.78 ± 3.94 27.46 ± 5.85 <0.0001
HR (b.p.m.) 86.06 ± 26.04 92.97 ± 31.62 103.50 ± 29.73 <0.0001
SBP (mmHg) 149.06 ± 31.08 147.29 ± 32.68 175.78 ± 40.26 <0.0001
DBP (mmHg) 79.20 ± 20.76 79.70 ± 19.98 108.62 ± 27.18 <0.0001
NYHA, n (%) <0.0001
II 12 (10) 25 (13) 3 (8)
III 69 (55) 90 (45) 11 (28)
IV 44 (35) 85 (43) 26 (65)

Medical history on admission
Hypertension, n (%) 116 (92.8) 145 (72.5) 32 (80.0) <0.0001
Diabetes mellitus, n (%) 68 (54.4) 74 (37.0) 16 (40.0) 0.0079
Hyperlipidaemia, n (%) 61 (48.8) 55 (27.5) 21 (52.5) <0.0001
History of myocardial infarction, n (%) 50 (40.0) 11 (5.5) 9 (22.5) <0.0001
Atrial fibrillation, n (%) 49 (39.2) 113 (56.5) 16 (40.0) 0.005
Anaemia at discharge, n (%) 53 (42.5) 45 (22.5) 1 (2.5) <0.0001

Echocardiographic data on admission
LVEF (%) 60.4 ± 10.5 60.3 ± 12.1 54.5 ± 14.5 0.0156
LVDd (mm) 48.8 ± 0.66 46.7 ± 0.53 49.1 ± 1.19 0.0273
LVDs (mm) 32.9 ± 0.65 31.1 ± 0.53 35.7 ± 1.17 0.0009
Left ventricular hypertrophy, n (%) 40 (32) 19 (9.5) 19 (47.5) <0.0001
IVST (mm) 11.6 ± 2.3 10.3 ± 1.76 13.2 ± 3.8 <0.0001
PWT (mm) 11.2 ± 1.9 10.2 ± 1.7 12.5 ± 2.7 <0.0001
LAD (mm) 45.4 ± 8.7 44.8 ± 8.8 43.0 ± 6.3 0.429

BMI, body mass index; DBP, diastolic blood pressure; HR, heart rate; IVST, interventricular septal thickness; LAD, left arterial diameter;
LVDd, left ventricular end-diastolic diameter; LVDs, left ventricular end-systolic diameter; LVEF, left ventricular ejection fraction; NYHA,
New York Heart Association functional classification; PWT, posterior wall thickness; SBP, systolic blood pressure.
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a higher incidence of women and older individuals and the
lowest BMI among the phenogroups. Phenogroup 2 also
had the highest incidence of AF and the lowest incidence of
atherosclerotic factors. The features of Phenogroup 2 were
summarized as AF and aged women (mean age
78.8 ± 9.7 years). Phenogroup 3 was the youngest and pre-
dominantly male. BMI was the highest. Echocardiography re-
vealed the highest incidence of left ventricular hypertrophy
(LVH) (47.5%). The characteristics of Phenogroup 3 were as
follows: youngest, obese, and LVH. A summary of the charac-
teristics of the three phenotypes in the derivation cohort is
illustrated in Figure 2. We named the three phenogroups as
the atherosclerosis and CKD group, the AF group, and the
younger and LVH group.

Prognostic relationship between clinical
phenotypes and patient outcome

As shown in Table 3, Phenogroup 1 demonstrated a signifi-
cantly worse prognosis of the primary composite endpoint
compared with the other two phenotypes (Phenogroups 1–
3: 72.0% vs. 58.5% vs. 45%, P = 0.0036). As secondary end-
points, the incidences of all-cause death, cardiovascular

death, or HF readmission within the 5 years were also signif-
icantly higher in Phenogroup 1 than in the other two groups
(Table 3). When comparing Phenogroups 2 and 3, the occur-
rence of all-cause death tended to be higher in Phenogroup 2
than Phenogroup 3. In contrast, the rates of cardiovascular
death and HF readmission were similar between the two
phenogroups despite older age and worse kidney function
in Phenogroup 2. The Kaplan–Meier survival curves of the pri-
mary composite endpoint and each secondary endpoint for
5 years are illustrated in Figure 3.

Hierarchical clustering in NARA-HF

The characteristics of the three phenogroups stratified by hi-
erarchical clustering are documented in Supporting Informa-
tion, Table S2 and are summarized as follows: Phenogroup
A was older with predominantly atherosclerotic factors and
CKD, Phenogroup B was predominantly female with AF, and
Phenogroup C was younger with relatively high BMI. These
characteristics were similar to the VBGMM phenomapping
results. From the above matching features, we determined
that VBGMM Phenogroups 1–3 corresponded to the hierar-
chical clustering Phenogroups A–C, respectively. Similar to

Table 2 Laboratory findings and clinical characteristics at discharge

Phenogroup 1
(n = 125)

Phenogroup 2
(n = 200)

Phenogroup 3
(n = 40) P value

HbA1c (%) 6.15 ± 0.95 6.10 ± 1.04 6.09 ± 1.03 0.9194
BNP (pg/dL) 412.1 ± 406.4 183 ± 147.1 212.7 ± 177.4 <0.0001
CRP (mg/dL) 1.07 ± 1.86 0.71 ± 1.01 0.56 ± 0.72 0.0285
Haemoglobin (g/dL) 10.31 ± 1.56 11.39 ± 1.89 13.64 ± 1.73 <0.0001
Serum renin (pg/mL) 6.47 ± 7.99 7.51 ± 13.0 9.31 ± 14.2 0.5332
Serum aldosterone (mg/dL) 109.7 ± 9.5 102.5 ± 7.3 145.0 ± 14.3 0.0316
Serum sodium (mmol/L) 139.1 ± 2.8 138.3 ± 4.3 140.2 ± 2.2 0.0010
Creatinine (mg/dL) 1.79 ± 0.54 0.94 ± 0.31 0.96 ± 0.29 <0.0001
Blood urea nitrogen (mg/mL) 41.3 ± 17.6 23.1 ± 9.1 20.4 ± 8.9 <0.0001
eGFR 28.5 ± 9.7 55.6 ± 19.3 59.8 ± 18.9 <0.0001
Total protein (g/dL) 6.53 ± 0.61 6.68 ± 0.76 7.17 ± 0.54 <0.0001
Serum albumin (g/dL) 3.51 ± 0.45 3.61 ± 0.44 4.03 ± 0.30 <0.0001
Vital signs

Heart rate (b.p.m.) 68.8 ± 10.8 73.2 ± 12.9 67.6 ± 8.0 0.0007
Systolic blood pressure (mmHg) 118.5 ± 16.5 111.5 ± 14.7 122.4 ± 16.3 <0.0001
Diastolic pressure (mmHg) 62.6 ± 10.4 61.4 ± 9.9 67.9 ± 9.0 0.0011

Medication at discharge, n (%)
ACE inhibitor 59 (47.2) 97 (48.5) 20 (50.0) 0.9469
Angiotensin receptor blockers 58 (46.4) 71 (35.5) 15 (37.5) 0.1424
Any RAS blocker 107 (85.6) 165 (82.5) 33 (82.5) 0.575
MRA 34 (27.2) 79 (39.5) 15 (37.5) 0.0733
Calcium channel blocker 69 (55.2) 67 (33.5) 14 (35.0) 0.0004
Diuretics 109 (87.2) 154 (77.0) 25 (62.5) 0.0024
Digitalis 7 (5.6) 18 (9.0) 2 (5.0) 0.4381
Antiplatelet therapy 29 (23.3) 23 (11.5) 8 (20.0) 0.0176
Any anticoagulation therapy 49 (39.2) 96 (48.0) 16 (40.) 0.2561
Statins 46 (36.8) 45 (22.5) 17 (42.5) 0.0038
Diabetes drugs 50 (40) 49 (24.5) 8 (20) 0.0266
SGLT2 inhibitor 1 (0.008) 2 (0.01) 0 (0) 0.8146
Insulin user 10 (8.0) 10 (5.0) 1 (2.5) 0.3407

ACE, angiotensin-converting enzyme; BNP, brain natriuretic peptide; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate;
HbA1c, glycated haemoglobin; MRA, mineralocorticoid receptor antagonist; RAS, renin–angiotensin system; SGLT2, sodium–glucose
cotransporter 2.
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the previous report that compared the result of orthogonal
two unsupervised ML algorithms, the matching rate between
these two algorithms is illustrated in Supporting Information,
Figure S4. The percentage of matched individuals in VBGMM
(% cluster in VBGMM) of Phenogroup 1 and Phenogroup A
was 69.6%, of Phenogroup 2 and Phenogroup B was 49.0%,
and of Phenogroup 3 and Phenogroup C was 77.5%. However,
Phenogroup 2 and Phenogroup C did not show complete
agreement regarding the prevalence of LVH, which may have
caused the difference between the clustering algorithms.
Phenogroup C included only 29.3% of Phenogroup 3 and
40.6% of Phenogroup 2.

External validation of the phenogroups in the
JASPER cohort

For external validation, we validated our results using data
from the JASPER cohort. Among the 534 patients with HFpEF

in the JASPER study, 273 patients were analysed after exclud-
ing 230 patients with missing values for 24 variables used for
clustering (Supporting Information, Table S1) and 31 patients
with eGFR < 15 mL/min/1.73 m2 (Figure 1). The major differ-
ences in baseline characteristics between the derivation and
validation cohorts are shown in Supporting Information,
Table S3. After phenomapping by VBGMM using the same
24 variables as in the derivation analyses, we succeeded in di-
viding the patients into three phenogroups similar to those in
the derivation cohort. The characteristics of each phenogroup
are presented in Table 4. Phenogroup 1 had a higher inci-
dence of older aged patients, men, and atherosclerotic risk
factors and the highest rate of old myocardial infarction and
poor kidney function. Phenogroup 2 had the oldest age,
lowest BMI, and highest prevalence of women and AF.
Phenogroup 3 had the youngest age and highest BMI, rela-
tively better kidney function, and LVH. The characteristics of
these three phenogroups in the validation cohort were simi-
lar to those in the derivation cohort of the NARA-HF study,

Table 3 Comparison of 5 year clinical outcomes between the three phenogroups in the derivation cohort

5 year clinical outcome
Phenogroup 1
(n = 119)

Phenogroup 2
(n = 184)

Phenogroup 3
(n = 39) P value

Primary endpoint, n (%) 90 (72.0) 117 (58.5) 18 (45) 0.0036
Secondary endpoint

All-cause death, n (%) 62 (51.7) 88 (44.0) 8 (20) 0.0021
Cardiovascular death, n (%) 35 (28.0) 39 (19.5) 5 (12.5) 0.0467
Heart failure re-hospitalization, n (%) 53 (42.4) 51 (25.5) 12 (30.0) 0.0061

Primary endpoint included all-cause death and heart failure re-hospitalization.

Figure 2 Characteristics summary of the three phenogroups in the Nara Registry and Analyses for Heart Failure. AF, atrial fibrillation; BMI, body mass
index; CKD, chronic kidney disease; DM, diabetes mellitus; HL, hyperlipidaemia; HR, heart rate; HT, hypertension; LV, left ventricle; LVH, left ventricular
hypertrophy.
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which was clearly shown by the correlation heat map of each
variable (Figure 4). The variables of sex, age, BMI, heart rate,
blood pressure at admission, atherosclerotic risk factors, AF,
left ventricular wall thickness, and kidney function showed
a similar correlation coefficient pattern between the two co-
horts. However, laboratory findings such as CRP, serum total
protein (TP), and serum albumin (Alb) did not clarify the cor-
respondence between the two cohorts. However, among the
three phenogroups in the validation cohort, the phenogroup
of AF showed a significantly worse prognosis of 2 year pri-
mary and secondary endpoints than the phenogroup of ath-
erosclerosis and CKD (Supporting Information, Table S4 and
Figure S5), which were different from those in the derivation
cohort.

Supervised machine learning validation

We validated our results of the present unsupervised
phenomapping for NARA-HF and JASPER by supervised ML,
an RF algorithm. The composite cohort combining NARA-HF
and JASPER was classified into three phenogroups as the der-
ivation by VBGMM. Subsequently, the composite cohort was
also classified into three phenogroups by RF-NARA, which
was trained by the derivation phenomapping result of
NARA-HF. The accuracy and F1-measure scores comparing
the three phenogroup labels obtained by VBGMM and

RF-NARA to the composite cohort were 0.845 and 0.785,
respectively.

Discussion

We stratified HFpEF into three phenogroups based on stan-
dard clinical variables using unsupervised ML with the
NARA-HF study as a derivation cohort in Japan. Next, we val-
idated the phenomapping of NARA-HF using another unsu-
pervised ML algorithm and a supervised one. Finally, using
another Japanese multicentre HFpEF registry, the JASPER
study, as a validation cohort, we succeeded in stratifying
three phenogroups similar to those in the derivation cohort.
Both cohorts included patients who were admitted to the
hospital for ADHF. Therefore, the patients were much older
than those enrolled in randomized control trials (RCTs), such
as the I-Preserved trial and the TOPCAT trial, and the BMI was
much lower in Japanese cohorts than in Western
populations.2,8

About the clustering variables

Phenotyping using ML was dependent on the variables used.
In the present study, we used standard variables such as BMI,
atherosclerotic risk factors, kidney function, AF, LVH, and BNP

Figure 3 Kaplan–Meier survival curves of primary and secondary endpoints in the Nara Registry and Analyses for Heart Failure: (A) primary endpoint,
(B) all-cause death, (C) cardiovascular death, and (D) heart failure readmission. AF, atrial fibrillation; CKD, chronic kidney disease; LVH, left ventricular
hypertrophy.
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levels, so that the present phenotyping can be widely ap-
plied. Consequently, the three phenogroups stratified in the
present study were characterized as atherosclerosis and
CKD, AF, and younger and LVH, providing insight on the de-
velopment of HFpEF. Although the present phenotyping
was not entirely consistent with previous studies, these char-
acteristics were commonly observed in each phenogroup in
earlier reports in Western countries,7–12 in which patients
were more obese than Japanese patients. However, when
comparing the phenotype results of the JASPER and
NARA-HF studies, the trends in mean values of CRP, TP, and
Alb were not completely consistent. These results might not
be important variables for the phenomapping of HFpEF using
clinical data.

Phenogroup 2 (AF group)

In the phenogroup characterized by AF, the patients were
older women and frequently had CKD in both our cohorts
and several previous studies’ populations, whereas BMI
was much lower in patients in Japanese studies than in

those in Western countries.7–9 Shah et al. first reported a
phenogroup characterized by CKD and AF in ML
phenomapping.7 Cohen et al. also presented an older, with
stiff arteries, small left ventricles, diastolic function, and AF
group.8 Additionally, Jones et al. also reported a distinct
HFpEF phenogroup, which showed characteristics of dia-
stolic dysfunction in haemodynamic analysis, similar to
Cohen et al.’s AF group.12 The AF group we presented here
was very similar to previously reported phenogroups, espe-
cially in terms of frequency of AF, lower BMI, older age,
and poorer renal function than the other groups. Given
that AF is almost equally observed in patients with higher
and lower BMI in the Japanese AF cohort,25 it is possible
that AF contributes to the development of HFpEF with or
without obesity. Considering that AF occurs more fre-
quently in men than in women, it is notable that the inci-
dence of women was higher in this phenogroup of HFpEF.25

Additionally, a phenogroup with AF, predominantly elderly
women, and mildly CKD was frequently observed in previ-
ous Western studies. Therefore, the phenogroup with el-
derly, AF, and CKD may be a common HFpEF phenotype
worldwide, although their BMI was slightly different.

Table 4 Clinical characteristics of the three phenotypes in the validation cohort

Phenogroup 1
(n = 126)

Phenogroup 2
(n = 74)

Phenogroup 3
(n = 73) P value

Demographics on admission
Age (years) 78.2 ± 7.9 82.6 ± 6.6 70.7 ± 11.7 <0.0001
Male, n (%) 80 (63.5) 24 (34.3) 30 (41.1) <0.0001
BMI (kg/m2) 24.6 ± 3.6 21.6 ± 4.4 25.2 ± 6.0 <0.0001

Medical history on admission
Diabetes, n (%) 70 (55.6) 24 (32.4) 15 (20.6) <0.0001
Hypertension, n (%) 113 (89.7) 49 (66.2) 49 (67.1) <0.0001
Hyperlipidaemia, n (%) 83 (65.9) 16 (21.6) 21 (28.8) <0.0001
Hyperuricaemia, n (%) 68 (53.9) 26 (35.1) 20 (27.4) 0.0015
Atrial fibrillation, n (%) 70 (55.6) 57 (77.0) 48 (65.8) 0.0088
History of myocardial infraction, n (%) 27 (21.4) 1 (1.4) 0 (0) <0.0001

Echocardiographic data on admission
LVDd (mm) 50.3 ± 6.0 44.3 ± 5.6 43.6 ± 6.5 <0.0001
LVDs (mm) 33.6 ± 6.0 27.8 ± 4.2 27.6 ± 6.5 <0.0001
LVEF (%) 59.5 ± 6.7 61.0 ± 7.8 61.2 ± 7.9 0.2004
IVST (mm) 10.4 ± 1.7 9.9 ± 1.9 12.3 ± 3.1 <0.0001
PWT (mm) 10.3 ± 1.4 9.8 ± 1.4 11.8 ± 2.7 <0.0001
LAD (mm) 47.2 ± 9.2 46.4 ± 10.7 44.8 ± 8.7 0.2813

Laboratory findings at discharge
HbA1c (%) 6.4 ± 1.1 6.0 ± 1.0 5.9 ± 0.9 0.2201
BNP (pg/dL) 180.1 ± 160.1 256.1 ± 289.5 212.9 ± 249.8 0.0730
CRP (mg/dL) 0.40 ± 0.53 0.94 ± 1.04 0.30 ± 0.34 <0.0001
Haemoglobin (g/dL) 11.2 ± 1.7 10.5 ± 1.5 13.2 ± 1.9 <0.0001
Creatinine (mg/dL) 1.42 ± 0.47 1.15 ± 0.37 0.81 ± 0.21 <0.0001
Blood urea nitrogen (mg/dL) 34.9 ± 1.3 30.6 ± 1.7 19.6 ± 1.6 <0.0001
eGFR at discharge (mL/min/1.73 m2) 38.1 ± 13.2 43.0 ± 15.3 64.2 ± 11.9 <0.0001
Total protein (g/dL) 7.0 ± 0.6 6.4 ± 0.6 6.9 ± 0.6 <0.0001
Serum albumin (mg/dL) 3.8 ± 0.4 3.4 ± 0.4 3.9 ± 0.4 <0.0001

Vital signs at discharge
Heart rate (b.p.m.) 64.1 ± 10.4 71.9 ± 11.9 66.9 ± 10.1 <0.0001
Systolic blood pressure (mmHg) 118.8 ± 14.9 109.6 ± 14.5 112.1 ± 14.4 <0.0001
Diastolic pressure (mmHg) 60.2 ± 11.8 61.0 ± 10.0 66.5 ± 10.1 0.0004

BMI, body mass index; BNP, brain natriuretic peptide; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HbA1c, glycated
haemoglobin; IVST, interventricular septal thickness; LAD, left arterial diameter; LVDd, left ventricular end-diastolic diameter; LVDs, left
ventricular end-systolic diameter; LVEF, left ventricular ejection fraction; PWT, posterior wall thickness.
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Figure 4 Heat mapping of clinical variables in derivation and validation studies. AF, atrial fibrillation; Alb, serum albumin; BMI, body mass index; BNP,
brain natriuretic peptide; BUN, blood urea nitrogen; Cre, serum creatinine level; CRP, C-reactive protein; DBP, diastolic blood pressure; DM, diabetes
mellitus; eGFR, estimated glomerular filtration rate; Hb, haemoglobin; HL, hyperlipidaemia; HR, heart rate; HT, hypertension; IVST, interventricular sep-
tal thickness; JASPER, Japanese Heart Failure Syndrome with Preserved Ejection Fraction Registry; LVDd, left ventricular end-diastolic diameter; LVDs,
left ventricular end-systolic diameter; Na, serum sodium level; NARA-HF, Nara Registry and Analyses for Heart Failure; OMI, old myocardial infarction;
PWT, posterior wall thickness; SBP, systolic blood pressure; TP, serum total protein.
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Phenogroups 1 (atherosclerosis and CKD group)
and 3 (younger and LVH group)

Phenogroups with a higher incidence of atherosclerotic risk
factors have also been identified in previous reports. Kao
et al. reported phenogroups with a high rate of atheroscle-
rotic factors, such as coronary artery disease, DM, and
CKD, in patients enrolled in the I-Preserved trial, and these
phenogroups with a high risk of atherosclerosis showed
the worst outcome.9 Cohen et al. proposed that the
phenogroup with high-risk factors for atherosclerosis and
obesity had the highest mortality in HFpEF phenotyping
using the TOPCAT trial.8 Thus, a phenogroup similar to
Phenogroup 1 in the present study was also classified in pre-
vious Western cohorts of HFpEF. This phenotype would be
similar to one recently reported by Hahn et al.11 and Jones
et al.12 that is characterized by a higher N-terminal pro-
BNP value and relatively low ejection fraction (EF). However,
the characteristics of our atherosclerotic phenogroup were
not completely consistent with those of atherosclerotic and
obesity phenotypes in previous reports, such as the preva-
lence of DM. For example, Cohen et al.’s Phenogroup 3
(obese, diabetic, with advanced symptoms) had a DM fre-
quency of 88%, whereas our equivalent Phenogroup 3 had
a DM frequency of 40%.8 Subgroup C presented by Kao
et al. (elderly patients with a high prevalence of atheroscle-
rotic factor and CKD) also had a DM frequency of 100%,
whereas our Phenogroup 1 had a frequency of 68%.9 This
may be explained by the difference in lifestyle between
Western countries and Japan, which could be represented
by the proportion of obesity between our study and previ-
ous reports. Generally, obesity is a stronger risk factor for
atherosclerotic disease in Western countries than in Japan
and other Asian countries. In the present study, patients in
the atherosclerosis and CKD phenogroup were not obese,
and their cardiac geometry was not hypertrophied. How-
ever, patients in the corresponding phenogroups in the
I-Preserved and TOPCAT trials were obese and had LVH.8,9

Our patients in Phenogroup 3 (younger and LVH) were more
obese and had the most severe LVH compared with the
other two phenogroups. The phenogroup of atherosclerosis
in Western countries might include a subgroup of patients
who would be classified as Phenogroup 3 if in Japan.

In previous phenotyping of HFpEF using RCTs, there was a
phenogroup with relatively normal left ventricular geometry,
with a lower proportion of atherosclerotic risk factors and
AF.8 In the present study, we were unable to identify this
phenogroup. A possible explanation may be the difference
in patient recruitment between our study and previous stud-
ies. The NARA-HF and JASPER studies are registries of pa-
tients with ADHF at unexpected admission to hospitals,
whereas the I-Preserved and TOPCAT trials are RCTs that re-
cruited outpatient patients with HFpEF.

Possible treatment strategies by phenotype

Recently, SGLT2 inhibitors were reported to be drugs useful for
reducing a composite of cardiovascular death and HF hospital-
ization in patients with HFpEF.3 However, given that HFpEF is a
complex syndrome consisting of different subgroups classified
with some common characteristics, phenotype-related treat-
ment strategies should be proposed in the future. Considering
the present results, the subgroup of patients characterized
with AF would possibly be suitable candidates for treatment
with ablation,26,27 those characterized with atherosclerosis
and CKD would be for SGLT2 inhibitors,28 and those character-
ized with LVH would be for sacubitril–valsartan29 or mineralo-
corticoid receptor antagonists.8

Limitations

The present study had several limitations. First, the NARA-HF
study is a single-centre, relatively small study; therefore, re-
gional and clinical decision bias might be related to the phe-
notypes and clinical outcomes. Second, because the appropri-
ate number of clusters varies depending on the dataset and
clustering method, it is difficult to determine whether the
number of clusters currently presented is truly optimal. Third,
the selection bias of variables for phenomapping might have
affected the results.

Fourth, we could not completely exclude the patients with
secondary cardiomyopathy and recovered EF who improved
their LVEF during hospitalization in the NARA-HF study. Fifth,
we used only a few echo parameters in our analysis, because
many echo parameters had 20% or more missing values. This
may have affected the present phenomapping result. Sixth,
we imputed some missing variables. The largest missing vari-
able was Alb at discharge (deficit rate was 19.5%). Segar
et al.10 excluded variables with 10% or more missing values,
and the missing values were imputed using the missForest
package. Kao et al.9 also imputed missing data for 67% of pa-
tients, using 20 multiply imputed datasets. Compared to past
studies, the percentages of imputed variables in the current
study might be acceptable. However, there might be some
bias depending on the imputation algorithm. Finally, the pri-
mary composite event rate in the derivation study did not
match that in the validation study. This could have resulted
from the difference in kidney function and age of each
phenogroup between the two cohorts. In the NARA-HF study,
the incidence of worse CKD was higher than that in the JAS-
PER study.

In conclusion, we identified three HFpEF phenotypes with
different clinical characteristics in Japanese patients with
HFpEF, who had lower BMI and incidence of obesity than
Western patients. The feature values and comorbidities of
each phenogroup such as atherosclerotic risk factors, age,
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sex, and AF in the present study were similar to those of ear-
lier studies conducted in Western countries, whereas BMI
and the rate of obesity did not correspond to these earlier
studies. Further studies with a much larger sample size are
necessary to further clarify the precise phenotypes in HFpEF,
a complex syndrome.
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