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Abstract

The continuous expansion of immunocompromised patient populations at-risk for developing 

life-threatening opportunistic fungal infections in recent decades has helped develop a deeper 

understanding of antifungal host defenses, which has provided the foundation for eventually 

devising immune-based targeted interventions in the clinic. This review outlines how genetic 

variation in certain immune pathway-related genes may contribute to the observed clinical 

variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-

based patient stratification may enable the eventual development of personalized strategies 

for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging 

cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as 

adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the 

context of opportunistic fungal infections.
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Introduction

Since the 1980s, the global burden of opportunistic fungal infections has dramatically 

increased in humans. Life-threatening fungal infections such as Pneumocystis jirovecii 
pneumonia (PJP), cryptococcal meningoencephalitis, and disseminated histoplasmosis are 

AIDS-defining illnesses that continue to cause significant morbidity and mortality in 

resource-poor settings with limited access to antiretroviral and antifungal therapies [1]. 

The introduction of myeloablative chemotherapy and targeted immunosuppressive therapies 

for patients with neoplastic and autoimmune conditions has expanded the burden of 

opportunistic fungal infections such as invasive aspergillosis (IA) [2, 3]. Modern advances in 

the clinical management of critically ill patients in the intensive care unit (ICU) has resulted 

in an increased frequency of invasive candidiasis in recent decades [4–6]. The advent of 
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allogeneic hematopoietic stem cell transplantation (HSCT) and solid organ transplantation 

(SOT) has transformed the management of patients with hematological malignancies and 

end-organ failure but has resulted in complex iatrogenic immunosuppressive states that 

significantly heighten host susceptibility to opportunistic fungal infections [7].

Despite improvements over the past two decades, the clinical outcome of 

immunocompromised patients who develop opportunistic fungal infections remains poor 

despite the administration of antifungal therapy. Several factors contribute to this clinical 

observation. Firstly, prompt diagnosis of fungal infections remains problematic due to 

the suboptimal sensitivity and specificity of available culture- and biomarker-based fungal 

diagnostic tests [8]. Delayed diagnosis in turn results in delayed initiation of appropriate 

antifungal therapy, which has been shown to increase patient mortality in the setting 

of invasive candidiasis, IA, and mucormycosis [9–11]. Secondly, despite the discovery 

and introduction in the clinic of several new antifungal agents [12, 13], the in vivo 
efficacy of antifungal therapy in immunosuppressed patients remains hindered by drug-

drug interactions, pharmacokinetic and pharmacodynamic challenges, and drug toxicities. 

The emergence of antifungal resistance such as with multidrug-resistant Candida auris, 

echinocandin-resistant Candida glabrata, azole-resistant Cryptococcus neoformans, and 

azole-resistant Aspergillus fumigatus is particularly concerning as it can underlie suboptimal 

treatment responses and poor patient outcomes [14–17]. Thirdly, the profound net state 

of immunosuppression of at-risk patients is a major driver of susceptibility to acquisition 

of, and poor outcomes after, fungal infection, and immune restoration is often required to 

control opportunistic fungal infections in spite of the administration of antifungal therapy 

[18–20].

Thus, alongside improving fungal diagnostic tests, developing novel, broad-spectrum, 

and non-toxic antifungal agents, and investigating fungal virulence traits, enhancing our 

understanding of antifungal host defenses is essential for improving patient outcomes. This 

review first outlines how the recent surge in the characterization of genetic variants (single 

nucleotide polymorphisms [SNPs]) in certain immune pathway-related genes (Table 1) can 

be exploited in the clinic with the goal to assess the individualized risk of fungal infection 

development and prognosis in at-risk patients and to develop personalized strategies for 

antifungal prophylaxis, immunotherapy, and/or vaccination that could improve patient 

outcomes (Figure 1). Moreover, this review briefly discusses certain cytokine-based, cell-

based, and other immunotherapeutic interventions that have shown promise in mouse models 

of fungal disease and/or human patients for boosting or dampening antifungal immune 

responses to benefit the infected mammalian host.

1. Immunogenetic-based risk assessment for fungal disease

An important clinical observation in patients infected with pathogenic fungi (and other 

non-fungal pathogens) is that there is significant heterogeneity in the clinical severity 

and outcome of infections and that clinical and environmental risk factors alone are not 

sufficient to fully explain the variable patient-specific risk for acquiring these infections. For 

example, although the majority of ICU patients share similar clinical risk factors for invasive 

candidiasis (e.g., broad-spectrum antibiotic use, central venous catheters, total parenteral 
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nutrition), the majority of these patients do not develop the infection and when candidemia 

develops in a subset of them, the clinical severity varies significantly among patients who 

share similar clinical and microbiological risk factors for developing poor outcome [4, 18]. 

In addition, despite the ubiquitous environmental exposure to Aspergillus via inhalation and 

similar clinical risk factors (e.g., neutropenia, corticosteroid use) among allogeneic HSCT 

recipients, only ~10% of them develop IA. Moreover, <10% of HIV-infected patients with 

similarly decreased CD4+ T cell counts develop cryptococcal meningoencephalitis despite 

widespread environmental Cryptococcus exposure [21]. Taken together, these observations 

indicate that individual genetic variations in immune pathway genes (either alone or in 

combination) may confer increased susceptibility to or protection from fungal infection.

Indeed, several studies have now demonstrated the contribution of selected immune-related 

gene SNPs in increasing susceptibility to opportunistic fungal infections in humans (Table 

1). These studies provide genetic associations that may help us develop immunogenetic-

based risk assessment in patients at-risk for opportunistic fungal infections, which could 

lead to individualization of antifungal prophylaxis, immunotherapy, or vaccination, and/or 

optimization of donor selection for recipients of allogeneic HSCT. However, these 

studies also have limitations. First, biases may be inadvertently introduced by imbalanced 

population stratification, by small patient sample sizes, by variable clinical practices 

between different hospitals (e.g., different antifungal prophylaxis or immunosuppressive 

drug regimens), by the identified SNPs being in linkage disequilibrium with SNPs in 

other genes that are responsible for the observed phenotype, and/or by the identified SNPs 

influencing the risk of fungal disease indirectly by affecting other clinical risk factors for 

acquisition of the fungal infection (e.g., graft-versus-host disease in the setting of allogeneic 

HSCT). Secondly, validation studies in independent patient cohorts are lacking for most 

of the reported genetic associations, which are often examined in patients from only one 

ethnic group (typically Caucasian). Thirdly, in most reported genetic associations, whether 

the SNPs are dysfunctional thereby conferring impairment in antifungal host defenses is 

not experimentally examined. Therefore, additional studies in large patient cohorts from 

multiple ethnic backgrounds with rigorous multivariate statistical analyses and corroborating 

functional evaluations are warranted to determine which SNPs may be ideal candidates for 

proceeding with formal clinical trial testing of SNP-based individualized risk stratification 

and antifungal prophylaxis in at-risk patients. Despite these limitations, these genetic 

association studies provide critical information about the role of certain immune genes 

and pathways in host protection against pathogenic fungi, often corroborating mouse studies 

that reveal the mechanisms by which these genes promote effective antifungal host defense. 

Although an exhaustive discussion on the role of all reported SNPs is beyond the scope 

of this review (see Table 1 for detailed summary), the contribution of certain key immune-

related SNPs genes in antifungal immune responses is briefly presented below.

1.1 Genetic variation in fungal-sensing pattern recognition receptor (PRR) 
genes—A breakthrough in the field of fungal immunology over the past two decades 

has been the discovery and characterization of the role of C-type lectin receptors (CLRs) 

as the critical fungal-sensing molecules that drive protective antifungal immune responses 

[22–26]. DECTIN-1 (CLEC7A) is the prototypic CLR recognizing fungal β-glucan [27] 
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but a growing number of CLRs are being discovered and studied whose roles in antifungal 

host defense is less defined (reviewed in detail elsewhere [23]). In brief, engagement of 

CLRs by fungal pathogen-associated molecular patterns (PAMPs) promotes the sequential 

activation of Syk, protein kinase C-δ and the Vav proteins, and the CARD9/BCL10/MALT1 

signalosome that in turn leads to the activation of the canonical NF-κB pathway [23]. 

DECTIN-1 engagement also promotes H-Ras/RASGRF1-mediated, CARD9-dependent 

ERK activation and Raf-1-mediated, CARD9-independent non-canonical NF-κB pathway 

activation [28, 29]. Collectively, CLR/Syk/CARD9 signaling drives the production of pro-

inflammatory cytokines and chemokines, inflammasome activation, recruitment and effector 

function of myeloid phagocytes, and Th17 cell differentiation [23, 30–32]. Importantly, 

human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder 

(PID) that causes fungal infection-specific susceptibility with a particular predilection for 

a) chronic mucocutaneous candidiasis (CMC), associated with decreased circulating Th17 

cells in some patients; b) central nervous system (CNS)-targeted candidiasis, associated 

with impaired neutrophil recruitment and effector function in the fungus-infected CNS; 

c) IA that exhibits a unique tropism for extrapulmonary tissues; d) cutaneous and CNS 

phaeohyphomycosis; and c) deep-seated dermatophytosis [30–37].

Not surprisingly, several studies have examined the potential role of SNPs in CLR 

signaling pathway genes in contributing to fungal infection susceptibility in vulnerable 

patients. Although CARD9 SNPs have not been associated with candidemia in hospitalized 

patients [38], the CARD9 S12N SNP, which promotes enhanced type-2 immune responses 

via macrophage-dependent IL-5 release, was associated with the development of allergic 

bronchopulmonary aspergillosis (ABPA) in humans, corroborated by investigations in a 

CARD9S12N knock-in mouse [39]. Among the CLRs, the best studied SNP has been 

CLEC7A Y238*, which alters the carbohydrate-recognition domain of DECTIN-1 and 

impairs β-glucan-dependent pro-inflammatory cytokine production by human peripheral 

blood mononuclear cells (PBMCs) when present in heterozygosity or homozygosity [40–

45]. In several studies, the presence of Y238* in either donors or recipients of allogeneic 

HSCT has been associated with a greater risk of developing IA, indicative of a role of 

DECTIN-1 signaling in both myeloid phagocytes and epithelial cells for anti-Aspergillus 
protection, as also shown in mice [41, 42, 46]. The CLEC7A Y238* SNP has also 

been associated with a greater risk of mucosal Candida colonization in allogeneic HSCT 

recipients, of recurrent vulvovaginal candidiasis (RVCC), but not candidemia, and of severe 

phaeohyphomycosis and disseminated coccidioidomycosis [38, 43–45, 47, 48]. Other CLRs 

in which SNPs have been implicated in the risk of IA following HSCT include CLEC1A 
(which encodes MelLec that recognizes fungal DHN melanin) and CD209 (which encodes 

DC-SIGN) whereas a VAV3 SNP has been associated with the risk of candidemia in 

hospitalized patients [46, 49–51].

Although absent Toll-like receptor (TLR) (and IL-1 receptor) signaling in humans who 

have inherited MYD88 deficiency does not increase the risk of developing spontaneous 

fungal infections [52], genetic variation in several TLRs (i.e., TLR1, TLR3, TLR4, TLR5, 

TLR6, TLR9) has been associated with a greater risk of developing IA in HSCT recipients, 

of candidemia in hospitalized patients, and/or of cryptococcosis in HIV-infected or HIV-

negative individuals [46, 53–62]. Several TLR SNPs have been reported (Table 1), with the 
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best studied being the dysfunctional TLR4 SNPs D299G and T399I, which have been shown 

to cause hyporesponsiveness to inhaled LPS challenge in humans [63]. These TLR4 SNPs 

have been associated with an increased risk of developing IA following HSCT, as well as 

developing chronic cavitary pulmonary aspergillosis and candidemia [53, 56, 58, 59, 62]. 

Although TLR4 has been shown to recognize PAMPs and secreted virulence factors from 

Candida, Cryptococcus, and Scedosporium species [64–66], the exact mechanisms by which 

genetic variation in TLR4 heightens the risk of these infections in humans remain elusive.

Among other classes of PRRs, the NLRP3, NLRC4, and NLRP10 inflammasomes have 

been implicated in protective host defense against mucosal and invasive fungal infections 

(IFIs) in mice [26, 67–70]. A variable number tandem repeat in the NLRP3 gene was 

associated with increased vaginal IL-1β levels and enhanced risk of recurrent vulvovaginal 

candidiasis (RVVC) in women, a condition characterized by maladaptive, neutrophil-driven, 

NLRP3/IL-1β-associated vaginal inflammation [71, 72]. Similarly, a SNP in the sialic acid-

binding lectin SIGLEC15 was associated with increased IL1B and NLRP3 expression and 

enhanced the risk of RVVC in women [73]. Nod2-deficient mice are resistant to IA and the 

presence of the NOD2 SNP P268S affected the production of IL-1β by human PBMCs and 

was associated with the development of IA following HSCT [74].

The soluble long pentraxin 3 (PTX3) binds to bacteria, viruses, and fungi and facilitates 

their opsonization, uptake, and killing by immune cells. Ptx3-deficient mice are highly 

susceptible to IA [75] and dysfunctional PTX3 SNPs in donors of HSCT recipients have 

been identified as a major risk factor for IA [46, 76]. Neutrophils from individuals carrying 

the PTX3 SNPs exhibited impaired phagocytosis and intracellular fungal killing, a defect 

that could be restored in vitro by administration of recombinant PTX3 [76]. Genetic 

variation in PTX3 has also been associated with the development of IA in patients with 

SOT and chronic obstructive pulmonary disease and with the development of cryptococcosis 

in HIV-negative patients [77–80]. PTX2, also known as serum amyloid P component (SAP), 

is another PRR of the pentraxin family that binds to Aspergillus conidia and facilitates 

phagocytosis by neutrophils [81]. Apcs-deficient mice are susceptible to IA and SNPs in 

APCS (which encodes PTX2) were associated with decreased SAP levels and an increased 

risk of IA following HSCT [81].

1.2 Genetic variation in cytokine, chemokine, and their receptor genes—
Following fungal invasion, the production of pro-inflammatory cytokines and chemokines 

in infected tissues orchestrates the recruitment and activation of immune cells that promote 

fungal clearance and sterilizing immunity. Several studies have examined the potential role 

of SNPs in cytokine, chemokine, and their receptor genes in contributing to fungal infection 

susceptibility in at-risk patients. SNPs in IFNG and the IFN-γ-inducible chemokine 

CXCL10 have been associated with an increased risk of developing IA in HSCT recipients 

in independent patient cohorts [46, 82]. A TNFA SNP was associated with the development 

of intra-abdominal candidiasis in surgical ICU patients [83] and genetic variation in the 

TNF receptors, TNFR1 and TNFR2, has been associated with an increased risk of IA in 

patients with HSCT or hematological malignancies [46, 84, 85], in agreement with reports 

of invasive candidiasis and IA in individuals receiving TNF-α inhibitors [18, 86].
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SNPs in IL1A, IL1B, and/or IL1RN have been associated with an increased risk of airway 

colonization and invasive pulmonary infection by inhaled mold fungi in SOT recipients, 

chronic cavitary pulmonary aspergillosis, and/or IA in patients with hematological 

malignancies (Table 1) [87–89]. Genetic variation in IL4 and IL6 have been associated with 

a greater risk of developing PJP in HIV-infected patients and blastomycosis in individuals 

of Hmong ancestry, respectively [90, 91]. SNPs in the chemokine IL8 and its receptor 

CXCR2 in Sudanese individuals have been associated with an increased risk of developing 

the World Health Organization (WHO)-designated neglected tropical disease mycetoma, a 

chronic, progressive, and debilitating granulomatous infection that is endemic in tropical 

and subtropical areas and causes significant morbidity in affected individuals [92]. Genetic 

variation in IL10 has been associated with the development of IA in HSCT recipients and 

patients with hematological malignancy [93, 94], whereas SNPs in both IL10 and IL12B 
were shown to correlate with an increased risk of persistent candidemia in hospitalized 

patients [95].

Mouse neutrophils rely on the chemokine receptor CXCR1 for degranulation and non-

oxidative Candida killing and Cxcr1-deficient mice are susceptible to invasive candidiasis 

[96]. The dysfunctional CXCR1 SNP S276T was associated with impaired neutrophil 

degranulation and fungal killing and an increased risk of disseminated candidiasis in 

candidemic hospitalized patients [96]. The monocyte/macrophage-targeted chemokine 

receptor CX3CR1 is critical for fungal clearance and host survival in a mouse model of 

invasive candidiasis by mediating macrophage accumulation in the infected kidney via 

inhibition of caspase 3-dependent apoptosis [97]. In humans, the dysfunctional CX3CR1 

SNP T280M was associated with impaired ERK- and AKT-mediated monocyte survival 

and increased susceptibility to developing candidemia and disseminated candidiasis among 

candidemic hospitalized patients in independent Caucasian patient cohorts [97, 98]. In 

contrast, the CX3CR1 SNP T280M did not increase the risk of RVVC in women 

[99]. Moreover, genetic variation at the CX3CR1 locus has been associated with the 

development of IA in patients with HSCT and hematological malignancies [100], although 

the mechanistic basis of CX3CR1-dependent anti-Aspergillus host defense has not been 

examined to date.

During murine vulvovaginal candidiasis (VVC), IL-22 is protective by dampening excessive 

NLRP3 activation and IL-1β release and ameliorating neutrophil-induced immunopathology 

[101]. SNPs in IL22 and IDO1 correlated with resistance to RVVC in women, associated 

with increased vaginal levels of IL-22 and decreased vaginal levels of pro-inflammatory 

cytokines [102]. A recent genome-wide association study (GWAS) in HIV-infected patients 

of African descent revealed an association between genetic variation in CSF1 (which 

encodes M-CSF) and the development of cryptococcosis, which was validated in an 

independent patient cohort [103]. M-CSF has been shown to promote the survival 

and activation of resident microglia, which are thought of as critical mediators of anti-

cryptococcal host defense in the infected CNS tissue [104].

1.3 Genetic variation in other immune-related genes—Additional genetic 

association studies have highlighted the importance of other immune-related genes in 

antifungal host defenses, although more studies are required to discern the mechanistic basis 
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of these findings. For example, SNPs in the Fcγ receptors FCGR2A, FCGR2B, FCGR3A, 
and FCGR3B have been associated with an increased risk of cryptococcosis in HIV-infected 

and HIV-negative patients (Table 1) [105–107]. A GWAS in hospitalized patients uncovered 

an association between genetic variation in TAGAP, CD58, and LCE4A-C1orf68 with 

developing invasive candidiasis [108]. SNPs in STAT1 and other type I interferon-regulated 

genes also correlate with the risk of invasive candidiasis in hospitalized patients [109]. 

Another study performed 23 GWAS in >200,000 individuals of European descent and 

found an association between the risk of VVC and genetic variation in both DSG1 (which 

encodes desmoglein 1) and PRKCH (which encodes protein kinase C eta) [110]. DSG1 

contributes to maintaining barrier function and epidermal integrity [111] and PRKCH 

regulates keratinocyte differentiation [112], thus pointing to a potential contribution of these 

molecules to mucocutaneous host defense against Candida that merits further investigation.

The role of danger-associated molecular pattern (DAMP)-associated signaling in antifungal 

immunity has been less studied, with a reported contribution for the receptor for advanced 

glycation end products (RAGE) and its ligand S100B in restraining immunopathology 

during murine IA [113]. In addition, a SNP in AGER (which encodes RAGE) in both 

donors and recipients of HSCT and a SNP in S100B in donors of HSCT have been 

associated with a greater risk of developing IA following HSCT [46, 114]. In addition, LC3-

associated phagocytosis (LAP) has been shown to promote Aspergillus clearance within 

macrophages in a DECTIN-1/Syk-dependent, calcium/calmodulin-regulated manner and can 

be counteracted by Aspergillus conidial melanin [115, 116]. A SNP in CALM1 (which 

encodes calmodulin 1) that decreases CALM1 mRNA levels was recently shown to correlate 

with increased risk of IA following HSCT [116]. More studies will be needed to understand 

the mechanisms by which genetic variation in the PLG gene (which encodes plasminogen) is 

associated with the risk of IA in HSCT recipients [117] and by which genetic variation in the 

CHIT1 gene (which encodes the chitin-degrading enzyme chitotriosidase) is associated with 

the risk of mycetoma caused by the fungus Madurella mycetomatis [118].

1.4 Targeted antifungal prophylaxis based on increased immunological risk
—Since the 1990s, the introduction of fluconazole prophylaxis has significantly decreased 

the incidence of invasive candidiasis in high-risk patients with allogeneic HSCT [119, 

120]. More recently, prophylaxis with the mold-active triazole, posaconazole, was shown 

to decrease the incidence of IA and other IFIs in high-risk patients with allogeneic HSCT 

and graft-versus-host disease or hematological malignancy and prolonged neutropenia [121, 

122]. However, universal administration of antifungal prophylaxis, particularly beyond the 

high-risk setting of allogeneic HSCT, poses significant challenges. Specifically, the number 

of patients needed to administer prophylaxis to prevent one fungal infection is often quite 

high even when using clinical risk factors to enrich for higher-risk individuals. Moreover, 

in most studies there is no observed survival benefit, antifungal agents are costly and 

exhibit toxicities and drug-drug interactions, and drug-resistant fungal strains can emerge 

during antifungal prophylaxis [123–126]. Therefore, immunogenetic-based risk assessment 

could help individualize antifungal prophylaxis by selecting patients with a greater risk for 

developing IFIs, thereby decreasing the numbers needed to treat to prevent disease and 
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minimizing the cost, toxicities, and drug resistance risk associated with widespread use of 

antifungal prophylaxis.

Proof-of-concept for the beneficial use of targeted antifungal prophylaxis has been 

demonstrated in two high-risk groups of patients with certain immunological conditions 

that dramatically predispose them to IA. Firstly, patients with chronic granulomatous disease 

(CGD), caused by mutations in any of the subunits of the nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase complex that impair phagocyte-dependent oxidative burst, 

have a ~40% lifetime risk of developing IA, which is the leading cause of infection-

associated mortality in this PID [127]. The use of itraconazole prophylaxis has dramatically 

decreased the incidence of IFIs in CGD patients, thereby improving their outcomes [128]. 

Secondly, patients with lymphoma who receive the Bruton’s tyrosine kinase (BTK) inhibitor 

ibrutinib are at increased risk for developing IA, underscoring the role of phagocyte 

BTK in anti-Aspergillus host defense [129, 130]. The incidence of IA appears to be ~2–

4% in patients receiving ibrutinib monotherapy and increases to ~5–10% when ibrutinib 

is co-administered with corticosteroids [131–136]. When ibrutinib was co-administered 

with corticosteroids and chemotherapeutic agents in patients with refractory primary CNS 

lymphoma (TEDDI-R), 39% of them developed IA [137]. To enable the observed high rates 

of durable lymphoma remissions with TEDDI-R treatment in these patients without the high 

rate of IA, isavuconazole prophylaxis has now been added to the TEDDI-R regimen and has 

thus far prevented the development of IA in an ongoing clinical trial [138].

1.5 Targeted vaccination based on increased immunological risk—Besides 

guiding targeted antifungal prophylaxis, immunogenetic-based risk assessment could also 

help individualize fungal vaccination strategies by selecting patients with a greater risk for 

developing invasive candidiasis in the ICU. While several fungal vaccine candidates have 

been investigated in murine models of various opportunistic fungal infections (reviewed 

elsewhere [139–141]), an immunogenetic risk-based, targeted vaccination strategy could 

now become achievable with the recent development of the NDV-3A vaccine, the first-

in-human fungal vaccine to exhibit immunogenicity, tolerability, and clinical efficacy in 

patients [142, 143]. NDV-3A, which is based on the recombinant N terminus of the Candida 
albicans adhesin Als3 (rAls3p-N) [144] combined with an aluminum hydroxide adjuvant, 

improved survival of mice systemically infected with C. albicans by eliciting potent 

antibody and cell-mediated immune responses [145]. Mechanistically, vaccination induced 

the generation of IFN-γ- and IL-17-producing CD4+ T cells, which promoted the production 

of phagocyte-recruiting chemokines such as CXCL1, mediated phagocyte trafficking and 

activation at the site of fungal invasion, and decreased tissue fungal burden [145]. Although 

the eventual goal of the NDV-3A vaccination platform is to determine whether it can prevent 

the development of invasive candidiasis in high-risk acutely ill patients in the ICU, it was 

initially evaluated in the context of VVC. Thus, in a murine model of VVC, administration 

of the NDV-3A vaccine protected animals from vaginal fungal proliferation in a manner 

dependent on both B and T cells [146]. In a Phase I clinical trial, NDV-3A vaccination was 

safe and immunogenic in healthy adults resulting in IgA and IgG antibody responses as well 

as IFN-γ- and IL-17-producing CD4+ T cells [143]. In a Phase II randomized, double-blind, 

placebo-controlled clinical trial, NDV-3A vaccination of women with RVVC was safe, 
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immunogenic, and exhibited clinical efficacy by decreasing the frequency of symptomatic 

episodes of VVC [142]. Future clinical trials will be needed to determine whether NDV-3A 

protects against invasive candidiasis in high-risk ICU patients. To decrease the number of 

patients needed to treat to prevent fungal disease, patient selection in such a clinical trial 

could be based on both clinical and immunogenetic risk factors of invasive candidiasis 

development.

1.6 Outlook—Moving forward, the challenge in the field will be to determine which of 

the reported SNPs in several immune-related genes are ideal candidates for formal testing 

in clinical trials of targeted antifungal prophylaxis or vaccination, whether present alone 

or in combination. In that regard, the combined presence of TLR4 and IFNG SNPs was 

shown to promote additive susceptibility to IA compared to carriage of each SNP alone 

[59]. Similarly, the combined presence of two or more SNPs within the CD58, TAGAP, 

and LCE4A-C1orf68 loci markedly increased the risk of invasive candidiasis (~20-fold) 

compared to carriage of each SNP alone [108]. As mentioned earlier, ideal candidates 

are dysfunctional SNPs that their genetic association with increased risk of fungal disease 

has been validated in independent patient cohorts and across ethnic backgrounds with 

corroborating immunological mechanistic data in mouse models of fungal disease and 

primary human cells.

2. Immunotherapeutic modalities to boost antifungal immune responses

The suboptimal clinical outcomes and severe net state of immunosuppression of patients 

who suffer from opportunistic fungal disease has sparked a growing interest in the role 

of certain adjunctive immunotherapeutic modalities that could help augment antifungal 

immune responses and complement conventional antifungal treatment. These interventions 

can be categorized into cytokine- and cell-based and are briefly highlighted below.

2.1 Cytokine-based and other non-cellular interventions

2.1.1 IFN-γ-based interventions: IFN-γ was discovered in 1965 as a viral inhibitory 

factor in phytohemagglutinin-stimulated human leukocyte cultures [147]. Since then, IFN-γ 
has been shown to exert pleiotropic effects during immune homeostasis, inflammation, 

autoimmunity, and host defense against intracellular pathogens including Cryptococcus and 

endemic dimorphic fungi such as Coccidioides [148–150].

In 1991, a randomized, double-blind, placebo-controlled clinical trial showed that 

recombinant IFN-γ reduced the frequency of serious (including fungal) infections in patients 

with CGD resulting in its FDA approval in this patient population [151]. Although a 

few studies have since reported a potential beneficial role for adjunctive IFN-γ in the 

management of chronic progressive pulmonary aspergillosis or of invasive candidiasis or IA 

in patients with critical illness, hematological malignancies, or HSCT, definite evidence for 

the widespread utility of this intervention in these patient populations is lacking [152–155]. 

Recent reports have suggested a potential role for the combination of recombinant IFN-γ 
with the immune checkpoint inhibitor nivolimab in the management of mucormycosis [156, 

157], highlighting the need for additional preclinical and clinical studies that will precisely 
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define the contribution of immune checkpoint blockade in the treatment of opportunistic 

(including fungal) infections [158].

The contribution of IFN-γ in host defense against infections by intra-macrophagic 

pathogens is well-recognized. Thus, the role of IFN-γ in the management of patients 

infected by intra-macrophagic fungi has been examined in the setting of cryptococcosis 

and coccidioidomycosis. Firstly, the administration of recombinant IFN-γ was shown to 

accelerate Cryptococcus clearance from the cerebrospinal fluid (CSF) in HIV-infected 

patients with cryptococcal meningoencephalitis [159, 160], consistent with several studies 

demonstrating that impaired type-1 immune responses and decreased IFN-γ levels are 

predictive of poor outcomes in this disease [161–163]. IFN-γ may also boost immunity and 

help remit cryptococcal meningoencephalitis in patients with idiopathic CD4 lymphopenia 

(ICL) [164]. Secondly, the administration of recombinant IFN-γ has been reported to remit 

severe, treatment-refractory coccidioidomycosis in some patients [165]. More recently, the 

co-administration of recombinant IFN-γ with the IL-4/IL-13 receptor inhibitor, dupilumab, 

augmented IFN-γ and decreased IL-4 production and resulted in rapid clinical remission in 

another patient with disseminated, treatment-refractory coccidioidomycosis [166]. In some 

patients with autosomal recessive partial IFN-γR1 deficiency who are at-risk for infections 

by intra-macrophagic pathogens, IFN-γ (or IFN-α) immunotherapy may boost immune 

responses and promote clinical remission [167].

Besides monogenic disorders in the IFN-γ signaling pathway [168], cryptococcosis can also 

develop in patients with neutralizing autoantibodies against IFN-γ [169]. Rituximab (which 

targets CD20) and daratumumab (which targets CD38) deplete B cells and plasma cells, 

respectively, and have shown promise as adjunctive therapies in patients with treatment-

refractory non-tuberculous mycobacterial disease associated with a reduction in the titers 

of anti-IFN-γ neutralizing autoantibodies [170, 171]. Future studies are warranted to define 

the role of these biologics in the management of infections by intra-macrophagic fungi in 

patients with anti-IFN-γ autoantibodies.

2.1.2 Colony stimulating factor-based interventions: G-CSF and GM-CSF are FDA-

approved for accelerating neutrophil reconstitution in patients with hematological 

malignancies and HSCT recipients and have been shown to decrease the frequency 

and/or duration of episodes of febrile neutropenia and associated infections, albeit without 

an observed survival benefit [172, 173]. In mice, both G-CSF and GM-CSF improved 

the survival of immunosuppressed animals with invasive candidiasis or IA [174–177]. 

Moreover, treatment of Aspergillus-infected, transplanted mice with M-CSF instructed 

myeloid commitment in hematopoietic stem cells via direct activation of the transcription 

factor PU.1, thereby decreasing tissue fungal proliferation and improving survival [178]. 

Mechanistically, GM-CSF primes oxidative burst and the fungicidal activity of neutrophils 

in the Aspergillus-infected mouse lung [174], whereas dendritic cell-derived IL-23 release 

promotes the release of GM-CSF by NK cells, which in turn primes the candidacidal activity 

of neutrophils in the infected mouse kidney [179, 180]. In a mouse model of antibiotic 

pre-exposure and subsequent invasive candidiasis, impaired lymphocyte-mediated GM-CSF 

(and IL-17) responses in the intestine led to systemic bacterial translocation and increased 

mortality, which could be partially rescued by recombinant GM-CSF immunotherapy [181]. 
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In a Phase IV randomized clinical trial that compared the role of G-CSF and GM-CSF 

in prevention and treatment of IFIs in allogeneic HSCT recipients, GM-CSF demonstrated 

superior efficacy and significantly decreased the incidence of invasive candidiasis and fungal 

infection-associated mortality relative to G-CSF [182]. Another study recently reported 

favorable clinical responses in some patients with invasive candidiasis, IA, mucormycosis 

and other invasive fungal infections when adjuvant GM-CSF treatment was used together 

with conventional antifungal therapy [183].

Decreased GM-CSF associated with defective H-RAS/RASGRF-1/ERK responses have 

been documented in some CARD9-deficient patients with CNS candidiasis and adjunctive 

GM-CSF immunotherapy was associated with clinical remission in these patients [184, 

185]. However, in another CARD9-deficient patient with CNS candidiasis caused by 

different missense CARD9 mutations and intact H-RAS/RASGRF-1/ERK responses, GM-

CSF immunotherapy appeared to drive eosinophil-driven CNS immunopathology and 

disease worsening, pointing to differential effects of various CARD9 mutations on the 

H-RAS/RASGRF-1/ERK signaling axis and differing clinical responses to GM-CSF [186]. 

Other CARD9-deficient patients with invasive candidiasis were reported to achieve clinical 

remission with G-CSF immunotherapy [187, 188]. More studies are needed to define the 

optimal immunotherapeutic intervention(s) in patients with CARD9 deficiency, a subset of 

whom require HSCT to control treatment-refractory invasive fungal disease [189].

2.1.3 IL-7: IL-7 was discovered in 1988 as a growth factor that stimulated the proliferation 

of lymphoid progenitors [190]. In a Phase II, randomized, double-blind clinical trial 

of IL-7 in septic patients, IL-7 was well-tolerated, it inhibited lymphocyte apoptosis, 

reversed sepsis-associated lymphopenia, and induced lymphocyte proliferation, activation, 

and release of IFN-γ and IL-17 [191]. In CD4-depleted, Pneumocystis-infected mice, 

IL-7 prevented T cell apoptosis, increased lymphocyte recruitment, activation, and IFN-

γ release, and decreased tissue fungal proliferation [192]. In a two-hit experimental 

murine model of bacterial peritonitis caused by cecal ligation and puncture followed by 

Candida sepsis, IL-7 immunotherapy promoted lymphocyte proliferation, activation, IFN-γ 
release, and expression of adhesion molecules leading to improved host survival [193, 

194]. In an immunocompetent individual who developed a mixed would infection by 

Trichosporon asahii, Fusarium, and Saksenaea species and had failed antifungal and surgical 

treatment, receipt of adjunctive IL-17 immunotherapy led to improved lymphocyte counts 

and function, fungal clearance, and clinical remission [195]. Another setting where IL-7 

immunotherapy has shown promising clinical results is ICL, a condition that heightens the 

risk for cryptococcosis and other opportunistic infections such as progressive multifocal 

leukoencephalopathy (PML) [196]. Indeed, IL-7 immunotherapy increased the numbers of 

circulating and tissue-resident T cells and enhanced their function [197], and exhibited 

promising clinical effects in an ICL patient with PML [198]. Thus, the potential role of IL-7 

immunotherapy in prevention and/or treatment of opportunistic (including fungal) infections 

in ICL patients warrants further study.

2.1.4 TLR and CLR cooperative activity against 
chromoblastomycosis: Chromoblastomycosis is a WHO-designated neglected tropical 
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disease most often caused by the melanin-bearing yeast fungus Fonsecaea pedrosoi, which 

upon traumatic skin inoculation infects the subcutaneous tissues leading to progressive, 

disfiguring, and often treatment-refractory disease in tropical and subtropical areas [199]. 

F. pedrosoi activates the Syk/CARD9 signaling pathway via the CLR Mincle (Clec4e) 

but it fails to activate TLR-mediated immune responses, thereby leading to impaired pro-

inflammatory cytokine responses in the infected mouse skin [200]. Notably, exogenous 

application of the TLR7 agonist imiquimod in F. pedrosoi-infected mice reinstated 

effective pro-inflammatory immune responses and facilitated infection clearance [200]. 

Concordantly, topical application of imiquimod combined with antifungal therapy leads 

to clinical remission in patients with treatment-refractory chromoblastomycosis [201–

203], highlighting the key role of fungal-sensing PRR cooperation in mounting effective 

antifungal responses in mice and humans [18, 65, 204].

2.2 Cell-based interventions

2.2.1 Granulocyte transfusions: Granulocyte transfusions were introduced in the clinic 

in the 1960s and early controlled studies showed remarkable clinical and survival benefits 

in neutropenic patients with invasive infections [205]. Although the advent of corticosteroid 

and G-CSF use has led to improved donor neutrophil mobilization, granulocyte transfusions 

remain challenging due to the high cost, technical difficulties in harvesting large numbers of 

granulocytes that are required for efficacy, short shelf-life (~24 hours), transfusion-induced 

pulmonary reactions, and HLA alloimmunization, which is particularly problematic in 

individuals anticipating HSCT [206–209]. Although granulocyte transfusions decreased 

lung fungal burden and improved survival in Aspergillus-infected neutropenic mice [210], 

most human studies have reported conflicting results regarding their clinical efficacy and 

marked variability in granulocyte transfusion practices, which collectively preclude reliable 

conclusions about their potential role as adjunctive therapies in immunosuppressed patients 

[211]. In a recent multicenter, randomized, controlled clinical trial termed RING (Resolving 

Infection in Neutropenia with Granulocytes) that was not completed as planned due to 

suboptimal patient enrollment, adjunctive transfusion of G-CSF/dexamethasone-mobilized 

granulocytes did not demonstrate a clinical benefit over standard antimicrobial treatment 

alone in neutropenic patients with invasive infections [212]. However, in a post hoc analysis, 

individuals who received a high granulocyte dose (i.e., ≥0.6 × 109 cells/Kg per transfusion) 

tended to have better clinical outcomes compared to those who received lower granulocyte 

doses [212]. The NIH experience with granulocyte transfusions indicates that certain patient 

groups may exhibit a clinical benefit such as those with hematological malignancies and 

refractory fusariosis or CGD patients with refractory bacterial or fungal infections [213, 

214].

2.2.2 Infusion of Aspergillus-specific T cells or fungus-targeted chimeric antigen 
receptor (CAR) T cells: Lymphocytes are dispensable for host defense against IA as 

Rag2Il2rg−/− mice that lack innate and adaptive lymphoid cells control inhaled Aspergillus 
conidia without developing invasive infection, similarly to humans with quantitative or 

qualitative defects in lymphoid cells [18, 215]. However, because T lymphocytes can 

augment the anti-Aspergillus effector function of myeloid phagocytes via the production of 

IFN-γ, IL-17, and/or other soluble factors [216, 217], the adoptive transfer of Aspergillus-
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specific T cells was investigated in a mouse model of IA following HSCT and was found to 

confer resistance to the infection [218]. In a clinical trial, Perrucio and colleagues generated 

Aspergillus-specific T cells by limiting dilution, which requires >20 days, and infused them 

in 10 patients with IA following HSCT, whereas 13 additional HSCT recipients with IA 

did not receive this adoptive immunotherapy [219]. All 10 recipients of Aspergillus-specific 

T cells had normalization of serum galactomannan levels within 6 weeks of cell infusion, 

whereas serum galactomannan levels remained elevated in all 13 control patients who did 

not receive Aspergillus-specific T cells. Moreover, 9/10 patients who received Aspergillus-

specific T cells cleared the infection and only one succumbed to IA, whereas 7/13 of 

control individuals who did not receive Aspergillus-specific T cells died from IA [219]. No 

infusion toxicities or graft-versus-host disease were noted in that study. The advent of more 

rapid methods for the clinical scale generation of Aspergillus-specific T cells according 

to good manufacturing practice conditions holds promise for the potential further clinical 

development of this immunotherapeutic intervention [220].

Furthermore, Kumaresan et al. bioengineered fungus-targeting cytotoxic T cells by 

enforcing expression of a CAR that recapitulates the specificity of the β-glucan-sensing 

DECTIN-1 fused to the CD28 and CD3-ζ cytoplasmic signaling domain [221]. The 

genetically modified DECTIN-1-CAR T cells bound specifically to β-glucan, expressed 

perforin and granzyme, exhibited a central memory phenotype, produced IFN-γ, and were 

able to recognize and lyse Aspergillus conidia and hyphae in vitro and in vivo in the 

lung and skin of immunosuppressed mice [221]. Moreover, a recent study described the 

development of CAR T cells that recognize conserved epitopes on the surface of A. 
fumigatus hyphae, but not of other Aspergilli or mold species. These cells were shown 

to a) secrete pro-inflammatory cytokines upon exposure to A. fumigatus, b) prime the 

antifungal effector function of macrophages, and c) secrete perforin and granzyme B for 

direct antifungal activity. Adoptive transfer of these cells into Aspergillus-infected mice 

led to their accumulation in the lung and resulted in decreased tissue fungal burden 

and a survival benefit in neutropenic mice [222]. Although the cost of such a CAR T 

cell-based immunotherapeutic approach would be currently prohibitory in the clinic, this 

study provides proof-of-concept that bioengineering fungus-directed cytotoxic T cells with 

specificity to carbohydrates and/or other fungal epitopes can be harnessed to target life-

threatening fungal infections in vulnerable patients.

3. Immunotherapeutic modalities to ameliorate immunopathology

Although susceptibility to fungal infections is most often driven by impaired host resistance, 

in certain settings, the development of opportunistic fungal disease is characterized 

by maladaptive immune responses that can drive local detrimental immunopathology 

thereby impairing host tolerance to the infection. In such conditions, treatment with 

anti-inflammatory agents that dampen exuberant immune responses can help control the 

infection. Three such examples are briefly highlighted below.

3.1 Corticosteroids for neutrophil-mediated immunopathology during 
disseminated candidiasis—Although neutrophils are critical for promoting sterilizing 

immunity in the setting of invasive candidiasis (and IA) in mice and humans [223], their 
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aberrant accumulation and activation at the site of fungal infection may also come at 

the cost of tissue immunopathology and damage [224]. In the mouse model of invasive 

candidiasis, excessive, CCR1-mediated neutrophil recruitment in the infected kidney at the 

late phase of the infection underlies immunopathology and renal injury [225–227]. Besides 

the chemokine receptor CCR1, leukotriene B4, the CLR dendritic cell natural killer lectin 

group receptor-1 (DNGR-1), the lectin galectin-3, the tyrosine kinase Tec, the suppressor 

of TCR signaling (Sts) phosphatases, the endoribonuclease MCPIP1, and IL-17C have also 

been implicated in neutrophil-driven immunopathology in the mouse model of invasive 

candidiasis [228–233].

In humans, neutrophil-mediated immunopathology can be seen in a subset of neutropenic 

patients with hepatosplenic candidiasis upon recovery of their neutrophil counts and 

manifests clinically with worsening of symptoms and persistent fever [234]. Corticosteroids 

are often used to ameliorate excessive inflammatory responses and improve clinical 

symptoms in these patients [234]. A recent study examined peripheral blood immune 

responses in patients with chronic disseminated candidiasis upon neutrophil recovery 

and found neutrophilia, increased numbers of IFN-γ-producing T cells, enhanced T cell 

activation, and elevated plasma levels of pro-inflammatory molecules such as IL-1β, TNF-

α, IL-6, and soluble CD25 [235]. Collectively, a better understanding of the molecular 

drivers of inflammation in this clinical condition may help develop targeted pharmacological 

strategies to inhibit excessive neutrophil-driven immunopathology, as corticosteroids 

significantly heighten susceptibility to opportunistic (including fungal) infections [236].

3.2 Treatment of cryptococcosis-associated immune reconstitution 
inflammatory syndrome (IRIS)—Although IFN-γ-producing T cells are crucial for 

facilitating sterilizing immunity during cryptococcosis, their aberrant accumulation and 

activation at the site of infection may also promote immunopathogenic effects. Clinically, 

these effects can be observed in HIV-negative patients with cryptococcosis [237] and in 

a subset of HIV-infected patients with cryptococcosis who develop IRIS after initiation 

of antiretroviral therapy that promotes immune reconstitution [238, 239]. The risk of HIV-

associated IRIS is greater in patients with greater HIV viremia, more severe CD4+ T cell 

lymphopenia, and active infection at the time of initiation of antiretroviral therapy [238, 

239]. In these patients, the use of corticosteroids may ameliorate excessive inflammation and 

improve neurological symptoms [240, 241].

In mice infected with Cryptococcus neoformans without CD4+ T cell depletion, which 

models non-HIV-associated human infection, excessive accumulation of Th1 cells is 

mediated by the release of the chemokine CXCL10 by activated resident glial cells and 

promotes immunopathology in the infected CNS [242, 243]. These effects were ameliorated 

by inhibiting the CXCL10-targeted chemokine receptor CXCR3, which improved mouse 

survival [242]. In non-HIV-infected patients with cryptococcal meningoencephalitis, robust 

accumulation of CXCR3-expressing Th1 cells in the CNS-infected tissue and increased 

CSF levels of CXCL10 are also observed, yet the immune response is ineffective and is 

associated with neuronal damage [244].
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In mouse models of C. neoformans-associated IRIS, increased production of IFN-γ, TNF-

α, and IL-6 are seen in inflamed tissue, and in one of the studies the accumulation of 

Th1 cells was sufficient to drive CNS immunopathology associated with induction of the 

expression of aquaporin-4, a molecule that regulates water influx in the brain parenchyma 

[245, 246]. Moreover, HIV-infected patients with IRIS have increased serum levels of IL-6, 

IL-7, and IFN-γ increased CSF levels of CXCL10, enhanced frequencies of activated HLA-

DR+ CD14+ monocytes, and enriched frequencies of effector memory IFN-γ- and IL-17-

producing CD4+ T cells compared to HIV-infected patients without IRIS [239, 247–249]. 

A better understanding of the molecular determinants of cryptococcosis-associated IRIS 

could enable more targeted treatments relative to corticosteroids. For example, inhibition 

of exaggerated TNF-α responses with adalimumab or thalidomide has been reported to 

successfully treat a few HIV-infected patients with cryptococcosis-associated IRIS [250, 

251].

3.3 Janus kinase (JAK) inhibitors for CMC in autoimmune regulator (AIRE) 
deficiency—Another important breakthrough in the field of fungal immunology over the 

past decade has been the discovery that the IL-17R signaling pathway promotes protective 

host defense against mucosal candidiasis in mice and humans [252]. Indeed, patients with 

complete genetic deficiencies in the IL-17 receptors IL-17RA and IL-17RC or their adaptor 

molecule ACT1/TRAF3IP2 develop fully penetrant CMC [252–255] and several other PIDs 

that underlie CMC susceptibility feature varying degrees of decreased circulating Th17 

cells and/or impaired IL-17 cellular responses [18, 256]. Mild, treatment-responsive oral 

candidiasis, but not CMC, develops in a small proportion of patients treated with IL-17 

pathway-targeting biologics (mean frequency, ~1–10%) [257].

CMC develops in ~85% of patients with autoimmune polyendocrinopathy-candidiasis-

ectodermal dystrophy (APECED), caused by loss-of-function mutations in the AIRE gene 

that impair central immune tolerance [258]. Many APECED patients carry neutralizing 

autoantibodies against IL-17A (frequency, ~35%), IL-17F (~20–80% depending on the 

patient cohort), and IL-22 (frequency, ~85%), yet the association between CMC and 

neutralizing IL-17 autoantibodies is incompletely penetrant [257, 259–262], indicating that 

other immunological factors also contribute to CMC susceptibility. Indeed, we recently 

showed that exuberant IFN-γ production by mucosal CD4+ and CD8+ T cells drives oral 

candidiasis susceptibility in Aire-deficient mice by driving epithelial barrier disruption, 

which can be ameliorated by genetic deletion of IFN-γ or pharmacological JAK-STAT 

inhibition with ruxolitinib [263]. Similarly, excessive IFN-γ/JAK/STAT responses were 

observed in the oral mucosa of APECED patients [263], suggesting that JAK inhibition 

may be an effective immunomodulatory strategy for CMC in this patient population, a 

hypothesis that is currently been tested in an ongoing clinical trial. This finding provides 

a conceptual framework for classifying mucosal fungal susceptibility across a spectrum of 

impaired type-17 mucosal host resistance and/or immunopathology-causing type-1 mucosal 

inflammation.

Furthermore, patients with STAT1 gain-of-function mutations who are universally 

susceptible to severe CMC, exhibit enhanced IFN-γ cellular responses, and a subset, but 

not all, of them have decreased numbers of circulating Th17 cells [264–266]. Strikingly, 
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JAK-STAT inhibition with ruxolitinib or itacitinib leads to clinical remission of CMC in 

patients with STAT1 gain-of-function mutations, in many of whom, CMC remission is seen 

without an increase in the frequency of circulating Th17 cells, pointing to IL-17-independent 

ameliorating mechanisms [267–275]. Thus, JAK inhibitor-induced dampening of excessive 

IFN-γ mucosal responses may contribute to the beneficial immunotherapeutic effects of 

JAK inhibitors in this CMC-manifesting patient population. Importantly, the expanding 

number of PIDs that feature CMC in the context of autoinflammation or autoimmunity 

and exhibit intact or even enhanced IL-17 responses (e.g., Down syndrome, mutations in 

ELF4 or IKZF2) may reveal additional clinical conditions in which CMC is promoted by 

mucosal type-1 inflammation and, therefore, could perhaps also be therapeutically targeted 

with benefit with JAK-STAT inhibition [276–278].

Conclusions

Opportunistic fungal infections represent significant causes of morbidity and mortality 

in vulnerable patients with critical illness and various inherited and acquired 

immunodeficiency states. Herein, an overview was presented of how our improved 

understanding of the cellular and molecular determinants of fungus-, tissue-, cell type-, 

and context-specific antifungal immune responses could be exploited in the clinical context 

to benefit fungus-infected patients. Taken together, immunogenetic-based risk assessment, 

individualization of antifungal prophylaxis and vaccination, and targeted immunotherapies 

that boost inadequate immune responses or ameliorate maladaptive immunopathogenic 

responses hold promise for improving the clinical management and prognosis of susceptible 

patients who suffer from life-threatening fungal infections.
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Abbreviations:

PJP Pneumocystis jirovecii pneumonia

IA invasive aspergillosis

ICU intensive care unit

HSCT hematopoietic stem cell transplantation

SOT solid organ transplantation

SNP single nucleotide polymorphism

PRR pattern recognition receptor

CLR C-type lectin receptor

PAMP pathogen-associated molecular pattern

PID primary immunodeficiency disorder
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CMC chronic mucocutaneous candidiasis

CNS central nervous system

ABPA allergic bronchopulmonary aspergillosis

PBMCs peripheral blood mononuclear cells

IFIs invasive fungal infections

RVVC recurrent vulvovaginal candidiasis

VVC vulvovaginal candidiasis

TLR Toll-like receptor

PTX3 pentraxin 3

SAP serum amyloid P component

WHO World Health Organization

GWAS genome-wide association study

DAMP danger-associated molecular pattern

RAGE receptor for advanced glycation end products

LAP LC3-associated phagocytosis

CGD chronic granulomatous disease

NADPH nicotinamide adenine dinucleotide phosphate

BTK Bruton’s tyrosine kinase

CSF cerebrospinal fluid

ICL idiopathic CD4 lymphopenia

PML progressive multifocal leukoencephalopathy

CAR chimeric antigen receptor

DNGR-1 dendritic cell natural killer lectin group receptor-1

STS suppressor of TCR signaling

IRIS immune reconstitution inflammatory syndrome

JAK Janus kinase

AIRE autoimmune regulator

APECED autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
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Highlights

• Fungal infections affect immunocompromised patients, and their outcomes 

remain poor despite treatment.

• Immunogenetic profiling may enable personalized risk assessment, and 

targeted antifungal prophylaxis and vaccination strategies.

• A Candida albicans Als3-based vaccine is the first-in-human efficacious 

fungal vaccine.

• Targeted immunotherapy holds promise for modulating antifungal immune 

responses in vulnerable patients with opportunistic fungal infections.
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Figure 1. 
Personalized immunogenetic risk assessment in patients at risk for fungal infections.

Created with BioRender.com.
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Table 1.

Key genetic variants and their reported association with the development of fungal infections in vulnerable 

patients.

Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

Genetic variants associated with the development of aspergillosis

TLR1 4p14 rs5743611 (0.02) R80T HSCT 
recipients

Caucasian Development of 
IA

Unknown [61]

TLR1 
together 
with TLR6

4p14 rs4833095 (0.43) 
and rs5743810 
(0.12)

N248S and 
S249P

HSCT 
recipients

Caucasian Development of 
IA

Unknown [61]

TLR3 4q35 rs3775296 (0.18) +95C/A HSCT donors Caucasian Development of 
IA

Impaired TLR3 
expression and 
responsiveness 
in CD141+ 

DCs, impaired 
DC-induced 
CD8+ T cell 
proliferation

[57]

TLR4 9q33 rs4986790 (0.06)
rs4986791 (0.04)

D299G
T399I

Unrelated (but 
not related) 
HSCT donors

Caucasian Development of 
IA, nonrelapse 
death post-
HSCT (yes)

Unknown [53, 59, 
62]

TLR4 9q33 rs4986790 (0.06) D299G Patients with 
CCPA

ND Development of 
CCPA

Unknown [58]

TLR5 1q41 rs5744168 (0.05) R392* HSCT 
recipients

Caucasian Development of 
IA

Unknown [60]

TLR6 4p14 rs5743810 (0.12) S249P HSCT donors Caucasian Development of 
IA

Unknown [46]

CLEC1A 
(Mel-Lec)

12p13 rs2306894 (0.33) G26A HSCT donors Caucasian Development of 
IA

Impaired 
production of 
IL-1β and IL-8 
by 
macrophages

[50]

CLEC7A 
(DECTIN-1)

12p13 rs16910526 (0.04) Y238* HSCT donors 
and recipients

Caucasian Development of 
IA (yes)

Impaired β-
glucan binding; 
impaired 
production of 
pro-
inflammatory 
cytokines by 
PBMCs

[41, 42, 
46]

CLEC7A 
(DECTIN-1)

12p13 rs7309123 (0.28) c.375-1404C/
G

HSCT donors 
or patients 
with 
hematological 
malignancy

Caucasian Development of 
IA (yes)

Decreased 
CLEC7A 
mRNA 
expression in 
whole blood

[46, 49]

CD209 
(DC-SIGN)

19p13 rs7248637 (0.23) *898T/C HSCT donors 
or patients 
with 
hematological 
malignancy

Caucasian Development of 
IA (yes)

Unknown [46, 49]

CARD9 9q34 rs4077515 (0.37) S12N Patients with 
ABPA

ND Development of 
ABPA

Increased 
Aspergillus-

[39]
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Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

induced RelB 
nuclear 
translocation 
and IL-5 
production by 
PBMCs 
carrying the 
SNP in 
homozygosity

NOD2 16q12 rs2066842 (0.10) P268S HSCT donors Caucasian Development of 
IA

Decreased 
production of 
IL-1β by 
Aspergillus-
stimulated 
PBMCs

[74]

APCS 
(PTX2)

1q23 rs2808661 (0.10)
rs3753869 (0.41)

V144V HSCT donors Caucasian Development of 
IA

Decreased SAP 
levels

[81]

PTX3 3q25 rs2305619 (0.44)
rs3816527 (0.29)

281GG
734AA

HSCT donors Caucasian Development of 
IA (yes)

Decreased 
PTX3 
expression; 
decreased 
phagocytosis 
and fungicidal 
activity of 
neutrophils

[46, 76]

PLG 6q26 rs4252125 (0.14) D472N HSCT 
recipients

Caucasian Development of 
IA (yes)

Unknown [117]

AGER 
(RAGE)

6p21 rs2070600 (0.07) −374T/A HSCT donors 
or recipients 
(T cell-
depleted 
transplant s)

Caucasian Development of 
IA

Unknown [114]

S100B 21q22 rs9722 (0.27) +427C/T HSCT donors Caucasian Development of 
IA (yes)

Unknown [46, 114]

IFNG 12q15 rs2069705 (0.48) −1616 C/T HSCT 
recipients

Caucasian Development of 
IA (yes)

Unknown [46, 82]

CXCL10 4q21 rs1554013 (0.30)
rs3921 (0.31)
rs4257674 (0.31)

+11101 C/T
+1642
C/G −1101 
A/G

HSCT 
recipients

Caucasian Development of 
IA (yes)

Decreased 
CXCL10 
mRNA 
expression in 
DCs

[46, 82]

CX3CR1 3p22 rs7631529 (0.05)
rs9823718 (0.14)

A allele
G allele

HSCT donors 
and patients 
with 
hematological 
malignancy

Caucasian Development of 
IA

Unknown [100]

TNFR1 12p13 rs4149570 (0.30) −609G/T HSCT donors 
and patients 
with 
hematological 
malignancy

Caucasian Development of 
IA (yes)

Decreased 
TNFR1 mRNA 
expression in 
whole blood

[46, 85]

TNFR2 1p36 VNTR −322 Patients with 
hematological 
malignancy

Caucasian Development of 
IA

Unknown [84]

ILIB 2q14 rs16944 (0.49) −511C/T SOT 
recipients

Caucasian Development of 
mold 

Decreased 
production of 

[89]
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Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

colonization and 
IMI

pro-
inflammatory 
cytokines by 
Aspergillus-
stimulated 
PBMC

ILIB 2q14 rs3917354 T/- Patients with 
CCPA

Caucasian Development of 
CCPA

Unknown [88]

ILIRN 2q14 rs4252041 (0.02) C/T Patients with 
CCPA

Caucasian Development of 
CCPA

Unknown [88]

ILIA 
together 
with ILIB 
and ILIRN

2q14 rs1800587 (0.28) 
and rs1143627 
(0.47) and 86-bp 
VNTR

−889C and 
−511T and 
VNTR2

Patients with 
hematological 
malignancy

Caucasian Development of 
IA

Unknown [87]

IL10 1q32 rs1800896 (0.27) −1082GG Patients with 
hematological 
malignancy

Caucasian Development of 
IA

Unknown [93]

IL10 1q32 rs1800896 (0.27) 
and rs1800871 
(0.43) and 
rs1800872 (0.43)

−1082G and 
−819C and 
−592A

HSCT 
recipients

Asian Development of 
IA

Unknown [94]

IL15 4q31 rs1519551 (0.38)
rs6842735 (0.08)
rs12508866 (0.15)

A/G
G/T
T/C

Patients with 
CCPA

Caucasian Development of 
CCPA

Unknown [88]

DEFB1 8p23 rs1800972 (0.14) −44C/G SOT 
recipients

Caucasian Development of 
mold 
colonization and 
IMI

Unknown [89]

CALM1 14q32 rs12885713 (0.30) CC genotype HSCT 
recipients

Caucasian Development of 
IA

Decreased 
CALM1 
transcription

[116]

FLOT1 6p21 rs3094127 (0.27) CC genotype HSCT donors Caucasian Development of 
IA

Decreased 
production of 
IL-1β and IL-6 
by Aspergillus-
stimulated 
macrophages 
carrying the 
GG genotype

[279]

Genetic variants associated with the development of invasive candidiasis

TLR1 4pl4 rs5743611 (0.02)
rs4833095 (0.43)
rs5743618 (0.20)

R80T
N248S
I602S

Patients with 
candidemia

Caucasian 
(no 
increase d 
risk in 
African 
Americans)

Development of 
candidemia

Impaired 
production of 
pro-
inflammatory 
cytokines by 
PBMC

[55]

TLR4 9q33 rs4986790 (0.06)
rs4986791 (0.04)

D299G
T399I

Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [56]

IFIH1 
(MDA5)

2q24 rs1990760 (0.36)
rs3747517 (0.41)

A946T
H843R

Patients with 
candidemia

Caucasian Development of 
candidemia

Impaired 
production of 
pro-
inflammatory 
cytokines by 
Candida-

[280]
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Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

stimulated 
PBMC

VAV3 1p13 rs4914950 (0.37) CC carriage Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [51]

IL10 1q32 rs1800896 (0.27) AA carriage Patients with 
candidemia

Caucasian Development of 
persistent 
fungemiain 
candidemic 
patients

Unknown [95]

IL12B 5q33 rs41292470 INS/INS Patients with 
candidemia

Caucasian Development of 
persistent 
fungemia in 
candidemic 
patients

Unknown [95]

TNFA 6p21 rs1800629 (0.09) AA/GA 
carriage

Surgical ICU 
patients at-risk 
for invasive 
candidiasis

Caucasian Development of 
intra-abdominal 
candidiasis

Unknown [83]

DEFB1 8p23 rs1800972 (0.14) GG/CG 
carriage

Surgical ICU 
patients at-risk 
for invasive 
candidiasis

Caucasian Development of 
intra-abdominal 
candidiasis

Unknown [83]

CCL8 17q12 1kg_17_29697448 N/A Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [109]

CXCR1 2q35 rs2234671 (0.14) S276T 
(CG+GG 
carriage)

Patients with 
candidemia

Caucasian Development of 
disseminated 
candidiasis in 
candidemic 
patients

Impaired 
neutrophil 
degranulation 
and fungal 
killing

[96]

CX3CR1 3p22 rs3732378 (0.09) T280M 
(CC+CT 
carriage)

Patients with 
candidemia

Caucasian Development of 
candidemia and 
disseminated 
candidiasis in 
candidemic 
patients (yes)

Impaired 
monocyte 
survival

[97, 98]

STAT1 2q32 rs16833172 (0.09) N/A Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [109]

PSMB8 6p21 rs3198005 (0.01) N/A Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [109]

SP110 2q37 rs3769845 (0.48) N/A Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [109]

TAGAP 6q25 rs3127214 (0.24) N/A Patients with 
candidemia

Caucasian Development of 
candidemia and 
disseminated 
candidiasis in 
candidemic 
patients

Unknown [108]

CD58 1p13 rs17035850 (0.24) N/A Patients with 
candidemia

Caucasian Development of 
candidemia and 
persistent 
fungemia in 
candidemic 
patients

Unknown [108]
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Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

LCE4 - 
C1orf68

1q21 rs4845320 (0.10) N/A Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [108]

CD82 11p11 rs7932712 (0.36) N/A Patients with 
candidemia

Caucasian Development of 
candidemia

Unknown [281]

Genetic variants associated with the development of VVC

TLR2 4q31 rs5743704 (0.01) P631H Women with 
RVVC

Caucasian Development of 
RVVC

Decreased 
production of 
IL-17A by 
Candida-
stimulated 
PBMC

[47]

CLEC7 A 
(DECT 
IN-1)

12p13 rs16910526 (0.04) Y238* Women with 
RVVC

Caucasian Development of 
RVVC (no)

Impaired β-
glucan binding; 
impaired 
production of 
pro-
inflammatory 
cytokines by 
PBMC

[47, 48, 
102]

NLRP3 1q44 rs74163773 (42-
bp VNTR)

12/9 
genotype

Women with 
RVVC

Caucasian Development of 
RVVC

Increased 
vaginal levels 
of IL-1 β and 
decreased 
vaginal levels 
of IL-1Ra

[71]

IL4 5q31 rs2243250 (0.47) −589C/T Women with 
RVVC

Caucasian Development of 
RVVC

Increased 
vaginal levels 
of IL-4 and 
decreased 
vaginal level of 
NO

[282]

IL22 12q15 rs2227485 (0.48) CC+CT 
carriage

Women with 
RVVC

Caucasian Development of 
RVVC

Increased 
vaginal levels 
of IL-22 and 
decreased 
vaginal level of 
IL-17A, TNF-
α, and 
calprotectin in 
women with 
the protective 
TT genotype

[102]

IDOl 8p11 rs3808606 (0.46) CC+CT 
carriage

Women with 
RVVC

Caucasian Development of 
RVVC

Increased 
vaginal levels 
of IL-22 and 
decreased 
vaginal level of 
IL-17A and 
TNF-α in 
women with 
the protective 
TT genotype

[102]

SIGLE Cl5 18q12 rs2919643 (0.40) CC+CT 
carriage

Women with 
RVVC

Caucasian Development of 
RVVC

Increased 
production of 
IL-17A, IL-22, 
and IFN-γ by 
Candida-
stimulated 
PBMC of 

[73]
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Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

women 
carrying the 
disease-
associated C 
allele

DSG1 18q21 rs200520431 
(0.01)

D/I (D the 
high-risk 
allele)

Women with 
VVC

Caucasian Development of 
VVC

Unknown [110]

PRKCH 14q23 rs2251260 (0.49) T/C (T the 
high-risk 
allele)

Women with 
VVC

Caucasian Development of 
VVC

Unknown [110]

Genetic variants associated with the development of cryptococcosis

TLR1 4p14 rs5743563 (0.18) T/T HIV-negative 
patients with 
cryptococcal 
meningitis

Asian 
(Chinese 
Han)

Development of 
cryptococcal 
meningitis

Unknown [54]

TLR1 4p14 rs5743604 (0.47) T/T HIV-negative 
patients with 
cryptococcal 
meningitis

Asian 
(Chinese 
Han)

Development of 
cryptococcal 
meningitis and 
more severe 
disease

Unknown [54]

TLR2 4q31 rs3804099 (0.41) T/T HIV-negative 
patients with 
cryptococcal 
meningitis

Asian 
(Chinese 
Han)

Development of 
cryptococcal 
meningitis and 
more severe 
disease

Unknown [54]

TLR6 4p14 rs3796508 (0.03) G/A HIV-infected 
and HIV-
negative 
patients with 
cryptococcal 
meningitis

Asian 
(Chinese 
Han)

Development of 
cryptococcal 
meningitis in 
both HIV-
infected and 
HIV-negative 
patients (yes)

Unknown [54]

TLR9 3p21 rs164637 (0.03) C/T HIV-negative 
patients with 
cryptococcal 
meningitis

Asian 
(Chinese 
Han)

Development of 
cryptococcal 
meningitis

Unknown [54]

TLR9 3p21 rs352140 (0.42) T/T HIV-negative 
patients with 
cryptococcal 
meningitis

Asian 
(Chinese 
Han)

Development of 
cryptococcal 
meningitis

Unknown [54]

CLEC6 A 
(DECT 
IN-2)

12p13 rs11045418 (0.35) CC+CT 
carriage

HIV-negative 
patients with 
cryptococcosis

Asian 
(Chinese 
Han)

Development of 
pulmonary (but 
not meningeal) 
cryptococcosis

Unknown [283]

PTX3 3q25 rs2305619 (0.44) 281AA HIV-negative 
patients with 
cryptococcosis

Asian 
(Chinese 
Han)

Development of 
cryptococcosis

Unknown 
(increased 
serum levels of 
PTX3 in 
individuals 
carrying the 
AA genotype)

[80]

FCGR2A 1q23 rs1801274 (0.44) H131R HIV-infected 
and HIV-
negative 
patients with 

Multiple Development of 
cryptococcosis 
in HIV-negative 

Unknown [105-107]
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Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

cryptococcal 
meningitis

(but not HIV-
infected) patients

FCGR2B 1q23 rs1050501 (0.19) I232T HIV-negative 
patients with 
cryptococcal 
meningitis

Asian 
(Chinese 
Han)

Development of 
cryptococcal 
meningitis in 
HIV-negative 
patients

Unknown [105]

FCGR3 A 1q23 rs396991 (0.42) F158V HIV-infected 
and HIV-
negative 
patients with 
cryptococcosis

Multiple Development of 
cryptococcosis 
in both HIV-
infected and 
HIV-negative 
patients (variable 
validation)

Impaired 
antibody-
dependent NK 
cell-mediated 
ADCC

[105-107]

FCGR3 B 1q23 N/A NA1/NA2 
alleles

HIV-negative 
patients with 
cryptococcosis

Multiple Development of 
cryptococcosis

Unknown [105, 106]

CSF1 (M-
CSF)

1p13 rs1999713 (0.47)
rs1999714 (0.46)
rs1999715 (0.48)

N/A HIV-infected 
patients

African 
descent

Development of 
HIV-associated 
cryptococcosis 
(yes)

Unknown [103]

Genetic variants associated with the development of PJP

IL4 5q31 rs2243250 (0.47) −589C/T 
(CT+TT 
carriage)

HIV-infected 
patients

Caucasian Development of 
PJP

Unknown [91]

Genetic variants associated with the development of blastomycosis

IL6 locus 7p15 rs1800796 (0.31)
rs1524107 (0.31)
rs2066992 (0.31)

N/A Individual s of 
Hmong 
ancestry

Asian Development of 
severe 
blastomycosis

Decreased 
production of 
IL-6 by 
immortalized B 
cells and 
decreased 
production of 
IL-17A by 
CD4+ T cells

[90]

Genetic variants associated with the development of mycetoma

IL8 4q13 rs4073 (0.48) −251T/A Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
mycetoma

Unknown [92]

IL10 1q32 rs1800872 (0.43) −592A/C Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
mycetoma

Unknown [284]

CCL5 17q12 rs2280788 (0.03)
rs2280789 (0.19)

−28C/G
−In1/1 T/C

Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
mycetoma

Unknown [284]

CXCR2 2q35 rs2230054 (0.49) +785C/T Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
mycetoma

Unknown [92]

TSP4 5q14 N/A A389P Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
mycetoma

Unknown [92]

NOS2 17q11 rs1800482 (0.02) G-954C 
(Lambarene)

Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
mycetoma and 

Unknown 
(decreased 
NOS activity)

[92]
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Gene 
(protein 
when 
different 
name)

Chromosome SNP ID (MAF) Variant/
allele

Patient 
population

Ethnicity Reported risk 
(replication in 
independent 
patient cohorts)

Antifungal 
immunological 
or other 
functional 
defects 
conferred by 
the SNP (when 
known)

References

more severe 
mycetomalesions

CR1 1q32 N/A SI2 and 
McCa alleles

Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
mycetoma

Unknown [92]

CHIT1 1q32 rs3831317 Presence of 
the 24-bp 
insertion

Patients with 
mycetoma

African 
descent 
(Sudanese)

Development of 
invasive 
mycetoma by M. 
mycetomatis

Unknown 
(decreased 
chitotriosidase 
activity)

[118]

Abbreviations: ABPA, allergic bronchopulmonary aspergillosis; ADCC, antibody-dependent cell-mediated cytotoxicity; AGER, Advanced 
glycosylation end-product specific receptor; CALM1, calmodulin 1; CCPA, Chronic cavitary pulmonary aspergillosis; CCL, CC chemokine 
ligand; CXCL, CXC chemokine ligand; DC, dendritic cell; DC-SIGN, Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
integrin; DEFB1, defensin β1; DSG1, desmoglein 1; FLOT1, flotillin 1; HIV, human immunodeficiency virus; HSCT, hematopoietic stem cell 
transplantation; IA, invasive aspergillosis; ICU, intensive care unit; IFIH1, interferon-induced with helicase C domain 1; IFN, interferon; IL, 
interleukin; IMI, invasive mold infection; LCE4A, late cornified envelope 4A; MAF, minor allelic frequency (frequency of the second most 
frequent allele in 1000 Genomes combined population); MDA5, melanoma differentiation-associated protein 5; N/A, not available; ND, not 
defined; NO, nitric oxide; NOS, nitric oxide synthase; PJP, Pneumocystis jirovecii pneumonia; PLG, plasminogen; PRKCH; protein kinase C; 
PSMB8, Proteasome subunit beta type-8; PTX3, pentraxin 3; RAGE, receptor for advanced glycation end-products; RVVC, recurrent vulvovaginal 
candidiasis; SAP, serum amyloid P component; S100B, S100 calcium binding protein beta; SOT, solid organ transplantation; STAT1, Signal 
transducer and activator of transcription 1; TAGAP, T cell activation RhoGTPase activating protein; TLR, Toll-like receptor; TNF, tumor necrosis 
factor; VNTR, variable number of tandem repeats; VVC, vulvovaginal candidiasis.
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