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Abstract
Night monkeys (Aotus) are the only genus of monkeys within the Simian lineage that successfully occupy a nocturnal envi-
ronmental niche. Their behavior is supported by their sensory organs’ distinctive morphological features; however, little 
is known about their evolutionary adaptations in sensory regions of the cerebral cortex. Here, we investigate this question 
by exploring the cortical organization of night monkeys using high-resolution in-vivo brain MRI and comparative cortical-
surface T1w/T2w myeloarchitectonic mapping. Our results show that the night monkey cerebral cortex has a qualitatively 
similar but quantitatively different pattern of cortical myelin compared to the diurnal macaque and marmoset monkeys. T1w/
T2w myelin and its gradient allowed us to parcellate high myelin areas, including the middle temporal complex (MT +) and 
auditory cortex, and a low-myelin area, Brodmann area 7 (BA7) in the three species, despite species differences in cortical 
convolutions. Relative to the total cortical-surface area, those of MT + and the auditory cortex are significantly larger in night 
monkeys than diurnal monkeys, whereas area BA7 occupies a similar fraction of the cortical sheet in all three species. We 
propose that the selective expansion of sensory areas dedicated to visual motion and auditory processing in night monkeys 
may reflect cortical adaptations to a nocturnal environment.
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Introduction

Night monkeys, also known as owl monkeys, are distinctive 
New World primates with a distinctive nocturnal lifestyle 
(Wright 1989). Phylogenetic studies suggest that, while 
anthropoids (monkeys, apes, and humans) shifted from 
nocturnality to diurnality, night monkeys subsequently 
re-adapted to nocturnality approximately 15–20 million 

years ago (Hershkovitz 1974; Fleagle 1981; Setoguchi and 
Rosenberger 1987; Ankel-Simons and Rasmussen 2008). 
Nocturnal activities require different adaptations from those 
best suited to a diurnal lifestyle. For example, night mon-
keys have very large eyes relative to their skull size (thus, 
the name “owl monkeys”). The large eyeballs and corneas 
enable increased light gathering on the retina under dim 
light conditions (Noback 1975). Night monkeys also have 
a higher density of rod photoreceptors and a lower density 
of cone photoreceptors in the retina than do diurnal mon-
keys (Wikler and Rakic 1990), thus exchanging color vision 
(Jacobs 1977b; Jacobs et al. 1993) for high visual sensitiv-
ity under dim light conditions (Jacobs 1977a; Jacobs et al. 
1979). Such sensory adaptations of night monkeys may 
underlie their nocturnal primate niche in the New World 
(Wright 1989; Warrant 2004); however, little is known about 
these adaptations at the level of the cerebral cortex.

Over the last half century, many studies on night mon-
keys have investigated their cortical architecture, con-
nectivity, and function (Allman and Kaas 1971a, b, 1974, 
1976; Merzenich et al. 1978; Graham et al. 1979; Baker 
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et al. 1981; Tootell et al. 1985; Kaas 1987, 2004; Malonek 
et al. 1994; Sereno and Tootell 2005; Sereno et al. 2015). 
An important early discovery was the middle temporal 
area (MT) located anterior to areas V1 and V2 (Allman 
and Kaas 1971b). Subsequent studies suggested that the 
primary function of MT was motion analysis (Baker et al. 
1981; Malonek et al. 1994; Kaskan et al. 2010). Area MT 
shares common characteristics across various non-human 
primates (NHP) species, including neural connections 
(Maunsell and Van Essen 1983; Weller et al. 1984; Kru-
bitzer and Kaas 1990; Palmer and Rosa 2006), architec-
ture (Tootell et al. 1985; Maunsell and van Essen 1987), 
and receptive field properties (Dubner and Zeki 1971; 
Van Essen et al. 1981; Baker et al. 1981; Rosa and Elston 
1998). Together with the neighboring middle superior 
temporal (MST) area, MT constitutes the motion process-
ing complex in human (hMT +) (Huk et al. 2002; Kol-
ster et al. 2010; Glasser and Van Essen 2011; Large et al. 
2016) and we refer to this region as the MT + complex. 
Interestingly, a few studies in nocturnal primates reported 
possible differences in cortical visual systems from those 
in diurnal primates (e.g., smaller relative size of overall 
visual cortices, including V1, V2, MT, and MST) (Kru-
bitzer and Kaas 1990; Rosa 2002). It is worth revisiting 
the issue with modern non-invasive methodology, which 
could help better understand interspecies differences in 
structure and function.

Recently, we developed high-quality MRI data acquisi-
tion and corticalsurface-based analysis methods, harmo-
nized across primate species including humans (Glasser 
et al. 2013, 2016), macaques (Donahue et al. 2018; Autio 
et al. 2020), and marmosets (Hori et al. 2018; Ose et al. 
2022) with an aim to establish an improved platform for 
comparative primate neuroimaging analyses (Van Essen 
et al. 2019; Autio et al. 2021; Hayashi et al. 2021). This 
approach has enabled harmonized comparative myelo-
architectonic mapping using the T1w/T2w ratio (Glasser 
et al. 2014), quantitative comparison of the prefrontal cor-
tex (Donahue et al. 2018), and expansion of the sparsely 
myelinated association areas in higher primates (Van 
Essen et al. 2019; Hayashi et al. 2021). As in histological 
studies that often use myeloarchitecture for parcellating 
cortical areas, the T1w/T2w ratio myelin in neuroimag-
ing studies aids in parcellation of many cortical areas in 
humans (Glasser and Van Essen 2011; Glasser et al. 2016) 
and objective comparisons across species despite very dif-
ferent gyrification patterns (Glasser et al. 2014; Van Essen 
et al. 2019).

To evaluate evidence pertaining to primate nocturnal 
adaptation in cerebral cortex, here, we extend our compara-
tive myeloarchitectonic investigation to include night mon-
keys as well as macaque and marmoset monkeys. Our quan-
titative interspecies comparison suggests that the relative 

size of the MT + complex and auditory cortex is significantly 
larger in night monkeys compared to diurnal primates. This 
may be associated with evolutionary adaptation of the cer-
ebral cortex to the nocturnal niche environment.

Methods

Animals

Ten night monkeys (Aotus lemurinus, five males and five 
females, age = 23.8 ± 6.8 y.o, body weight = 1.08 ± 0.08 kg) 
were used in this study. All animals were provided by the 
Center for the Evolutionary Origins of Human Behav-
ior (former Primate Research Institute), Kyoto University 
(Inuyama, Japan). One monkey (Male, 19.7 y.o, 0.98 kg) 
with abnormally large ventricles was excluded from the 
analysis. All experiments were conducted in accordance 
with the institutional guidelines for animal experiments, 
Basic Policies for the Conduct of Animals Experiments in 
Research Institution (MEXT, Japan), and Guidelines for the 
Care and Use of Laboratory Animals (National Institute of 
Health, Bethesda, MD). All procedures were approved by 
the Animal Care and Use Committee of the Kobe Institute 
of RIKEN (MA2008-03–14).

Animals were initially sedated by intramuscular injection 
of dexmedetomidine (4.5 µg/kg) and ketamine (6 mg/kg). 
Anesthesia was maintained with dexmedetomidine (4.5 µg/
kg/hr, i.v) and low-dose isoflurane (0.6%, inhalation) in the 
MRI scanner. Rectal temperature (1030, SA Instruments, 
Inc. NY, USA) and peripheral oxygen saturation and heart 
rate (7500FO, NONIN Medical Inc, MN, USA) were con-
tinuously monitored.

Data acquisition

MR scans were carried out using a 3 T MRI scanner (MAG-
NETOM Prisma, Siemens Healthcare, Erlangen, Germany) 
and a 24-channel multi-array RF coil designed for scanning 
non-human primate brains (Rogue Research, Montreal, 
Canada/Takashima Seisakusho KK, Tokyo, Japan) (Autio 
et al. 2020). This head coil was originally designed for 
macaque head size, but proved suitable also for night mon-
keys. The static magnetic field  (B0) was shimmed within the 
brain using the sequence FastestMap (linear projections = 6, 
averages = 2, volume 25 × 25 × 18 mm, bar FOV = 120 mm, 
bar thickness = 15  mm, number of echoes = 3) (Gruet-
ter and Tkác 2000). T1w images were acquired using a 
3D Magnetization Prepared Rapid Acquisition Gradi-
ent Echo (MPRAGE) sequence (0.25 × 0.25 × 0.5   mm3, 
matrix = 512 × 512, slice resolution 50% with interpolation, 
averages = 3, TR = 2200 ms, TE = 2.2 ms, TI = 900 ms, 
GRAPPA = 2, bandwidth = 270  Hz/pixel, PE-direction 
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R >  > L, no fat suppression, turbo factor = 176, and pre-
scan normalization). T2w images were acquired using a 
Sampling Perfection with Application optimized Con-
trast using different angle Evolutions (SPACE) sequence 
(0.25 × 0.25 × 0.5  mm3, matrix = 512 × 512, slice resolu-
tion 50% with interpolation, TR = 3000 ms, TE = 562 ms, 
GRAPPA = 2, bandwidth = 391 Hz/pixel, no fat suppression, 
turbo factor = 314, and pre-scan normalization). The acquisi-
tion time was 18 min and 7 min for scanning T1w and T2w 
images, respectively.

The  B0 field-map was estimated using a pair of spin-echo 
EPI images with opposite phase encoding directions (LR and 
RL, 1.1 mm isotropic resolution, echo-spacing = 0.95 ms, 
bandwidth = 1240 Hz/pixel, fat suppression, and pre-scan 
normalization). The  B0 field-maps were used for readout 
distortion correction of T1w and T2w images (Andersson 
et al. 2003; Glasser et al. 2013).

Data analysis

Image preprocessing

Structural images were pre-processed using a non-human 
primate (NHP) version of the Human Connectome Project 
(HCP) pipeline (HCP-NHP pipeline) (Donahue et al. 2018; 
Autio et al. 2020), FSL (v6.0.4) (Jenkinson et al. 2012), 
and FreeSurfer v5.3.0-HCP (http:// surfer. nmr. mgh. harva rd. 
edu/) (Fischl 2012). The structural preprocessing includes 
three stages (PreFreeSurferPipeline, FreeSurferPipeline, and 
PostFreeSurferPipeline), as summarized in Fig. S1. PreFree-
SurferPipeline (Fig. S1A) includes registration of T1w and 
T2w images into an anterior–posterior commissural (ACPC) 
alignment with a rigid body transformation, brain extrac-
tion, correction of  B0 inhomogeneity-induced distortion, 
boundary-based registration (Greve and Fischl 2009), and 
signal intensity correction using bias field estimate (Glasser 
et al. 2013). The bias-corrected T1w images were registered 
to a species-specific template rigidly and non-rigidly using 
linear and nonlinear algorithms in FSL (FLIRT and FNIRT) 
(Jenkinson et al. 2002). The bias-corrected T2w images were 
aligned to the T1w images. Both bias-corrected T1w and 
T2w were upsampled to the 0.25 mm isotropic volumes. 
To create a species-specific template, T1w and T2w images 
were aligned and averaged across subjects to generate the 
standard space NightMonkeyRIKEN-KU9.

The Free Surfer Pipeline was used to reconstruct the cor-
tical surfaces (Fig. S1B). This process started with adjusting 
the 0.25 mm isotropic NIFTI volume headers of the T1w 
and T2w to 1 mm isotropic to scale the brain size close to 
that of humans (Hayashi et al. 2021). Then, intensity cor-
rection was applied using FMRIB’s Automated Segmenta-
tion Tool (FAST) (Zhang et al. 2001), and the whole brain 

intensity was scaled with a species-specific factor (80 for 
night monkey). Following these processes, brain extraction 
and segmentation of subcortical structures were performed 
using a Gaussian classifier atlas (GCA) (Fischl et al. 2002), 
which was created for night monkeys using the current 
dataset. White matter segmentation was performed based 
on the segmented subcortical structures (aseg.mgz) plus a 
white matter skeleton template of night monkey (Hayashi 
et al. 2021), which fills the thin white matter blades in the 
anterior temporal and occipital cortex for better surface esti-
mation. White matter surfaces were reconstructed using an 
HCP-customized mris_make_surface in FreeSurfer v5.3.0-
HCP. After white matter surface estimation, the surface and 
volume data were rescaled from the expanded 1.0 mm space 
back to the 0.25 mm native space. The pial surface was 
estimated initially using intensity normalized T1w image 
followed using the T2w image to exclude dura and blood 
vessels (Glasser et al. 2013; Autio et al. 2020). In the initial 
T1w-based pial surface estimation process, maximal corti-
cal thickness was 4 mm, and the gray matter threshold was 
8 sigma for species-specific optimization.

The Post Free Surfer Pipeline registered individual vol-
ume and surface data into those of NightMonkeyRIKEN-
KU9 (Fig. S1C). The left and right cortical surfaces gener-
ated by FreeSurfer (in ‘native’ mesh) were symmetrized 
using fs_L-to-fs_LR and fs_R-to-fs_LR surface transfor-
mation that was previously generated for the macaque 
monkey (Van Essen et  al. 2012), followed by surface 
registration to the average sulc of NightMonkeyRIKEN-
KU9 using Multimodal Surface Matching (MSM) method 
(Robinson et al. 2018). Then, surfaces and surface metrics 
of thickness, curvatures, and sulc were resampled to stand-
ardized meshes of 164 k and 32 k vertices. Then the mid-
thickness surface was created by averaging white and pial 
surfaces. Inflated and very inflated surfaces were generated 
from the mid-thickness surface with species-specific infla-
tion scale parameters (eight for night monkey). Myelin 
maps were generated by calculating the T1w/T2w ratio 
weighted toward the mid-thickness (Glasser and Van Essen 
2011) using a Gaussian function (FWHM = 1.8 mm, which 
is optimized for night monkey based on median cortical 
thickness). To remove bias in the myelin map mostly com-
ing from the  B1 transmit field, the spatial low frequency 
(sigma = 5 mm) differences between the individual and a 
symmetrized myelin template generated from the group 
average of the nine night monkeys were removed (Glasser 
and Van Essen 2011; Glasser et al. 2013).

The volumes and surfaces dataset were averaged across 
subjects. A flatmap was also generated using averaged 
mid-thickness surfaces in the left and right hemispheres by 
cutting the calcarine sulcus, ventral part of lateral fissure, 
and principal dimple. We used CARET5 (v5.64) and HCP 
Workbench (v1.5.0) for generating the flatmap.

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Cortical parcellation

Spatial derivatives of T1w/T2w myelin contrast (myelin gra-
dient) and cortical thickness were calculated on the aver-
aged mid-thickness surface of NightMonkeyRIKEN-KU9 
dataset, with pre-smoothing (sigma = 0.5 mm). Local peaks 
in the gradient map indicate the local maxima of change in 
signal (T1w/T2w myelin contrast or thickness) and repre-
sent candidate boundaries between cortical areas (Glasser 
and Van Essen 2011; Glasser et al. 2016). The borders for 
the heavily myelinated MT + complex and auditory cortex 
and for the lightly myelinated parietal cortex were defined 
using both the intensity and the gradient of T1w/T2w mye-
lin contrast on the NightMonkeyRIKEN-KU9 164 k mesh 
in each hemisphere separately (MT + complex: high T1w/
T2w myelin area in the posterior temporal cortex; auditory 
cortex: medium-to-high T1w/T2w myelin area in the poste-
rior bank of the lateral fissure and superior temporal gyrus; 
low-myelin parietal cortex (perhaps corresponding to BA7): 
low T1w/T2w myelin area in the lateral parietal cortex sur-
rounded by high T1w/T2w myelin areas (MT + complex, 
auditory cortex, and posterior parietal cortex). We also used 
cortical mean curvature (folding) and its gradient as a refer-
ence to define the border between auditory cortex and retro-
insular cortex which both showed medium-to-high T1w/T2w 
myelin contrasts. The boundary of primary visual cortex 
(V1) was estimated using the gradients in cortical thick-
ness (lateral side) and T1w/T2w myelin contrast (medial 
side). The borders were then converted to vertex ROIs on 
the mid-thickness 164 k surface. The surface ROIs were then 
resampled to a 32 k mid-thickness surface and then applied 
to each subject’s 32 k surface. This process relies on the 
folding-based surface registration across subjects to align 
cortical areas. Surface areas were computed as the sum of 
the vertex-wise area on the mid-thickness surface in each 
ROI in the subject’s anatomical native space. Cortical thick-
ness was estimated as the average of vertex-wise cortical 
thickness in each ROI. Cortical volume in each ROI was 
estimated as the sum of the vertex-wise wedge volume cal-
culated using the white and pial surfaces in the subject’s 
anatomical native space.

Interspecies comparisons

For interspecies comparisons, we used macaque monkeys 
(Macaca mulatta, 18 males and 4 females, age = 5.3 ± 1.7 
y.o, body weight = 5.20 ± 1.33 kg; Macaca fascicularis, 10 
males, age = 5.4 ± 2.4 y.o, body weight = 4.51 ± 1.50 kg) 
and marmoset monkeys (Callithrix jacchus, 20 males, 
age = 5.5 ± 2.8 y.o, body weight = 0.38 ± 0.06 kg). For these 
species, the harmonized HCP-NHP data acquisition (MAG-
NETOM Prisma, Siemens, 3 T) and data analyses have been 
described elsewhere (Table S1) (Autio et al. 2020; Hayashi 

et al. 2021; Ose et al. 2022). Areal borders were defined 
using the same procedure as in night monkeys. The inter-
species differences in the relative surface area (relative to 
total cortical area), average thickness, and relative cortical 
volume (as a fraction of total cortical volume) were tested 
by two-way analysis of variance (ANOVA) with factors of 
species (macaque, night monkey, and marmoset) and corti-
cal parcel of interest (MT + complex, auditory cortex, BA7, 
V1). Species effects for each cortical parcel were analyzed 
using post hoc t test with Bonferroni correction for multiple 
comparisons across species and parcels.

Results

Bran size and cortical topography, thickness, 
and myeloarchitecture in night monkey

The total volume of the night monkey brain was 
18.2 ± 1.2  cm3, the volume of cortex (per hemisphere) was 
3.73 ± 0.30  cm3, and the total surface area of the cortical 
mid-thickness surface was 20.3 ± 1.3  cm2 per hemisphere 
(Fig. 1A). The cortical pial surface (Fig. 1A) shows a distinct 
lateral fissure that extends to the dorsoposterior part of the 
brain, a superior temporal sulcus, a relatively short cingulate 
sulcus, a central dimple (but no central sulcus), and princi-
pal dimple in dorsal prefrontal cortex. These cortical fea-
tures were consistently observed across all night monkeys. 
The mid-thickness surface (Fig. 1B), very inflated surface 
(Fig. 1C), and flatmap (Fig. 1D) also facilitated visualization 
of large proportions of cerebral cortex buried inside the sulci 
(e.g., parietal cortex within lateral fissure, medial occipital 
lobe), albeit with more distorted vertex areas.

The cortical thickness maps shown in Fig. 2A indicate 
that cerebral cortex is relatively thick in much of prefrontal 
and lateral parietal cortex, and in both superior and inferior 
temporal gyri. It is thin in early sensory areas, including 
occipital cortex, auditory cortex, and somatosensory cortex. 
The average cortical thickness is 1.91 ± 0.04 mm (N = 9), 
and the lower 5th percentile of cortical thickness in the 
group average was 1.27 mm. Thus, our image resolution 
(0.25 × 0.25 × 0.5  mm3) was well within the criterion of con-
taining at least two voxels within the thinnest parts of the 
cortex (Glasser et al. 2016; Autio et al. 2021).

The T1w/T2w myelin maps shown in Fig. 2B show 
relatively heavy myelination in the primary motor (M1) 
and somatosensory areas (S1) close to the central dimple, 
primary auditory (A1), and surrounding auditory cortex, 
early visual areas, including primary visual cortex (V1), 
the middle temporal complex (MT +), retrosplenial cortex 
(RSC), and the dorsomedial (DM) visual area (Fig. 2B). 
T1w/T2w myelin contrast was moderate in the ventropos-
terior parietal (VPP) area and frontal eye field (FEF) and 
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relatively low in association areas (e.g., prefrontal, orib-
itofrontal, medial parietal, insular, and lateral temporal 
cortices). These trends in T1w/T2w myelin contrast are 
consistent with other primate species (Glasser et al., 2014; 
Van Essen et al. 2019; Autio et al. 2020; Hayashi et al. 
2021; see Fig. 3 below).

The bottom row of Fig. 2 compares T1w/T2w myelin 
contrast (Fig. 2D) and histological myelin staining density 
(Sereno et al. 2015) from a tangentially cut flattened cortex 
(Fig. 2E). The T1w/T2w map exhibits dense myelination 
in the MT + complex, DM, and VPP, surrounded by a more 
lightly myelinated lateral parietal cortex. In particular, the 
MT + complex (analogous to Sereno and colleagues area MT 
and MSTd; Fig. 2E) exhibits a sharp transition in histologi-
cal myelin density relative to the surrounding cortex. The 
lateral bank of the posterior lateral fissure is lightly mye-
linated and is surrounded by higher myelin areas such as 
MT + complex, DM, and VPP (Fig. 2D). Overall, the T1w/
T2w myelin contrast (Fig. 2D) and histological myelin den-
sity (Fig. 2E) have similar topographic distributions. How-
ever, a quantitative validation is hampered by different dis-
tortion patterns in the two flatmaps (Fig. 2D, E).

Interspecies comparison of parieto‑temporal cortex

Cortical T1w/T2w myelin contrast, thickness, and their gra-
dients were used to evaluate areal boundaries in macaque, 
night and marmoset monkeys scanned and pre-processed 
using the harmonized HCP-NHP methodology (Autio et al. 
2020; Hayashi et al. 2021; Ose et al. 2022). In each species, 
the posterior temporal cortex contained a very heavily myeli-
nated region (Fig. 3A–F, pink border) surrounded by robust 
gradient-ridges (Fig. 3G–I). This highly myelinated inland 
likely corresponds to the MT + complex, which includes 
middle temporal areas MT and MST (Tootell et al. 1985; 
Desimone and Ungerleider 1986; Large et al. 2016). The 
medium-to-high T1w/T2w myelin contrast from the poste-
rior bank of lateral fissure to the top of superior temporal 
gyrus was defined as the auditory cortex in each species 
(Fig. 3), which adjoins a moderately myelinated retroinsular 
area located rostromedially (Lewis and Van Essen 2000a). 
This myelinated area surrounded by strong T1w/T2w mye-
lin gradients likely includes primary auditory cortex (A1) 
and its surrounding regions such as rostral field (R), cau-
domedial field (CM), and caudolateral (CL) in night (Imig 

Fig. 1  Surface models of night monkey cerebral cortex. Cortical cur-
vature displayed on A pial, B mid-thickness and C very inflated sur-
faces, and D a flatmap. Three sulci (lateral fissure, superior temporal, 
and cingulate sulcus) and three dimples (principal, arcuate, and cen-
tral dimple) were consistently identified in all of the animals (N = 9). 
Dorsal views of (E) postmortem brain (modified image from http:// 
brain museum. org/) and (F) reconstructed pial surface. Red dots are 

placed at regular intervals on the ‘anatomical coordinates’ of the mid-
thickness surface. Note that the corresponding red dots are located 
in a distorted manner in the very-inflated and flat surfaces. The cyan 
dots in the right hemisphere are vertices with the same ID contralat-
eral to the red dots in the left hemisphere demonstrate symmetrical 
reconstruction of the cortical surfaces. Dataset is available at https:// 
balsa. wustl. edu/ 3k7zv

http://brainmuseum.org/
http://brainmuseum.org/
https://balsa.wustl.edu/3k7zv
https://balsa.wustl.edu/3k7zv
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et al. 1977; Morel and Kaas 1992), macaque (Hackett et al. 
1998), and marmoset (de la Mothe et al. 2006) monkeys. 
Dorso-medial to the MT + complex and auditory cortex, 
there is an island of relatively low T1w/T2w myelin val-
ues (Fig. 3A–F, cyan border) mostly surrounded by robust 
gradient-ridges (Fig. 3G–I) in each species. In night mon-
keys, these transitions are supported by histological myelin 
stain density which also exhibits an island of sparse myelina-
tion surrounded by sharp myelin density transitions to the 
densely myelinated cortex (Fig. 2F). This sparsely myeli-
nated region may correspond to Brodmann area 7 (BA7) 
complex, which in the macaque includes areas 7a, 7b and 
7op and in humans likely even more areas (Yokoyama et al. 
2021). We calculated the surface area, average thickness, 
and cortical volume of these three parieto-temporal parcels 
for each species along with primary visual cortex (V1), and 
tested interspecies difference using two-way analysis of vari-
ance (ANOVA) with species (macaque, night monkey, mar-
moset) and cortical parcel (MT + complex, auditory cortex, 
BA7, V1; see Interspecies comparisons). All variables of 
relative surface area, average thickness, and relative cortical 
volume showed significant interaction effect between species 
and cortical parcel  (F6, 476 = 2716, 77, 1218, respectively. 
p < 0.001), indicating that patterns of species effects are dif-
ferent among cortical parcels.

The estimated surface area (per hemisphere) of the 
MT + complex was 89.8, 47.9, and 12.5  mm2 in macaque, 
night monkey, and marmoset, respectively, in reasonable 
agreement with previous reports (Table 1). Relative to total 
cortical-surface area, MT + complex was substantially larger 
in night monkeys (47.9 ± 2.3  mm2/2030 ± 128  mm2 = 2.4%) 
in comparison to macaque (89.8 ± 12.8  mm2/9894 ± 1470  
mm2 = 0.9%) and marmoset monkeys (12.5 ± 1.5  mm2/105
3 ± 55  mm2 = 1.2%) (p < 0.001 t test, Bonferroni corrected) 
(Fig. 4A). The average cortical thickness of the MT + com-
plex was similar (≈ 2.0 mm) across the three species. Thus, 
the fractional volume of MT + complex compared to the total 
volume of cortex is significantly larger in night monkeys 

(2.6%) in comparison to macaque (0.8%) and marmoset 
(1.5%) monkeys (p < 0.001 t test, Bonferroni corrected; see 
Interspecies comparisons).

Auditory cortex showed similar trends with the 
MT + complex. The estimated surface area (per hemi-
sphere) of the auditory cortex was 57.7, 51.2, and 
16.1   mm2 in macaque, night monkey, and marmo-
set, respectively, which are also in good agreement 
with previous reports (Table  1). The relative surface 
area of auditory cortex was larger in night monkey (51
.2 ± 2.9   mm2/2030 ± 128   mm2 = 2.5%) than macaque 
(57.7 ± 11.3  mm2/9894 ± 1470  mm2 = 0.6%) and marmoset 
monkeys (16.1 ± 1.7mm2/1053 ± 55  mm2 = 1.5%) (p < 0.01 
t test, Bonferroni corrected) (Fig. 4B). The average corti-
cal thickness of the auditory cortex was comparable in 
night and macaque monkeys (≈ 2.0 mm); however, it was 
slightly thinner in marmosets (≈ 1.8 mm). The fractional 
volume of auditory cortex relative to the total volume of 
the cortex was significantly larger in night monkeys (2.7%) 
in comparison to macaque (0.5%) and marmoset (1.6%) 
monkeys (p < 0.001 t test, Bonferroni corrected).

In contrast, BA7 showed a contrasting pattern of interspe-
cies difference. The relative surface area of BA7 was sub-
stantially smaller in night monkeys (45.8 ± 2.6  mm2/2030 
± 128  mm2 = 2.3%) in comparison to macaque (320 ± 54  m
m2/9894 ± 1470  mm2 = 3.2%), but larger than in marmoset 
monkeys (20.6 ± 2.0  mm2/1053 ± 55  mm2 = 2.0%) (p < 0.01 
t test, Bonferroni corrected) (Fig. 4C). The average cortical 
thickness of BA7 was 2.4, 2.2, and 2.1 mm in macaque, 
night, and marmoset monkeys, respectively. Accordingly, the 
volume of BA7 relative to the total volume of the cortex was 
smaller in night monkeys (2.6%) in comparison to macaque 
(3.3%) (p < 0.001 t test, Bonferroni corrected).

The different patterns of interspecies effects might simply 
reflect differences between sensory cortex (MT + complex 
and auditory cortex) and association cortex (BA7). To con-
trol for this, we also compared V1, a heavily myelinated 
visual area in the occipital cortex (Fig. S2). The estimated 
surface area (per hemisphere) of V1 was approximately 
1160, 380, and 220  mm2 in macaque, night monkey, and 
marmoset, respectively. Although the V1 boundaries were 
less clear than those of the MT + complex and auditory 
cortex, our estimates are comparable to previous reports 
(Table 1, Table S2). The relative surface area of V1 was sig-
nificantly larger in night monkeys (381 ± 32  mm2/2030 ± 128 
 mm2 = 18.8%) in comparison to macaques (1160 ± 181  m
m2/9894 ± 1470  mm2 = 11.7%), but smaller than in marmo-
sets (215 ± 13  mm2/1053 ± 55  mm2 = 20.4%) (p < 0.001 t 
test, Bonferroni corrected) (Fig. 4D). The average cortical 
thickness of V1 was significantly thinner in night monkeys 
(1.5 mm) and marmosets (1.4 mm) compared to macaques 
(2.0 mm). Accordingly, the volume of V1 relative to the total 
volume of cortex was 10.3, 15.3, and 18.3% in macaques, 

Fig. 2  Thickness and myeloarchitecture in the night monkey cerebral 
cortex. A Cortical thickness distribution displayed on mid-thickness 
(upper) and very inflated surfaces (lower panel). B T1w/T2w myelin 
contrast displayed on mid-thickness (upper panel), very inflated sur-
face (lower panel), and flatmap (lower). The zoomed view of (C) 
curvature and (D) T1w/T2w myelin contrast in the parieto-temporal 
cortical area (the black rectangle in flatmap) in comparison to (E) 
histological flat-mounted section of myelin stain (Sereno et al. 2015). 
The image intensity indicates myelin density (bright and dark indi-
cate low and high density, respectively). Note the spatial similarity 
between T1w/T2w myelin contrast and the histological myelin den-
sity. Abbreviations: AC auditory cortex, FEF frontal eye field, DM 
dorsomedial visual area, MT middle temporal area, RSC retrosple-
nial cortex, S1 primary somatosensory cortex, STS superior temporal 
sulcus, V1 primary visual cortex; VPP ventroposterior parietal area. 
Data at https:// balsa. wustl. edu/ zK96Z for (A) and (B) upper panel 
and https:// balsa. wustl. edu/ X8qL6 for (B) lower panel and (C) to (E)

◂

https://balsa.wustl.edu/zK96Z
https://balsa.wustl.edu/X8qL6
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night, and marmoset monkeys, respectively. Thus, unlike the 
MT + complex and auditory cortex, the relative surface area/
cortical volume of V1 was distinct from all three of the other 
areas: smallest in macaques and largest in marmosets. These 
results suggest that the expansion of the MT + complex and 
auditory cortex in night monkeys is specific to those regions, 
and not the result of general expansion of sensory/visual 
areas.

Discussion

In this study, we have presented an extension of species-
harmonized data acquisition and analysis methodology to 
investigate topography, thickness, and myeloarchitecture 
of the night monkey cerebral cortex. Our results demon-
strated that T1w/T2w myelin contrast in night monkeys 

is closely associated with histological myelin density in 
the occipital and parietal areas. Interspecies comparison 
of cortical myeloarchitecture revealed a similar pattern 
among NHPs, except that the relative cortical sizes of the 
MT + complex and auditory cortex in night monkeys were 
twice as large as those in macaques and marmosets. We 
propose that this selective visuo-auditory cortical expan-
sion is associated with the nocturnal night monkey’s eco-
logical niche.

Neurobiological factors of distinct sensory systems 
in the night monkey

Although there are various nocturnal primate species in 
Strepsirrhini prosimians, Aotus is the only nocturnal mon-
key genus among Simian primates. Because night monkeys 
retain foveal structure (Silveira et al. 1993), and lack a 

Fig. 3  Interspecies comparison of myeloarchitecture in parieto-tem-
poral cortex. T1w/T2w myelin contrast in A macaque, B night, and 
C marmoset monkeys displayed on a mid-thickness surface (top row) 
and a hyper inflated (A) or very inflated (B, C) surface (bottom row). 
Rectangles indicate the zoomed view of the parieto-temporal cor-

tex in (D, E, F) T1w/T2w myelin contrast, and (G, H, I) gradient. 
Note that the shape, topography, and relative area of the MT + com-
plex (MT + ; pink), auditory cortex (AC; gray), and Brodmann area 
7 (BA7; cyan) substantially vary across NHP species. Data at https:// 
balsa. wustl. edu/ 88Pzx

https://balsa.wustl.edu/88Pzx
https://balsa.wustl.edu/88Pzx
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tapetum lucidum behind the retina (responsible for enhanc-
ing illumination under dim light conditions) commonly seen 
in nocturnal animals (Jones 1965; Martin 1975), they are 
thought to have re-adapted to nocturnality in a different way 
from many other nocturnal mammals. The neurobiological 

factors for adaptation to night vision include enlargement 
of the eyes (Ross and Kirk 2007), increased maximal pupil 
diameter (Noback 1975), high rod and low cone retinal den-
sity (Ogden 1975; Wikler and Rakic 1990; Silveira et al. 
2001), and well-developed magnocellular layer in the lateral 

Table 1  Species comparisons of surface areas of MT + complex, V1, and auditory cortex

Note that the definition of each region varies across studies
*Studies specifically focusing on area MT only. Area estimates using histology may also be underestimated due to brain shrinkage; however, 
some of the studies compensated for that: 12% (Ungerleider and Desimone 1986), 16% (Van Essen and Maunsell 1980; Van Essen et al. 1984; 
Maunsell and van Essen 1987; Pessoa et al. 1992), 20–35% (Imig et al. 1977), and unspecified (Fritsches and Rosa 1996).

Species Cortical parcel of interest Surface area  (mm2) (N: num-
ber of hemispheres investi-
gated)

Methods Reference

Macaque MT + complex/MT (*) 89.8 ± 12.8 (N = 64) T1w/T2w myelin Current study
83.1 (N = 4) Myelin staining (modified Hei-

denhain–Woelke method)
(Gattass and Gross 1981)

68 (N = 1)* Anterograde neuronal tracing 
from V1 (3H-proline)

(Weller and Kaas 1983)

76 (N = 4)* Myelin staining (Gallyas or 
Spielmeyer method)

(Ungerleider and Desimone 1986)

39 (N = 3)* Myelin staining (Gallyas 
method)

(Maunsell and van Essen 1987)

73 (N = 10) Cytochrome oxidase activity (Sincich et al. 2003)
78 (N = 6) Myelin staining (Gallyas 

method)
(Large et al. 2016)

V1 1156.9 ± 130.7 (N = 64) T1w/T2w myelin Current study
1090 (N = 1) Nissl and myelin staining (modi-

fied Weigert method)
(Van Essen and Maunsell 1980)

823 (N = 2) Myelin staining (modified 
Heidenhain-Woelke method) & 
recording

(Gattass et al. 1981)

955 (N = 1) Electrical recording (Weller and Kaas 1983)
1195 (N = 31) Electrical recording (Van Essen et al. 1984)
1343 (N = 11) Cytochrome oxidase activity (Sincich et al. 2003)

Auditory cortex 57.7 ± 11.3 (N = 64) T1w/T2w myelin Current study
88 (N = 10) Cytochrome oxidase activity (Sincich et al. 2003)

Night monkey MT + complex/MT (*) 47.9 ± 2.3 (N = 18) T1w/T2w myelin Current study
37 (N = 14)* Cytochrome oxidase activity (Tootell et al. 1985)

V1 381.3 ± 32.2 (N = 18) T1w/T2w myelin Current study
286 Electrical recording (Myerson et al. 1977)
400 (N = 14) Cytochrome oxidase activity (Tootell et al. 1985)

Auditory cortex 51.2 ± 2.9 (N = 18) T1w/T2w myelin Current study
48 (N = 22) Nissl and electrical recording (Imig et al. 1977)

Marmoset MT + complex 16.1 ± 1.7 (N = 40) T1w/T2w myelin Current study
14 (N = 6) Myelin staining (modified Hei-

denhain–Woelke method)
(Pessoa et al. 1992)

V1 215.2 ± 13.2 (N = 40) T1w/T2w myelin Current study
182 (N = 6) Myelin staining (modified Hei-

denhain–Woelke method)
(Pessoa et al. 1992)

194 (N = 5) Nissl staining (Missler et al. 1993)
205 (N = 4) Electrical recording (Fritsches and Rosa 1996)

Auditory cortex 12.2 ± 1.3 (N = 40) T1w/T2w myelin Current study
8–12 (N = 5) Electrical recording (Aitkin et al. 1986)



1116 Brain Structure and Function (2023) 228:1107–1123

1 3

geniculate nucleus (Hassler 1966; Diamond et al. 1985). 
Here, using comparative myeloarchitectonic cortical-sur-
face mapping, we found that the sizes (relative to the total 
cortical-surface area) of the MT + complex and the auditory 
cortex were significantly larger in nocturnal night monkeys 
than in exemplar diurnal NHPs (i.e., macaques and marmo-
sets) (Fig. 4A, C).

The expansion of the MT + complex may support 
improved motion perception (Petersen et al. 1985; Kohn and 
Movshon 2003; Born and Bradley 2005). Scotopic visual 
stimulation produces a robust activation in the MT + com-
plex in humans (Hadjikhani and Tootell 2000), which might 
be rod-biased (Purpura et al. 1988). From an ecological 
perspective, motion information is important for insect for-
aging in nocturnal primates (Siemers et al. 2007). Indeed, 
night monkeys’ diet is more reliant on insects compared 
to close diurnal relatives (Wright 1989; Fernandez-Duque 
2003; Wolovich et al. 2010). Taken together, these studies 
are consistent with the view that sensory receptors, sensory 
systems, behavior, and habitat choice are evolutionary cou-
pled (Endler 1992).

Furthermore, night monkey MT neurons are also reported 
to exhibit distinctive features in comparison to their diurnal 
NHP relatives, such as object orientation and shape selec-
tivity (Zeki 1980; Malonek et al. 1994), which might be 
associated with their enhanced sensitivity to temporal and 

spatial contrast in scotopic conditions (Jacobs 1977a; Jacobs 
et al. 1979). The relative size of primary visual cortex (V1) 
in night monkeys was smaller than in marmosets (Fig. 4D), 
while the relative size of the MT + complex to V1 was sig-
nificantly larger in night monkeys than in macaques and 
marmosets (Fig. S3). These results suggest that the expan-
sion is specific to the MT + complex rather than a general 
expansion of the whole visual system. Indeed, MT receives 
multiple streams of lower-level visual information directly 
from subcortical structures (Berman and Wurtz 2010; 2011; 
Warner et al. 2015), and may contribute to residual visual 
capacity after V1 lesions (Rodman et al. 1989; Girard et al. 
1992; Rosa et al. 2000; Warner et al. 2015; Kato et al. 2021). 
Therefore, expansion of the MT + complex in night mon-
keys may be related to the nocturnal adaptation specialized 
to motion perception independently from the striate visual 
pathway (Krubitzer and Kaas 1990).

In contrast to the disproportionately large eyes, the term 
‘Aotus’ reflects the earless appearance of this genus, with 
small external ears mostly hidden beneath the fur (Wright 
1989). Despite the underdeveloped external auditory organs, 
our analysis suggests that night monkeys might have a larger 
auditory cortex relative to the total cortex in comparison 
to diurnal primates (Fig. 3–F, Fig. 4B). Similar expansion 
of the auditory cortex was reported in nocturnal rodents 
(Campi and Krubitzer 2010), suggesting that this might be 

Fig. 4  Comparisons of parieto-
temporal cortex in non-human 
primates. Average cortical 
thickness, surface area relative 
to the total cortex, and cortical 
volume relative to the total cor-
tex of MT + complex (A), audi-
tory cortex (B), BA7 (C), and 
V1 (D). The error bars indicate 
the standard deviation across 
subjects (macaque N = 32 × 2, 
night monkey N = 9 × 2, marmo-
set N = 20 × 2). Interspecies dif-
ferences were tested by two-way 
ANOVA (species and cortical 
parcels), followed by t test with 
Bonferroni correction; * and ** 
indicate corrected p < 0.05 and 
0.001, respectively
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related to nocturnal adaptation. This expansion might also 
be related to improved hearing ability, which is important in 
a nocturnal environment (Kronfeld-Schor and Dayan 2003). 
However, the auditory sensitivity and frequency range of 
night monkeys are not significantly different from those of 
diurnal primates (Beecher 1974; Coleman and Ross 2004). 
Alternatively, the expansion of auditory cortex may com-
pensate for the reduced visual information with multi-modal 
integration (Ernst and Bülthoff 2004), as it is known that 
auditory information can improve visual detection at both 
neuronal (Meredith and Stein 1986) and behavioral levels 
(McDonald et al. 2000; Frassinetti et al. 2002). Another 
hypothesis is that the relatively large auditory cortex may 
be associated with the evolution of acoustic communication 
in the nocturnal environment, which may be more effec-
tive than visual communication under dim light conditions 
(Endler 1992; Endler and Basolo 1998; Kronfeld-Schor and 
Dayan 2003; Chen and Wiens 2020). Indeed, the auditory 
cortex of night monkeys encodes sounds well matched to 
the natural conspecific vocalizations (Atencio et al. 2007). 
Further behavioral and neurobiological studies are needed 
to elucidate the functional relevance to the expansion of the 
auditory cortex.

Expansion of inferior parietal association cortex 
in primates

Dorso-medial to the MT + complex and the auditory cor-
tex lies an island area of low T1w/T2w myelin in all three 
species (Fig. 3A–I, cyan border). This region in macaque 
monkeys corresponds to area 7a, 7b, and 7op (Lewis and 
Van Essen 2000a), which are closely overlapped with clas-
sic Brodmann area 7 (BA7). In marmosets, this region con-
tains the ventral part of the posterior parietal cortex (PPv), 
which is subdivided into TPt, PF, PFG, PG, and OPt (Rosa 
et al. 2009; Paxinos et al. 2012). However, little is known 
about this region in night monkeys, possibly due to its being 
mostly buried in the lateral sulcus (Fig. 3B) and thus not 
well characterized in previous studies (Kaas 2004; Sereno 
et al. 2015). We found that it has low myelin similar to the 
corresponding region in other NHP species (Fig. 3A, C). In 
the tissue flatmap of Sereno et al. 2015 (Fig. 3D), this low-
myelin area corresponds to the area surrounded by PP/VPP 
and TA/TD and lacks any annotation. Dorsal to this low 
myelinated area is a highly myelinated visual area which 
receives inputs from MT, identified as the lateral intrapari-
etal area (LIP) (Blatt et al. 1990) or its ventral subdivision 
LIPv (Lewis and Van Essen 2000b) in macaques, ventral 
posterior parietal area (VPP) in night monkeys (Allman and 
Kaas 1971a; Krubitzer and Kaas 1993; Sereno et al. 2015), 
and the dorsal part of posterior parietal cortex (PPd) in mar-
mosets (Palmer and Rosa 2006; Ma et al. 2020). Therefore, 

accumulated evidence in conjunction with our myeloarchi-
tectonic findings indicates that the low myelinated parietal 
region preserves its relative position on the cortical surface 
and likely corresponds to BA7 homologs across three NHP 
species.

BA7 in NHPs is considered a multi-modal association 
region contributing to spatial perception, somatosensory, 
and motor control (Mountcastle et  al. 1975; Hyvärinen 
1982). The homologous region in humans is considered to 
be located in the inferior parietal lobule (IPL), primarily 
based on connectivity studies (Pandya and Seltzer 1982; 
Caspers et al. 2011, 2013). This area corresponds primarily 
to Brodmann areas 39/40 and has recently been identified 
as the PG/PF/PFG complex (Glasser et al. 2016) using the 
terminology of Von Economo and Koskinas (von Economo 
and Koskinas 1925). Similar to NHPs, the IPL in humans is 
involved in spatial perception (Corbetta and Shulman 2002), 
action perception (Passingham et al. 2014), social cogni-
tion (Bzdok et al. 2012, 2016), use of tools (Johnson-Frey 
et al. 2005; Ramayya et al. 2010), and language (Binder 
et al. 2009). Comparisons of macaque BA7 and human IPL 
suggest an evolutionary expansion (Van Essen and Dierker 
2007; Xu et al. 2020) or areal duplication and divergence 
(Yokoyama et al. 2021) of this region.

It is noteworthy that we found evidence for an expan-
sion of BA7 that parallels the expansion of brain size in 
NHPs (Fig. 4C), suggesting that multi-modal information 
perception is important across NHPs, but especially in the 
gyrencephalic macaque. In particular, spatial perception 
and memory are among fundamental cognitive processes 
for foraging behaviors and survival of species, possibly rely-
ing on the ability to use perceived cues that relate objects 
or environmental traits to probability of finding food in the 
decision-making process. While night monkeys may need to 
be more sensitive to auditory and motion perception in the 
dim illumination, it is interesting that nocturnal monkeys 
exhibit similar efficiency in the use of spatial memory (e.g., 
perceived probability of food location) to diurnal monkeys 
(Bicca-Marques and Garber 2004). Indeed, experimental 
studies reveal that the night monkeys’ foraging behavior 
follows the ‘routes strategy’ rather than unimodal sensory 
inputs (Bolen and Freen 1997; da Costa and Bicca-Marques 
2014). The routes or travel paths to reach food may rely on 
integrated perceptions of scent marking, visual and auditory 
cues (Wright 1989), and ecological burden (Rosati 2017). 
The travel paths of primates in natural environments are 
being studied to infer spatial cognitive strategies for foraging 
behaviors under ecological complexity, and primate brain 
evolution (Janmaat et al. 2021). The foraging behavior under 
ecological burden is likely associated with evolution of the 
brain size in primates (DeCasien et al. 2017).
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T1w/T2w MRI‑based myeloarchitecture analysis

The cortical T1w/T2w ratio was originally proposed by 
Glasser and Van Essen as a marker of cortical myelin density 
(Glasser and Van Essen 2011; Glasser et al. 2014). Mapping 
of the cortical T1w/T2w ratio correlates well with the corti-
cal-surface maps of myelin staining in humans in the seminal 
work of Adolph Hopf (Nieuwenhuys 2013). In HCP data, 
the T1w and T2w images are acquired with high-resolution, 
0.8 mm isotropic or better, which corresponds to at least two 
voxels at the minimum cortical thickness in humans (1.6 mm) 
(Glasser et al. 2013). To generate T1w/T2w myelin contrast, 
the T1w and T2w images are carefully registered to each 
other, and their ratio mapped onto the mid-thickness surface 
by minimizing partial volume effects, and corrected for MRI-
based intensity bias in a spatially low-frequency range. The 
HCP-style data acquisition and analysis methodology was pre-
viously applied to investigate T1w/T2w myeloarchitecture in 
several NHP species (Van Essen et al. 2019; Hayashi et al. 
2021). Species-specific low-frequency bias correction of the 
T1w/T2w ratio was also applied by taking into account the 
difference in brain size of NHP including macaques and mar-
mosets (Hayashi et al. 2021; Ose et al. 2022).

The current study applied the same HCP-NHP style 
approach to the night monkeys, demonstrating that cortical 
T1w/T2w myelin contrast (Fig. 2B) shows a similar spatial 
pattern as in other primates (Van Essen et al. 2019; Hayashi 
et al. 2021) and replicates histological myelin stain results in 
the parietal and occipital areas of cerebral cortex (Fig. 2D, 
E). Myelin gradients are in principle insensitive to residual 
low-frequency biases of myelin maps, allowing us to define 
gradient-based boundaries of three cortical areas, MT + , 
auditory, and BA7 semi-automatically across three NHP spe-
cies. The areal sizes based on our T1w/T2w myelin gradient 
are comparable with those found in previous histological 
studies (Table 1, Table S2). It should be noted that our esti-
mate of the MT + complex (47.9 ± 2.3  mm2) is larger than a 
previous report of night monkey MT area (37  mm2) (Tootell 
et al. 1985), probably because their analysis excluded the 
highly myelinated rostral region corresponding to MST. We 
applied the same criteria to all three species for a quantita-
tive interspecies comparison (Fig. 3G–I). However, there are 
a few caveats to consider. First, although the surface area and 
cortical volume were estimated in the naive physical space 
of each individual to reflect size differences across subjects, 
we likely underestimated intersubject variability, because 
we applied the group average areal boundary based on the 
average T1w/T2w myelin gradient. Indeed, the areal size 
displayed larger variability if we defined boundaries based 
on individual T1w/T2w myelin gradients for each subject 
separately, which likely reflects a combination of genuine 
intersubject variability of functional parcellation, but also 
fluctuations related to noisier data (Fig. S4). Second, the 

boundaries of MT + complex, auditory cortex, and BA7 do 
not precisely match published parcellations (e.g., Lewis 
and Van Essen 2000a for macaques, Paxinos et al. 2012 for 
marmosets). The current method mainly focused on myelo-
architecture, but will likely benefit from information from 
cytoarchitecture, connectivity, and function for more accu-
rate parcellations. Third, sampling differences, particularly 
in age, might have biased our results, as all of our night 
monkeys were older than any of the macaques or marmosets 
(Table S1). These sampling differences are largely due to 
the limited availability of NHP animals for experimental 
use. However, we reduced effects of age using T1w/T2w 
myelin gradient, which is less sensitive to low-frequency 
spatial information such as the age effects on T1w/T2w mye-
lin reported in humans (Baum et al. 2022; Grydeland et al. 
2013). A detailed analysis of age and sex effects would be 
beneficial for intra- and interspecies comparisons. Despite 
these limitations, our methodology enables non-invasive and 
quantitative comparisons across NHP species. The overall 
results indicate that our parieto-temporal parcellation based 
on T1w/T2w myelin contrast showed reasonable estimates 
across NHP species, providing a valuable basis for inter-
species comparisons. Multimodal surface matching includ-
ing the T1w/T2w myelin map and/or functional connectiv-
ity would be useful for more detailed percellation of areas 
including those with lower myelination (Glasser et al. 2016), 
and should be addressed in future studies.
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