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Indel driven rapid evolution
of core nuclear pore protein gene
promoters
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Matthias Soller2**

Nuclear pore proteins (Nups) prominently are among the few genes linked to speciation from hybrid
incompatibility in Drosophila. These studies have focused on coding sequence evolution of Nup96 and
Nup160 and shown evidence of positive selection driving nucleoporin evolution. Intriguingly, channel
Nup54 functionality is required for neuronal wiring underlying the female post-mating response
induced by male-derived sex-peptide. A region of rapid evolution in the core promoter of Nup54
suggests a critical role for general transcriptional regulatory elements at the onset of speciation, but
whether this is a general feature of Nup genes has not been determined. Consistent with findings for
Nup54, additional channel Nup58 and Nup62 promoters also rapidly accumulate insertions/deletions
(indels). Comprehensive examination of Nup upstream regions reveals that core Nup complex gene
promoters accumulate indels rapidly. Since changes in promoters can drive changes in expression,
these results indicate an evolutionary mechanism driven by indel accumulation in core Nup promoters.
Compensation of such gene expression changes could lead to altered neuronal wiring, rapid fixation of
traits caused by promoter changes and subsequently the rise of new species. Hence, the nuclear pore
complex may act as a nexus for species-specific changes via nucleo-cytoplasmic transport regulated
gene expression.

The nuclear pore protein complex (Nup complex) provides a physical barrier between the nucleus and cytoplasm
requiring active transport for cargos above about 40 kDa'. The Nup complex consists of 30 proteins conserved in
Drosophila (Fig. 1), which are grouped into subcomplexes termed outer ring (OR), inner ring (IR), cytoplasmic
filaments (CF), nuclear basket (NB) and pore membrane proteins (POMS). The transport channel is made up
of three phenylalanine-glycine-rich (FG) repeat domains of Nup54, Nup58 and Nup62. The Nup complex can
contribute to differential expression of other genes as e.g. actively transcribed genes can be in the proximity of
the Nup complex®.

Male derived substances transferred during mating change female physiology and behaviour to guarantee
reproductive success in many insects®~’. Rapid divergence in male versus female interactive molecules can ham-
per reproductive success, potentially leading to the establishment of new species for example by compromising
fertility or viability among hybrids'®-'%. Such hybrid incompatibility among closely related Drosophila species
has been used to identify responsible genes. Among the few genes identified were nuclear pore proteins Nup96
and Nup160'*-2. Interestingly, Nups are overrepresented among speciation genes'. In particular, Nup96 and
Nup160 have been shown to be under adaptive evolution and at an individual gene level can cause hybrid lethality,
contrasting with reports of multiple linked factors being necessary for hybrid lethality'*->!.

Sex peptide is the master regulator of the female post-mating response in Drosophila melanogaster®>. A screen
for sex-peptide insensitive mutants identified Nup54 functionality to be important for neuronal wiring of circuits
involved in regulating post-mating behaviours'. In particular, a deletion in the promoter of the Nup54 gene has
been associated with altered nucleo-cytoplasmic shuttling in eight pickpocket (ppk) expressing neurons in the
central brain leading to wiring defects and a compromised female post-mating response directed by male-derived
sex-peptide transferred during mating'®. Moreover, this Nup54 promoter deletion allele maps to a region for
rapid evolution in the Nup54 promotor suggesting sexual conflict driving female escape from male manipulation
by sex-peptide under unfavourable conditions'. Furthermore, channel Nups have also been attributed a role in
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Figure 1. Positive selection drives the evolution of the nuclear pore complex proteins. (a) Graphic depiction of
the nuclear pore complex with differentially coloured subcomplexes inner ring (IR, pink), outer ring (OR, blue),
cytoplasmic filament (CF, orange), nuclear basket (purple) and pore membrane proteins (POMS, red) embedded
in the nuclear envelope lipid-bilayer (green). (b) Significance of synonymous to non-synonymous changes in
Nup subcomplex open reading frames (ORFs) indicated by an asterisk and p values. (c) Average proportion of
substitutions fixed by positive selection (a) shown with standard deviation. 30 genes were randomly sampled
100 times with replacements from the list of Nups and from the genome. Statistically significant differences
from unpaired student t tests are indicated by asterisks (*** p<0.0001). (d-f) Significance of synonymous to
non-synonymous changes in ORFs indicated by an asterisk and p values. As positive control groups the "best
candidate genes" under balancing selection for European (d) and African (e) populations were used. As a
negative control group, the highly conserved m°A writer complex and m°A readers were analysed (f).

transposon silencing in the germline by facilitating processing of short piRNAs from long pre-curser RNAs of
the flamenco locus, which functions as a ‘master off switch’ for transposons?, indicating that the disruption to
Nup complex regulation likely has pleiotropic effects.

Given prior findings about adaptive evolution of the Nup96 and Nup160 coding region'®->*, we systematically
extended this analysis to all Nups. Moreover, since the Nup54 gene promoter evolves rapidly we systematically
analysed all Nup gene promoter regions. Using Drosophila phylogenomics we reveal that promoters of core Nup
complex genes are accumulating insertions/deletions (indels) driving rapid evolution. These findings suggest
that the nuclear pore complex is a nexus for species-specific changes via nucleo-cytoplasmic transport regulated
gene expression.

19-22

Results

Positive selection drives the evolution of nuclear pore complex proteins.  To assess whether the
protein coding region (Open Reading Frame, ORF) of Nups were under selection, we performed McDonald-
Kreitman tests (MKTs) to compare the number of polymorphisms in the D. melanogaster ancestral Congo
population, and divergence between D. melanogaster and its closest relative D. simulans. This analysis showed
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positive selection for only nine Nup ORFs (Fig. 1b). Moreover, nucleoporins have a higher proportion of non-
synonymous substitutions fixed by positive selection (a) (Fig. 1¢, Supplementary Dataset 1)**, meaning stronger
evidence of positive selection, than expected from a random genome sample of equal size.

To substantiate the significance of the Nup complex subcomplex MKT results, we carried out the same
analysis for additional sets of genes that either evolve rapidly or are highly conserved. We used two positive
control groups identified in Croze et al. (2017)% as the "best candidate genes" under balancing selection for
European (Fig. 1d) and African (Fig. 1e) populations. As a negative control group we analysed the m®A mRNA
methylation machinery (Fig. 1f, writer complex: Mett]3, Mettl14, fl(2)d, virilizer, flacc, nito and Hakai; readers:
YTHDCI1 and YTHDF), because high evolutionary conservation is required to maintain complex stoichiometry
to guarantee functionality making this group optimal for use as a control group to monitor protein evolution
(Fig. 1f)*-!. Interestingly, the two positive control groups had a low number of rapidly evolving members for
both the European (three out of sixteen) and African (one out of nine) groups (Fig. 1d, e). As expected, all m°A
group members followed the neutral hypothesis (Fig. 1f). Taken together, these results demonstrate that Nup
complex members are fast evolving, particularly the inner ring subcomplex (Fig. 1b).

Promoter regions of channel Nups 58 and 62 have diverged in closely related species. Since
we previously identified the promoter of the channel Nup54 as a region of rapid sequence divergence'®, we
examined the promoters of the other two channel Nups 58 and 62 among closely related species of Drosophila
(D. melanogaster, D. simulans, D. sechellia, D. yakuba and D. erecta) (Fig. 2). This detailed analysis revealed that
also the promoters of the other two channel Nups accumulated indels rapidly (Fig. 2). Moreover, these changes
contain a number of indels (Fig. 2¢, d) that can fundamentally impact on transcription factor binding commonly
found in the proximal region before the TATA box*>-¢.

Next, we extended this detailed analysis to Nup98-96 and Nup160, since these have been implicated as driv-
ers of speciation’®. As with Nup58 and Nup62, this analysis indicated divergence in promoter regions of the two
genes (Supplementary Fig. 1a, b) and highlighted accumulation of indels in promoters of Nup98-96 and Nup160
(Supplementary Fig. 1c, d).

Inner and outer ring nuclear pore protein gene subcomplexes undergo rapid evolution through
indel accumulation in promoters. Next, we examined the promoter region of all remaining Nups in the
closely related Drosophila species to see whether accumulation of mutations is a general feature of the promoters
of this class of genes (Fig. 3). We analysed conservation in 27 insect species through PhyloP27way data®*%. To
determine whether the Nup complex evolves rapidly compared to the genome, we used PhyloP scores as a meas-
ure of conservation upstream of the transcription start site (TSS) (Fig. 3a). We observed a significant decrease
in Nup complex sequence conservation in the promoter region upstream of the predicted TATA box site (=30
to —380), where the average PhyloP conservation score was significantly lower for the Nup complex compared
to the genome (Fig. 3a, b). Additionally, accumulation of changes in promoter regions were analysed as PhyloP
sliding window diversity scores (d”) and compared between the Nup complex and the genome (Fig. 3c). Here,
the Nup complex significantly accumulated sequence changes compared to the genome (Fig. 3¢c).

To focus more specifically on Drosophila, we analysed promoter evolution between species in the melanogaster
subgroup®. As a control group we used the m*A mRNA methylation machinery control group again because
they also have similar TSS properties to Nup complex genes comparative to other gene groups like ribosomal
genes***!, making this group optimal for use as a control group to monitor promoter evolution?’-*.

We analysed accumulation of changes in promoter regions using sliding window diversity scores (d) and
compared scores between Nup complex subcomplexes and the control group. As has been observed for Dros-
ophila and human promoters®**#2, the region immediately before the TATA box constitutes transcription factor
binding sites (—30 to —380), and showed a slightly increased rate of sequence changes in m®A mRNA methylation
writer complex and readers consistent with the general trend of greater sequence diversity upstream of gene
TSSs (Fig. 3d-i). We then analysed the promoters of the different Nup sub-complexes IR, OR, CF and NB. We
investigated all sequence differences (Fig. 3d, e) and performed a more detailed analysis split into indels (Fig. 3f,
g) and base changes (Fig. 3h, i). This analysis revealed that the core nuclear complex consisting of the IR and OR
genes showed a significantly enhanced rate of indel driven evolution compared to the control group or the CF
and NB group of genes (Fig. 3f, g). Analysis of all sequence differences mirrored the indel analysis including a
significant increase in the number of differences in IR and OR Nups (Fig. 3d, e). In contrast base changes were
reduced for OR and CF Nups (Fig. 3h, i).

Discussion
Here, through a combined analysis of polymorphism and divergence between closely related Drosophila species
we show that the evolution of Nup complex proteins is driven by positive selection. These results are in agreement
with previous findings of adaptive evolution of Nups'®. Our MKT results support previously reported evidence
of positive selection in these same species for Nup160, with only marginally significant evidence for Nup962°2!.
Slight differences in results are not unexpected when different source populations are used for the analysis'.
Focussing on upstream and downstream Nup gene regions, we reveal a bias for inclusion of nucleotide changes
in the core members of the Nup complex. Consistent with channel Nup54'%, further analysis of upstream regions
of the other channel Nups 58 and 62 reveals that their promotor regions rapidly accumulate indels. Through
examination of promoter regions of Nup subcomplex members, we identify the core IR and OR Nups as rapidly
accumulating indels. Here, the core Nup complex members likely act as drivers of species-specific variation
through indel driven changes in promoters, subsequently modifying regulation of nucleo-cytoplasmic transport
regulated gene expression.
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Figure 2. Promoter regions of channel Nups 58 and 62 have diverged in closely related species. (a,b) Sequence
alignment of the Nup58 and Nup62 promoter regions from closely related species. Nucleic acids changes from
D. melanogaster are indicated in black. Transcribed parts of the Vhal3 and CG7997 5'UTR and the Nup58

and Nup62 5'UTR are indicated by a line. (c,d) Plot of cumulative differences along the sequence (G) between
the relative occurrences of indels and their position from the alignment of the gene region around Nup58 and
Nup62 between D. melanogaster, D. simulans, D. sechellia, D. yakuba and D. erecta. Positions in the alignment
with significant stretches of substitutions are identified by black line(s).
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Figure 3. Core nuclear pore protein genes rapidly evolve through indel accumulation in promoters. (a)
Evolutionary conservation of nucleotide positions around the TSS depicted by PhyloP27way conservation score
averages for the D. melanogaster genome (black) and the Nup complex (grey). (b) Evolutionary conservation
measured by PhyloP27way conservation score averages for the 350 nucleotide promoter regions compared
between the Nup complex and the genome. Statistically significant differences from unpaired student t tests are
indicated by asterisks (*** p<0.0001). (c) Evolutionary conservation measured by PhyloP27way conservation
is shown as promoter d” scores for the 350 nucleotide window in the promoters of the Nup complex and the
genome averages. Statistically significant differences from non-parametric chi-squared tests are indicated by
asterisks (** p<0.001). (d-i) Heatmaps indicating divergence for all changes (d), indels (f), and base changes
(h) in yellow among closely related D. melanogaster, D. simulans, D. sechellia, D. yakuba and D. erecta for the
control group of genes (m°A writer complex and readers) and the inner ring (IR), outer ring (OR), cytoplasmic
filament (CF) and nuclear basket (NB) below the gene model with the TSS indicated by an arrow. The red line
indicates the promoter region used for quantification of the substitution rate. Quantification of the change

rate of all changes (e), indels (g), and base changes (i) in the TATA box distal region (from —30 to —380).
Statistically significant differences from non-parametric chi-squared tests are indicated by asterisks (**p<0.001,
Htp < 0.0001).
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Although the megadalton Nup complex has mainly been associated with providing a physical barrier between
nucleus and cytoplasm, recent discovery of pleiotropic functions of channel Nup54 provide new insights how the
Nup complex could drive speciation'. Nup54 is required for neuronal wiring underlying the female post-mating
response induced by male-derived sex-peptide. Although we have not observed an obvious effect of incompatibil-
ity of Nup54 through sterility or lethality, this could be extended to be incompatibility resulting in incompatible
behaviours. Considering the involvement of Nup54 in mating behaviour, one plausible scenario could involve
exchange of sexual conflict for intragenomic conflict as the adaptive driver of initial divergence!®13-1>184> Here,
the Nup54 gene promoter could undergo rapid changes driven by sexual conflict. If this occurs in one or more
isolated populations, pleiotropic effects of changes to Nup54 regulation of neuronal wiring, sexual differentiation
or transposon regulation could result in genetic incompatibilities when the isolated population(s) come into
contact with the original population®.

Alternatively, Nups could drive speciation through their regulation of transposon silencing directly. Channel
Nups are required for the generation of piRNAs originating from the flamenco locus in the germline to silence
transposons®*. Maternally inherited piRNAs are essential to transposon silencing and an imbalance can lead to
a phenomenon called hybrid dysgenesis, imposing reduced fecundity in the female offspring when the male
genome contributes novel transposable elements to be silenced**. Key to silencing are epigenetically inherited
piRNAs from the female to prime the “ping-pong” cycle for amplification to increase the silencing capacity by
heterochromatinization for preventing transposon mobilisation**"*’. Compromised transposon silencing leading
to deleterious reductions of fecundity could be escaped by altered Nup complex function. Such changes likely
trigger pleiotropic effects that could include changes in neuronal wiring and behaviour. Such changes, however,
could become fixed as a result of behavioural isolation, but restoring piRNA silencing regulation to its original
state would not revert to the initial neurological state. In essence, if escape from lower fecundity as a result of
hybrid dysgenesis**~*, leading to reduced transposon silencing is coupled to changes in the morphology or
behaviour and behavioural isolation, new species could be established very quickly. In particular, if changes in
Nup functionality result in rewiring of neuronal circuits as indicated for Nup54, behavioural preferences lead-
ing to rapid isolation are likely. In fact, mate preference has changed in D. simulans through rewiring of sensory
neuron projections to fruitless P1 neurons that control courtship?.

Conclusion

Changes in gene expression have profound effects during species divergence and phenotypic adaptation, and
such changes can lead to hybrids’ gene mis-expression and dysfunction*->*. The molecular mechanism how new
species arise through differential regulation of gene expression remains uncertain. The newly discovered role of
channel Nups in piRNA processing in the germline to maintain transposon silencing provokes the claim that
any compensation of the negative impact on fecundity from hybrid dysgenesis would be favoured. However, if
as result of the pleiotropic effect of Nups changes in neuronal wiring and behaviour occur, these changes could
be irreversible if behavioural isolation has already advanced'>*. Since mutations in promoters can directly affect
gene expression regulation®*, such changes could be rapidly fixed in contrast to recessive changes in coding
regions, which would remain hidden in heterozygosity. Our systematic analysis of the evolution of all Nups
coding and promoter regions suggests a mode of evolution through changes of sequences upstream of the TSS,
particularly in the promoters of core Nups, and supports the possibility that compensation of deleterious changes
in the germline can lead to altered neuronal wiring and rapid fixation of adaptive traits.

Materials and methods

Open reading frame analysis. To determine whether the ORFs of nucleoporins are under selection,
the PopFly online database (imkt.uab.cat) developed from the Drosophila Genome Nexus project assembling
sequence data of around 1100 D. melanogaster genomes were used to perform MKTs to analyse polymorphism
data from the ancestral Congo population because it is a sub-Saharan population with higher ancestral stabil-
ity than other populations®’~*°. Synonymous and non-synonymous polymorphisms within D. melanogaster or
between D. melanogaster and D. simulans were obtained and significance determined by Fisher’s Exact Test, with
significance defined as p <0.05 after FDR correction. We used the concatenate and the compare against whole-
genome distribution advanced options within the PopFly database analysis tool to compare the proportion of
substitutions fixed by positive selection (o). We compared the 30 Nups against a random sample of the same size
by randomly sampling from both datasets 100 times. Significance was calculated through an unpaired t test with
significance defined as p<0.05.

Sequence/data retrieval and alignment. Nucleoporin gene and promoter sequences for the five ana-
lysed Drosophila species (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta) were retrieved from
UCSC genome browser (genome.ucsc.edu) using the Table Browser tool*”8. Pairwise and multiple alignments
were carried out with clustalW using the alignment program version MEGA11 default alignment settings®.
PhyloP27way data were sourced from UCSC genome browser through the Table Browser tool*”*. Data points
were collected for a region of 1000 nucleotides upstream and 300 nucleotides downstream of gene TSSs relative
to their transcription strands.

Accumulation of substitutions along extended gene regions.  To test for nonrandom accumulation
of indels along the Nup extended gene regions between the five analysed Drosophila species (D. melanogaster, D.
simulans, D. sechellia, D. yakuba, and D. erecta) we determined significant deviations from a uniform distribu-
tion of substitutions using an empirical cumulative distribution function, as described by Civetta et al. (2016)°".
The position of the indel event was defined as the 5’ site of the start of the indel in the alignment ®%. The function
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(G) detects monotonic increases in substitutions (n) measured as the difference between the relative occurrence
of a nucleotide change and its relative position in the alignment®'. Whether differences between the values of the
G function (AG) between substitutional events deviates from a random accumulation of changes is tested using
Monte Carlo simulations to produce 100,000 samples of n events by sampling sites without replacement along
the alignment®’.

Comparison of substitution rates. To analyse the promoters of Nups and the control group of the m°A
writer complex and readers, a region of 1000 nucleotides upstream and downstream of the TSS was used with
the TSS as an anchor point. Regions were aligned between the five analysed Drosophila species (D. melanogaster,
D. simulans, D. sechellia, D. yakuba, and D. erecta) and alignments were translated into events®. Per Tang and
Lewontin (1999)%, 0 signified no sequence difference between all analysed species and 1 signified comparative
sequence divergence for>1 species. The same was also performed for indels and base changes individually,
where 0 signified no indel or base change event and 1 signified an indel or base change event for>1 species.
A sliding window of five nucleotides upstream and downstream of each position was summed and processed
to define sliding event (Se) scores which were used to generate heatmaps. Se scores were averaged between the
different Nup subcomplexes and the m°A control. To calculate sequence change accumulation (percentage of
events greater than the average control promoter sliding window score (d)), a 350 nucleotide region upstream of
the approximated TATA box region was taken. The total number of Se scores greater than the average control Se
(Se) was divided by the total number of events in the region (N).

_ Total number of Se events where Se > Se€

d= x 100
N

Significance was defined by non-parametric chi-squared tests versus the control score with one degree of
freedom, where the percentage groupings were > Se® (d) and < Se€. P values <0.05 with Bonferroni correction
were deemed statistically significant.

To compare the conservation rate of the Nup complex compared to the D. melanogaster genome, PhyloP27way
scores for a region of 1000 nucleotides upstream and 300 nucleotides downstream of the TSS for all Drosophila
genes was performed. Genes without data points for the full 1300 nucleotide region were omitted. Genome-wide
and Nup complex mean PhyloP scores were calculated using R version 4.4.2%. The average 350 nucleotide region
upstream of the approximated TATA box region was compared between the two and significance was calculated
using an unpaired student t-test. P values <0.05 were deemed statistically significant. For the same region of the
Nup complex and genome average PhyloP d (d”) was calculated, and significance determined as follows: the total
number of PhyloP (p) scores in the 350 nucleotide regions less than the control group average promoter region
(p©) replaced the total number of Se events where Se > Se® (see below).

4P — Total number of p scores < p©
- N

x 100

Significance was defined by non-parametric chi-squared tests versus the control score with one degree of free-
dom, where the percentage groupings were < p© (d”) and = pC. P values <0.05 were deemed statistically significant.
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