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Abstract

Aims Current approaches to classify chronic heart failure (HF) subpopulations may be limited due to the diversity of
pathophysiology and co-morbidities in chronic HF. We aimed to elucidate the clusters of chronic patients with HF by
data-driven approaches with machine learning in a hospital-based registry.
Methods and results A total of 4649 patients with a broad spectrum of left ventricular ejection fraction (LVEF) in the
CHART-2 (Chronic Heart Failure Analysis and Registry in the Tohoku District-2) study were enrolled to this study. Chronic HF
patients were classified using random forest clustering with 56 multiscale clinical parameters. We assessed the influence of
the clusters on cardiovascular death, non-cardiovascular death, all-cause death, and free from hospitalization by HF. Latent
class analysis using random forest clustering identified 10 clusters with four primary components: cardiac function (LVEF, left
atrial and ventricular diameters, diastolic blood pressure, and brain natriuretic peptide), renal function (glomerular filtration
rate and blood urea nitrogen), anaemia (red blood cell, haematocrit, haemoglobin, and platelet count), and nutrition (albumin
and body mass index). All 11 significant clinical parameters in the four primary components and two disease aetiologies (isch-
aemic heart disease and valvular heart disease) showed statistically significant differences among the 10 clusters (P < 0.01).
Cluster 1 (26.7% of patients), which is characterized by preserved LVEF (<59%, 37% of the total) with lowest brain natriuretic
peptide (>111.3 pg/mL, 0.9%) and lowest left atrial diameter (>42 mm, 37.4%), showed the best 5 year survival rate of 98.1%
for cardiovascular death, 95.9% for non-cardiovascular death, 92.9% for all-cause death, and 91.7% for free from hospitaliza-
tion by HF. Cluster 10 (6.0% of the total), which is co-morbid disorders of all four primary components, showed the worst
survival rate of 39.1% for cardiovascular death, 68.9% for non-cardiovascular death, 23.9% for all-cause death, and 28.1%
for free from hospitalization by HF.
Conclusions These results suggest the potential applicability of the machine leaning approach, providing useful clinical prog-
nostic information to stratify complex heterogeneity in patients with HF.
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Introduction

Heart failure (HF) is a global burden affecting 640 million
people and is regarded as the leading cause of death and

morbidity worldwide.1 Current guidelines provide three
chronic HF categories based on left ventricular ejection
fraction (LVEF): heart failure with reduced (HFrEF), mildly
reduced (HFmrEF), and preserved ejection fraction (HFpEF).1
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Although LVEF has been used as a major parameter for the
categorization and management of patients with HF, this ap-
proach for HF risk stratification may have fundamental
limitations.2 LVEF above 45% is not further considered for
prognostic assessment in patients with chronic HF.3 Further-
more, several studies suggested that LVEF alone is not suffi-
cient to stratify the multi-factorial and heterogeneous nature
of HF.4–6 A recent large cohort study suggested that overall,
adjusted hazard ratios for mortality showed a U-shaped rela-
tionship for LVEF with a nadir of risk noted at 60–65%.7 An
improved phenotypic classification of chronic HF with an inte-
gration of clinical parameters and biomarkers would provide
useful information for optimal patient care and management
strategies, providing much better predictive value than LVEF
alone.6,7

Recently, machine learning (ML) algorithm such as random
forest (RF) has been introduced to provide precise risk strat-
ification beyond existing classification in patients with ovar-
ian cancer,8 breast cancer,9 and hypokalaemia.10 This ap-
proach is entirely hypothesis free and has the potential for
discovery of novel insights in chronic HF.8

In this study, we aimed to derive the clusters of chronic HF
patients by data-driven ML approach with 56 parameters, in-
cluding physical data, aetiology, blood examination, echocar-
diography, urinalysis, and medication, in order to reveal the
long-term prognostic relevance of clustering for death and
free from hospitalization by HF in our CHART-2 (Chronic Heart
Failure Analysis and Registry in the Tohoku District-2) study,
one of the largest multicentre prospective observational
studies on chronic HF patients.11

Methods

Study setting and subjects

The CHART-2 study is a hospital-based prospective observa-
tional study with 23 hospitals in six prefectures in Japan.11

The design and methods have been previously described in
detail.11 In brief, between October 2006 and March 2010,
we enrolled consecutive patients older than 20 years with
significant coronary artery disease and those in Stage B
(structural heart disease but without signs or symptoms of
HF), Stage C (structural heart disease with early or current
symptoms of HF), and Stage D enumerated by the current
guidelines.1,12 Subjects in Stage B must meet at least one of
the following structural disorders and must not have signs,
symptoms, or history of hospitalization for HF: (i) enlarged
left ventricular (LV) end-diastolic dimension (≥55 mm) mea-
sured by echocardiography; (ii) impaired LV ejection fraction
(LVEF ≤50%) measured by echocardiography; (iii) thickened
interventricular septum (>12 mm) and/or thickened LV pos-
terior wall (>12 mm) measured by echocardiography; (iv)

significant valvular stenosis/insufficiency; (v) significant myo-
cardial abnormalities; (vi) congenital abnormalities, or (vii)
history of cardiac surgery.11,13 The diagnosis of Stage C was
made by attending cardiologists based on the criteria of the
Framingham study.14 Enrolment began in October 2006 and
ended in March 2010.11 All information, including medical
history, laboratory data, and echocardiography data, were
recorded in a computer database at the time of enrolment.
Annual follow-up was made by clinical research coordinators
by means of review of medical records, surveys, and tele-
phone interviews.11

After excluding 5343 patients in Stage A/B and 227 with
missing echocardiographic data, we included a total of 4649
chronic HF patients with Stage C/D (Figure S1). The study out-
comes included cardiovascular death, non-cardiovascular
death, all-cause death, and free from hospitalization by HF.
All outcomes were reviewed and adjudicated by consensus
of three independent physicians, the members of the Tohoku
Heart Failure Association.11 They reviewed case reports,
death certificates, medical records, and summaries provided
by the investigators. This study conformed to the Declaration
of Helsinki, and the study protocol was approved by institu-
tional review boards at each institution. All participants pro-
vided written informed consent.

Clinical parameters and random forest model

For RF clustering, we included 56 multiscale clinical parame-
ters with <30% missing rates, as displayed in Table S1. From
the RF modelling, we excluded age and sex as they are clini-
cally neither intervenable nor treatable. Missing values were
complemented with the missForest algorithm, one of the ma-
jor imputation algorithms utilizing RF.15 After excluding 901
patients who died of non-cardiovascular death or censoring,
we built a RF model to predict cardiovascular death within
5 years in 3748 patients (RF modelling dataset, Figure S1).
We randomly split 3748 patients into 3423 patients for train-
ing data and 358 patients for test data. Based on the fixed
training and test dataset, we built 10 supervised RF models
by changing initial random seeds. RF classifier is composed
from an ensemble of decision trees, bagging, and random
feature selection. In bagging, each tree is trained based on
a bootstrap sample of training data. In the training process,
each tree grows from a particular bootstrap sample. During
the training process, the performance of RF prediction for
cardiovascular death was evaluated from out-of-bag samples,
which are not selected in the bootstrap sample. The area un-
der the receiver operating characteristic curve (AUC) was
used to assess the performance of the RF models in 358 pa-
tients. The variables that contribute to predict cardiovascular
death above LVEF were selected. After the RF models were
established, we input 4649 patients overall into RF models
without outcome data to archive RF proximity, which is
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defined as the frequency with which two cases are classified
into the same leaf in the decision trees of the RF model.
Based on the proximity matrix from the branch information,
2D embedding was performed with densMAP.16 Clustering
was carried out by applying k-means to the 2D coordinates.
The optimal number of clusters was selected from 2 to 15,
considering the silhouette score and the silhouette plot.17 Af-
ter clustering, we compared baseline characteristics of each
cluster by providing ratio to exceed median value of each sig-
nificant parameter. In overall 4649 patients, Kaplan–Meier
survival curves for cardiovascular death, non-cardiovascular
death, all-cause death, and free of hospitalization by HF of
the 10 clusters were described and 5 year survival rates were
calculated according to the previously reported method.8

Statistical analysis

The differences in clinical parameters were compared among
clusters obtained from combining multiple ML algorithms.
For statistical analysis, ANOVA was performed to compare
continuous variables and chi-squared test for categorical var-
iables. A two-sided P value of <0.05 was considered statisti-
cally significant. All analysis were performed with R version
4.0.2 (R Foundation for Statistical Computing, https://www.
R-project.org/) and Python Version 3.9.7 (Python Software
Foundation at http://www.python.org).

Results

Supervised RF model to predict cardiovascular
death within 5 years

The mean age of the 4649 patients was 68.9 ± 12.3 years,
32.0% were women, 2.0% were in Stage D, and 68.3% had
HF with preserved EF (LVEF ≥ 50%). The median [IQR] level
of brain natriuretic peptide (BNP) was 111.3 [49.9 to 223.2]
pg/mL. When checking the performance of the RF models
to predict cardiovascular death within 5 years, the highest,
lowest, and average values of AUC were 0.815, 0.811, and
0.813, respectively (Figure S2). The relative importance of
variables (RI) for cardiovascular death within 5 years was cal-
culated by averaging the importance of variables from each
of the RF models. In this model, 13 variables showed higher
RI than LVEF, including BNP, blood urea nitrogen (BUN), esti-
mated glomerular filtration rate (eGFR), red blood cell count,
haematocrit, albumin, haemoglobin, left atrial diameter
(LAD), diastolic blood pressure (dBP), platelet count, body
mass index (BMI), and LV end-systolic diameter (LVDs)
(Figure S3).

Clusters by RF model

The RF clustering divided 4649 Stage C/D patients into 10
clusters based on the silhouette score (Figure 1, Table S2).
Of these, 1239 patients (26.7%) were clustered as Cluster 1,
286 (6.2%) Cluster 2, 533 (11.5%) Cluster 3, 664 (14.3%) Clus-
ter 4, 247 (5.3%) Cluster 5, 356 (7.7%) Cluster 6, 372 (8.0%)
Cluster 7, 451 (9.7%) Cluster 8, 223 (4.8%) Cluster 9, and
278 (6.0%) Cluster 10. Table S2 shows the baseline character-
istics across the clusters, and Table 1 shows the baseline
characteristics of the 10 clusters by displaying percentage of
patients above median of each significant parameter. Clus-
ter 1 (reference) was characterized by lowest BNP
(BNP > 113 pg/mL, 0.9% of total) and lowest LAD diameter
(LADim > 42 mm, 37.4%). When stratified by LVEF, Cluster
1 (mean LVEF, 61.9%), Cluster 2 (62%), Cluster 3 (60.5%),
Cluster 4 (60.7%), Cluster 6 (58%), Cluster 7 (54.2%), and Clus-
ter 9 (55.6%) were categorized as HFpEF, whereas Cluster 5
(31.6%) as HFrEF and Cluster 8 (48%) and Cluster 10 (50.1%)
as HFmrEF. In detail, Cluster 1 also had preserved diastolic
pressure (dBP < 70 mmHg, 18.4%), preserved LVEF, and the
highest BMI (>23.5 pg/mL, 62.4%) among the 10 clusters.
Cluster 2 had similar prevalence of preserved LVEF but higher
BNP and lower dBP than did Cluster 1. Cluster 3 had higher
BNP level and LADim than did Cluster 1. Cluster 4 was charac-
terized by impaired renal function. Cluster 5 had impaired LV
function (LVEF < 59%, 99.6%) but preserved renal function

Figure 1 2D visualization of the relative distances among all patients
with chronic HF Colours indicate different cluster assignment using k-
means clustering (k = 10).
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(eGFR < 61.1 mL/min/1.73 m2, 22.7%) and highest Hb level
(Hb < 13.3 g/dL, 25.1%) among the 10 clusters. Cluster 6
had preserved LV function (LVEF<59%, 59.4%) but impaired
renal function (eGFR < 61.1 mL/min/1.73 m2, 100%) and
anaemia (Hb < 13.3 g/dL, 70.8%). Cluster 7 was characterized
by lower Hb (Hb < 13.3 g/dL, 67.7%) and Alb (<4.11 g/dL,
89.5%) levels. Cluster 8 and Cluster 10 shared clinical charac-
teristics in cardiac functions. However, Cluster 10 had higher
prevalence of anaemia compared with Cluster 8. Cluster 9
and Cluster 10 had similar characteristics in renal dysfunction
and anaemia, but Cluster 9 had better cardiac function than
Cluster 10 (Table 1).

Prognostic relevance of clustering

Median follow-up period was 5.9 years. We assessed the
association between clusters and outcomes (cardiovascular
death, non-cardiovascular death, all-cause death, and free
from hospitalization by HF). Figure 2 shows Kaplan–Meier
curves for all-cause death, cardiovascular death,

non-cardiovascular death, and free from hospitalization by
HF among the 10 clusters. The 5 year survival rates for cardio-
vascular death were sequentially decreased from Cluster 1 to
Cluster 10 as follows: 98.1% in Cluster 1, 94.7% in Cluster 2,
94.5% in Cluster 3, 89.1% in Cluster 4, 87.8% in Cluster 5,
83.9% in Cluster 6, 83.2% in Cluster 7, 80.0% in Cluster 8,
69.7% in Cluster 9, and 39.1% in Cluster 10. Similar trends
were noted in non-cardiovascular death (95.9% in Cluster 1,
90.1% in Cluster 2, 91.3% in Cluster 3, 89.1% in Cluster 4,
93.4% in Cluster 5, 80.8% in Cluster 6, 79.8% in Cluster 7,
82.9% in Cluster 8, 78.2% in Cluster 9, and 68.9% in Cluster
10) and all-cause death (92.9% in Cluster 1, 82.7% in Cluster
2, 84.5% in Cluster 3, 77.2% in Cluster 4, 79.6% in Cluster 5,
63.7% in Cluster 6, 63.6% in Cluster 7, 63.0% in Cluster 8,
50.8% in Cluster 9, and 23.9% in Cluster 10). Furthermore,
rates for free from hospitalization by HF clearly decreased
from Cluster 1 to Cluster 10 as follows: 91.7% in Cluster 1,
83.0% in Cluster 2, 81.2% in Cluster 3, 80.3% in Cluster 4,
74.3% in Cluster 5, 62.5% in Cluster 6, 69.1% in Cluster 7,
56.5% in Cluster 8, 51.0% in Cluster 9, and 28.1% in Cluster
10 (Figure 2).

Figure 2 Kaplan–Meier survival curves for (A) all-cause death, (B) cardiovascular death, (C) non-cardiovascular death, and (D) free from hospitalization
by HF among the clusters. Curves are truncated at 5 years.
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Discussion

The present study is one of the largest studies that clustered
4649 chronic HF patients with a broad spectrum of LVEF,
demonstrating that our data-driven ML approach is able to
identify 10 distinct clinical clusters of patients with four pri-
mary components: cardiac function, renal function, anaemia,
and nutrition. These results demonstrate that the ML ap-
proach is useful to stratify complex heterogeneity of chronic
HF, suggesting its potential applicability for prognostic assess-
ment of chronic HF patients.

Given by the limitation of LVEF for risk prediction, the cur-
rent classifications of chronic HF by LVEF need to be
improved.12,18 By clustering disease, ML approach can reduce
the dimensionality of features in a dataset with multimodal
variables to understand and characterize the real-world man-
ifestation of HF. Previous ML studies focused on patients with
preserved LVEF given by the heterogeneous clinical syndrome
of HFpEF in order to improve phenotypic classification.19,20

Shah et al. studied 397 patients with HFpEF and performed
detailed clinical, laboratory, ECG, and echocardiographic phe-
notyping of the patients. Using several statistical learning al-
gorithms, they were able to classify study participants into
three distinct groups that differed markedly in clinical charac-
teristics, cardiac structure/function, invasive haemodynam-
ics, and outcomes.19 Uijl et al. also studied two large contem-
porary HF registries with over 9000 HFpEF patients between
2013 and 2016.20 They identified five distinct clinical clusters
of patients in HFpEF, including a young-low co-morbidity bur-
den cluster, an atrial fibrillation-hypertensive cluster, an
older-atrial fibrillation cluster, an obese-diabetic cluster, and
a cardio-renal cluster.20 These findings indicate that HFpEF
is indeed a heterogeneous disorder.

By demonstrating the prognostic importance of clustering
in patients with chronic HF and a broad spectrum of LVEF,
our findings extend on the clinical utility of ML approaches
showing the association of clusters and the outcomes. There
are several clinically useful risk prediction models in HF pa-
tients that are limited by linear assumption between baseline
characteristics and outcomes.21 However, our ML clustering
approaches enable non-linear stratification of disease status,
considering various background pathological conditions, and
allow stratification of HF phenotypes with different
prognoses.

Of note, Clusters 1, 2, 3, 5, and 8 were mainly stratified by
cardiac function biomarkers, suggesting a series of progres-
sion of HF without any non-cardiovascular co-morbidities.
Clusters 4 and 6 were stratified by renal function biomarkers
as well as cardiac function, suggesting the importance of
cardio-renal relationships in HF progression.22 Clusters 9
and 10 were characterized by multimorbidity, and as ex-
pected, they had poor prognosis. The present study provides
further understanding of the complex HF pathophysiology
and may provide chances of more personalized treatment

of HF patients. Importantly, we demonstrate that our ML ap-
proach is able to produce an automated and scalable under-
standing of a large population of patients with chronic HF.
Our approach also identified 13 important parameters
(Figure S3) associated with cardiac function (LVEF, LVDim,
LVDs, dBP, and BNP), renal function (BUN and eGFR), pres-
ence of anaemia (RBC, Ht, and Hb), and nutrition (Alb) that
can serve as a foundation for practice-based medicine for cli-
nicians when considering various pathological conditions. It
remains to be examined in future studies how HF pathology
changes over time and leads to outcomes to establish person-
alized care and preventive medicine for HF patients.

Several studies have reported using unsupervised ML to
cluster patients with HFpEF.23,24 Unsupervised ML is useful
to understand unrecognized patterns and trends within
unlabelled data. The advantage of our CHART-2 study
dataset, when compared with previous studies, is its inclusion
of long-term prognostic data.23,24 In the present study, we
used supervised ML because it is fundamentally specialized
to predict outcomes for unseen data and the definitive pur-
pose of our research was to stratify patient groups with dif-
ferent long-term outcomes. The identified number of clus-
ters, in our study, was larger than that in previously
published papers because a wide range of patients with HF,
including those with HFpEF and HFrEF with more complicated
clinical backgrounds, were included in our datasets.23,24

Although further evidence is needed to determine patient
management strategy, the identification of mutually exclusive
phenotypes in patients with HF increases the reasoning of
clinical benefit. For example, although anaemia is a known
prognostic factor in patients with HF, it is still controversial
as to what type of patients with HF and anaemia would ben-
efit from anaemia treatment.25 Recently, sodium–glucose
cotransporter 2 inhibitors (SGLT2i) have been proven to be
effective for patients with HF over a wide range of LVEF.26

The identification of the HF phenotype that will benefit from
specific target treatment (e.g. SGLT2i) may also aid in future
clinical trials to determine treatment options. The detailed
risk stratification of the HF phenotype may also provide
insights in tailor-made follow-up strategies for patients
with HF.

Several limitations of the present study should be men-
tioned. First, the data-driven ML approach for phenotypic
clustering is highly influenced by cohort characteristics. Our
cohort included only Asian patients and a relatively high prev-
alence of HFpEF. Thus, our findings need to be confirmed in
other populations. Second, in this study, 56 clinical parame-
ters had missing values that may cause selection bias. How-
ever, we complemented the values with the missForest algo-
rithm, one of the major imputation algorithms for RF
classification that would minimize the bias. Third, our analysis
only used the baseline data and did not consider the transi-
tional changes of the patients. For a better prediction of
the long-term outcome, a time-course analysis of the data
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needs to be considered. Fourth, in this study, the silhouette
score is used to determine the optimal number of clusters
as it is the most widely used method for evaluating the per-
formance of clustering. Application of other indices may be
considered to obtain other results regarding the optimal
number of clusters.

Conclusions

In a large hospital-based cohort of chronic HF patients, the
CHART-2 study, we were able to demonstrate the novel clus-
tering of chronic HF with four primary components (cardiac
function, renal function, presence of anaemia, and nutrition)
that had a diverse range of mortality rate. The ML approach
provides clinical information to stratify complex heterogene-
ity of chronic HF, suggesting its potential applicability for
prognostic assessment in chronic HF patients. Further clinical
validation and longitudinal analysis are warranted.
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